
Oracle Forms Developer

Procedure Builder Reference

Release 6i

January, 2000
Part No. A73076-01

Oracle Forms Developer: Procedure Builder Reference, Release 6i

The part number for this volume is A73076-01

Copyright © 1999, 2000, Oracle Corporation. All rights reserved.

Portions copyright © Blue Sky Software Corporation. All rights reserved.

Contributors: Marci Caccamo, Poh Lee Tan

The programs are not intended for use in any nuclear, aviation, mass
transit, medical, or other inherently dangerous applications. It shall be
licensee's responsibility to take all appropriate fail-safe, back up,
redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and Oracle
disclaims liability for any damages caused by such use of the Programs.

This Program contains proprietary information of Oracle Corporation; it is
provided under a license agreement containing restrictions on use and
disclosure and is also protected by copyright, patent and other intellectual
property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without
notice. If you find any problems in the documentation, please report them
to us in writing. Oracle Corporation does not warrant that this document is
error free. No part of this document may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Oracle Corporation

If this Program is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the
following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR
Supplement are "commercial computer software" and use, duplication and
disclosure of the Programs shall be subject to the licensing restrictions set
forth in the applicable Oracle license agreement. Otherwise, Programs
delivered subject to the Federal Acquisition Regulations are "restricted
computer software" and use, duplication and disclosure of the Programs
shall be subject to the restrictions in FAR 52.227-14, Rights in Data --
General, including Alternate III (June 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and Forms Developer, Express, Oracle
Browser, Oracle Forms, Oracle Graphics, Oracle Installer, Oracle Reports,
Oracle7, Oracle8, Oracle Web Application Server, Personal Oracle,
Personal Oracle Lite, and PL/SQL are trademarks or registered trademarks
of Oracle Corporation. All other company or product names mentioned are
used for identification purposes only and may be trademarks of their
respective owners.

i

Table of Contents
PROCEDURE BUILDER REFERENCE................................ 1

USING INTERPRETER COMMANDS................................ 1
ALPHABETIC LIST OF COMMANDS 3
BIND VARIABLE COMMANDS 5
DATABASE COMMANDS 5
DEBUG ACTION COMMANDS 5
DEBUGGING COMMANDS 6
LIBRARY COMMANDS................................ 6
LOAD PATH COMMANDS................................ 6
LOGGING COMMANDS 7
PROGRAM UNIT COMMANDS 7
SESSION COMMANDS................................ 7
INTERPRETER COMMANDS................................ 7

BIND VARIABLE COMMANDS 9
CREATE (BIND VARIABLE) COMMAND (PB
STANDALONE ONLY)................................ 9
DELETE (BIND VARIABLES) COMMAND (PB
STANDALONE ONLY)................................ 10

DATABASE COMMANDS 11
CONNECT COMMAND (PB STANDALONE ONLY) 11
DESCRIBE (TABLES AND VIEWS) COMMAND 12
DISCONNECT COMMAND (PB STANDALONE ONLY) 12
GRANT COMMAND (DATABASE COMMANDS)........................ 12
REVOKE COMMAND (DATABASE COMMANDS)...................... 13
STORE COMMAND 13

DEBUG ACTION COMMANDS 15
BREAK COMMAND 15
DELETE (DEBUG ACTIONS) COMMAND 17
DESCRIBE (DEBUG ACTIONS) COMMAND 18
DISABLE (DEBUG ACTIONS) COMMAND................................ . 18
ENABLE (DEBUG ACTIONS) COMMAND 19
LIST (DEBUG ACTIONS) COMMAND 20
SHOW (DEBUG ACTIONS) COMMAND 21
TRIGGER COMMAND................................ 21

DEBUGGING COMMANDS 25
DESCRIBE (LOCALS) COMMAND 25
GO COMMAND................................ 26
RESET COMMAND 26

ii

SET COMMAND 27
SHOW (CALL STACK) COMMAND 28
STEP COMMAND................................ 28

LIBRARY COMMANDS 31
ATTACH COMMAND 31
CLOSE COMMAND 32
COMPILE (LIBRARIES) COMMAND 32
CREATE (LIBRARIES) COMMAND 33
DELETE (LIBRARIES) COMMAND 34
DELETE (LIBRARY PROGRAM UNITS) COMMAND 35
DESCRIBE (LIBRARIES) COMMAND 36
DETACH COMMAND 36
EXPORT (LIBRARIES) COMMAND................................ 37
GENERATE COMMAND 37
GRANT COMMAND (LIBRARY COMMANDS) 38
INSERT (LIBRARY PROGRAM UNITS) COMMAND 38
LOAD (LIBRARY PROGRAM UNITS) COMMAND 40
OPEN COMMAND................................ 41
RENAME (LIBRARIES) COMMAND................................ 42
REVERT COMMAND................................ 42
REVOKE COMMAND (LIBRARY COMMANDS) 43
SAVE COMMAND 43
SHOW (LIBRARIES) COMMAND................................ 44

LOAD PATH COMMANDS 45
DELETE (LOAD PATH) COMMAND 45
DESCRIBE (LOAD PATH) COMMAND 45
INSERT (LOAD PATH) COMMAND 45

LOGGING COMMANDS 47
DISABLE (LOGGING) COMMAND 47
ENABLE (LOGGING) COMMAND 47
LOG COMMAND 48

PROGRAM UNIT COMMANDS 49
COMPILE (PROGRAM UNITS) COMMAND 49
DELETE (PROGRAM UNITS) COMMAND................................ .. 50
DESCRIBE (PROGRAM UNITS) COMMAND 51
DISABLE (COMPILER OPTIONS) COMMAND 52
ENABLE (COMPILER OPTIONS) COMMAND............................. 52
EXECUTE COMMAND (PB STANDALONE ONLY) 53
EXPORT (PROGRAM UNITS) COMMAND 53
EXPORT (STORED PROGRAM UNITS) COMMAND..................... 55
LIST (PROGRAM UNITS) COMMAND 56
LOAD (PROGRAM UNITS) COMMAND 57

iii

LOAD (STORED PROGRAM UNITS) COMMAND 58
SHOW (LOCALS) COMMAND 59
SHOW (PROGRAM UNITS) COMMAND 60

SESSION COMMANDS 63
DESCRIBE (VERSION) COMMAND 63
HELP COMMAND 63
INTERPRET COMMAND 64
QUIT COMMAND (PROCEDURE BUILDER STANDALONE
ONLY) 65

v

We Appreciate Your Comments
Reader’s Comment Form - A73076-01
Oracle Corporation welcomes your comments about this manual’s quality and
usefulness. Your feedback is an important part of our revision process.

• Did you find any errors?

• Is the information presented clearly?

• Are the examples correct? Do you need more examples?

• What features did you like?
If you found any errors or have any other suggestions for improvement, please
send your comments to oddoc@us.oracle.com.
Thank you for your help.

vii

Preface
Welcome to Release 6i of the Oracle Forms Developer: Procedure Builder
Reference.
This reference guide includes information to help you effectively
work with Forms Developer Procedure Builder and contains detailed
information about its commands
This preface explains how this user’s guide is organized and
introduces other sources of information that can help you use Forms
Developer Procedure Builder.

viii

Prerequisites
You should be familiar with your computer and its
operating system. For example, you should know
the commands for deleting and copying files and
understand the concepts of search paths,
subdirectories, and path names. Refer to your
Microsoft Windows 95 or NT and DOS product
documentation for more information.
You should also understand the fundamentals of
Microsoft Windows, such as the elements of an
application window. You should also be familiar
with such programs as the Explorer, Taskbar or
Task Manager, and Registry.

Notational Conventions
The following typographical conventions are used
in this guide:

 Convention Meaning

 fixed-width font Text in a fixed-width font indicates
commands that you enter exactly as
shown. Text typed on a PC is not
case-sensitive unless otherwise
noted.
In commands, punctuation other
than brackets and vertical bars must
be entered exactly as shown.

 lowercase Lowercase characters in a command
statement represent a variable.
Substitute an appropriate value.

 UPPERCASE Uppercase characters within the text
represent command names, SQL
reserved words, and keywords.

 boldface Boldface is used to indicate user
interface items such as menu choices

ix

and buttons.
 C> C> represents the DOS prompt. Your

prompt may differ.

Related Publications
You may also wish to consult the following Oracle
documentation:

 Title Part Number
 Oracle Forms Developer and Oracle
Reports Developer: Guidelines for
Building Applications

A73073

 SQL*Plus User's Guide and Reference
Version 3.1

A24801

Forms Developer Procedure Builder Reference 1

Procedure Builder
Reference

Using Interpreter commands
Commands adhere to the following general syntax:
.command-name [option...]

In other words, a command consists of a period (.), then the command name, followed
by zero or more keywords and keyword value arguments.
Command options generally follow the form shown below:
keyword

or
keyword value(s)

Thus, an option consists of either a single keyword, or a keyword followed by one or
more argument values. The command name, keywords, and argument values are
separated by white space. Command names, keywords, and argument values are not
case sensitive.
For example, the following DESCRIBE command invocation illustrates the basic
elements of Procedure Builder command syntax:
.DESCRIBE PROCEDURE proc1 BODY

The command name DESCRIBE is followed by the PROCEDURE and BODY
keywords. The PROCEDURE takes a single argument value, proc1, while the BODY
keyword takes no argument values.
Multi-valued Arguments Keyword arguments may be multi-valued, in which
case the individual values are delimited by commas as shown below:
value, value...

Spaces may appear between the commas and neighboring values.
Keyword arguments that can be multi-valued according to the syntax specified above
will be described as shown below:
name[, name...]

For example, the LOAD command has the following partial syntax:

Forms Developer Procedure Builder Reference2

.LOAD FILE name[, name...]

Thus, the file argument can be single-valued as shown below:
.LOAD FILE file1

or multi-valued as shown below:
.LOAD FILE file1, file2, file3

Position Independence Unless explicitly specified in the syntax descriptions,
keywords may appear in any order. For example, the command:
.DESCRIBE PROCEDURE proc1 BODY

can also be entered as:
.DESCRIBE BODY PROCEDURE proc1

Multi-line Commands Normally, commands are terminated by a newline
character or a carriage return. However, it is often desirable to make a command span
multiple lines. This can be done by including the continuation character (backslash by
default) as the last character of each line to be continued. For example, the continuation
character is used below to place each file name argument value to the LOAD command
on a separate line:
.LOAD FILE long_file_name_number_one, \
long_file_name_number_two, \
long_file_name_number_three

Argument Value Quoting Non-numeric command argument values may be optionally
enclosed in double quotes. The quotes serve only as delimiters and are not considered
part of the argument value. This is particularly useful in specifying argument values
that contain white space, commas, or wildcard characters. For example, if supported by
the native operating system, a file name containing a space could be specified in a load
command as follows:
.LOAD FILE "my file"

A double quote may be included as a part of the argument value by preceding it with
another double quote. For example, the command
.LOAD FILE ""quoted file""

loads a file with a name containing two double quotes--one at the beginning and one at
the end.
Abbreviating Keywords A command keyword may be abbreviated by typing
only as many characters as it takes to distinguish it from all other keywords accepted by
the same command.
Command names may not be abbreviated. This is to minimize conflict with the PL/SQL
namespace and avoid confusion in distinguishing between commands and PL/SQL code
fragments.
Entering PL/SQL Code In addition to commands, the Interpreter accepts and
evaluates PL/SQL constructs (e.g., statements, blocks, procedure definitions, etc.), and
SQL statements. Procedure Builder interprets a line beginning with anything other than
a valid command name as the beginning of a PL/SQL statement, block, program unit, or
SQL statement.

Forms Developer Procedure Builder Reference 3

While commands occupy a single line (unless the continuation character is used),
PL/SQL or SQL statements may occupy any number of lines, and continuation
characters are neither necessary nor allowed.
If necessary, a PL/SQL construct can always be distinguished from a command by
enclosing it in the block delimiters BEGIN and END.
Notational Conventions The following table describes the notation and
conventions for command syntax used in this section.

Feature Example Explanation
uppercase BREAK A command or keyword name; it

need not be typed in uppercase
lowercase italics numbers A keyword value; substitute an

appropriate value
vertical bar | Separates alternative syntax

elements that may be optional or
mandatory

braces {STACK|SCOPE
}

A choice of mandatory items;
enter one of the items separated
by |. Do not enter the braces or
vertical bar.

brackets [BEFORE|AFTE
R]

One or more optional items. If
two items appear separated by a
vertical bar, enter one of the
items. Do not enter the brackets
or vertical bar.

underline [BEFORE|AFTE
R]

A default value. If you enter
nothing, this value is used.

Enter other punctuation marks (such as commas) where shown in the command syntax.

Alphabetic list of commands
ATTACH
BREAK
CLOSE
COMPILE (libraries)
COMPILE (program units)
CONNECT
CREATE (bind variables)
CREATE (libraries)
DELETE (bind variables)
DELETE (debug actions)

Forms Developer Procedure Builder Reference4

DELETE (libraries)
DELETE (library program units)
DELETE (load path)
DELETE (program units)
DESCRIBE (debug actions)
DESCRIBE (load path)
DESCRIBE (locals)
DESCRIBE (libraries)
DESCRIBE (program units)
DESCRIBE (tables and views)
DESCRIBE (version)
DETACH
DISABLE (compiler options)
DISABLE (debug actions)
DISABLE (logging)
DISCONNECT
ENABLE (compiler options)
ENABLE (debug actions)
ENABLE (logging)
EXECUTE
EXPORT
GENERATE
GO
GRANT
HELP
INSERT (library program unit)
INSERT (load path)
INTERPRET
LIST (debug actions)
LIST (program units)
LOAD (library program units)
LOAD (program units)
LOAD (stored program units)
LOG
OPEN
QUIT
RENAME
RESET
REVERT
REVOKE
SAVE
SET

Forms Developer Procedure Builder Reference 5

SHOW (call stack)
SHOW (debug actions)
SHOW (libraries)
SHOW (locals)
SHOW (program units)
STEP
STORE
TRIGGER

Bind variable commands
CREATE (bind variables)
DELETE (bind variables)

Database commands
CONNECT
DESCRIBE (tables and views)
DISCONNECT
GRANT
REVOKE
STORE

Debug action commands
BREAK
DELETE (debug actions)
DESCRIBE (debug actions)
DISABLE (debug actions)
ENABLE (debug actions)
LIST (debug actions)
SHOW (debug actions)
TRIGGER

Forms Developer Procedure Builder Reference6

Debugging commands
DESCRIBE (locals)
GO
RESET
SET
SHOW (call stack)
STEP

Library commands
ATTACH
CLOSE
COMPILE (libraries)
CREATE (libraries)
DELETE (libraries)
DELETE (library program unit)
DESCRIBE (libraries)
DETACH
EXPORT (libraries)
GENERATE
GRANT
INSERT (library program unit)
LOAD (library program units)
OPEN
RENAME
REVERT
REVOKE
SAVE
SHOW (libraries)

Load path commands
DELETE (load path)
DESCRIBE (load path)
INSERT (load path)

Forms Developer Procedure Builder Reference 7

Logging commands
DISABLE (logging)
ENABLE (logging)
LOG

Program unit commands
COMPILE (program units)
DELETE (program units)
DESCRIBE (program units)
DISABLE (compiler options)
ENABLE (compiler options)
EXECUTE
EXPORT (program units)
EXPORT (stored program units)
LIST (program units)
LOAD (program units)
LOAD (stored program units)
SHOW (locals)
SHOW (program units)

Session commands
DESCRIBE (version)
HELP
INTERPRET
QUIT

Interpreter commands
Bind variable commands
Database commands
Debug action commands
Debugging commands

Forms Developer Procedure Builder Reference8

Library commands
Load path commands
Logging commands
Program unit commands
Session commands

Forms Developer Procedure Builder Reference 9

Bind Variable
Commands

CREATE (bind variable) command (PB standalone only)
Description Creates a bind variable. This command is valid only when Procedure
Builder is invoked as a standalone session.
Syntax
CREATE CHAR var_name [LENGTH number]
CREATE NUMBER var_name [PRECISION number] [SCALE number]
CREATE RAW var_name [LENGTH number]
CREATE DATE var_name

Keywords and Values
CHAR
var_name

Specifies a bind variable, var_name, of the
datatype CHAR.

LENGTH
number

Optionally specifies the length of a CHAR
bind variable.

DATE
var_name

Specifies a bind variable, var_name, of the
datatype DATE

NUMBER
var_name

Specifies a bind variable, var_name, of the
datatype NUMBER.

PRECISION
number

Optionally determines a maximum number of
numeric digits for the variable.

SCALE
number

Optionally determines where rounding should
occur.

RAW
var_name

Specifies a bind variable, var_name, of the
datatype RAW.

Comments The LENGTH attribute of the CHAR datatype defaults to 1 byte if you
do not specify an alternate setting. The maximun value for LENGTH is 32767 bytes.

Forms Developer Procedure Builder Reference10

The maximum value for PRECISION is 38 characters. SCALE can be from -84 to 127.
If you do not specify a value for SCALE, it defaults to zero, meaning numbers are
rounded to the nearest whole number.
For more information about datatypes and their attributes, see the PL/SQL User's Guide
and Reference.

CREATE (bind variable) command example
The following command creates a bind variable x of the datatype NUMBER that should
round to the nearest hundredth decimal place:
.CREATE NUMBER x SCALE 2

DELETE (bind variables) command (PB standalone only)
Description Deletes one or more bind variables. This command is valid only when
Procedure Builder is invoked as a standalone session.
Syntax
DELETE BINDVAR name [, name...]
DELETE CHAR name [, name...]
DELETE DATE name [, name...]
DELETE NUMBER name [, name...]

Keywords and Values
BINDVAR name Specifies a bind variable or set of bind

variables of any datatype
CHAR name Specifies a bind variable or set of bind

variables of the datatype CHAR
DATE name Specifies a bind variable or set of bind

variables of the datatype DATE
NUMBER name Specifies a bind variable or set of bind

variables of the datatype NUMBER

DELETE (bind variables) command examples
The following command deletes the bind variable y of the datatype CHAR:
.DELETE CHAR y

The following command deletes a set of bind variables (x, y, and z) of different
datatypes:
.DELETE BINDVAR x,y,z

Forms Developer Procedure Builder Reference 11

Database Commands

CONNECT command (PB standalone only)
Description Establishes a database connection. This command is valid only when
Procedure Builder is invoked as a standalone session.
Syntax
CONNECT DB [username/password@ |
 network_device: |
 datasource_node: |
 datasource_name]
 [SILENT]

Keywords and Values
username/passwor
d@

Indicates a valid user name and password for
the datasource to which you wish to connect.
The '@' symbol must precede the remaining
database location specifiers.

network_device: Specifies the networking device driver used to
connect to the remote database.

datasource_node: Specifies the network node of the remote
datasource to which you wish to connect.

datasource_name Specifies the name of the remote or local
datasource to which you wish to connect.

SILENT Optionally suppresses the status messages
issued by the Interpreter.

Note If you wish to connect to an ODBC datasource, use the following syntax:
username/password@ODBC:datasource[:dbname]

If dbname is not specified, the current database for the ODBC connection is used.

CONNECT command examples
The following command would connect you to the remote "inventory" database on the
"boston" network node using the TCP/IP device driver.
.CONNECT DB scott/tiger@t:boston:inventory

Forms Developer Procedure Builder Reference12

If the "inventory" database were a local database, the following command would connect
you:
.CONNECT DB scott/tiger@inventory

DESCRIBE (tables and views) command
Description Displays detailed information about database tables and views.
Syntax
DESCRIBE TABLE name
DESCRIBE VIEW name

Keywords and Values
TABLE name Specifies a table in the current database.
VIEW name Specifies a view in the current database.

Comments The information displayed for tables and views includes the columns
and their types.

DESCRIBE (tables and views) command examples
The following command displays information about the EMP table:
.DESCRIBE TABLE emp

The following command displays information about the view named ASSOCIATE:
.DESC V associate

DISCONNECT command (PB standalone only)
Description Disconnects you from the database to which you are currently
connected. This command is valid only when Procedure Builder is invoked as a
standalone session.
Syntax
DISCONNECT

GRANT command (Database commands)
Description Grants a user access to a library stored in the database.
Syntax

Forms Developer Procedure Builder Reference 13

GRANT LIBRARY name USER name

Keywords and Values
LIBRARY name Specifies the library.
USER name Specifies a user name.

Comments You can specify any single valid user name, or PUBLIC (all users).

GRANT command example (Database commands)
The following command grants user SCOTT access to database library lib1:
.GRANT LIB lib1 USER scott

REVOKE command (Database commands)
Description Revokes a user's access to a library stored in the database.
Syntax
REVOKE LIBRARY name USER name

Keywords and Values
LIBRARY name Specifies a library.
USER name Specifies a user.

Comments You can specify any single valid user name, or PUBLIC (all users).

REVOKE command example (Database commands)
The following command revokes user SCOTT's access to database library lib1:
.REVOKE LIB lib1 USER scott

STORE command
Description Stores one or more program units in the database.
Syntax
STORE PROGRAMUNIT name [, name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
 [NOWARN]
STORE PACKAGE name[, name...]
 [OWNER name]
 [SPECIFICATION | BODY]
STORE SUBPROGRAM name[, name...]

Forms Developer Procedure Builder Reference14

 [OWNER name]
 [SPECIFICATION | BODY]
STORE PROCEDURE name[, name...]
 [OWNER name]
 [SPECIFICATION | BODY]
STORE FUNCTION name[, name...]
 [OWNER name]
 [SPECIFICATION | BODY]

Keywords and Values
PROGRAMUNIT
name

Specifies one or more program units.

PACKAGE name Specifies one or more packages.
SUBPROGRAM
name

Specifies one or more subprograms.

PROCEDURE
name

Specifies one or more procedures.

FUNCTION nameSpecifies one or more functions.
OWNER name Specifies the owner of the stored program

unit(s).
SPECIFICATION
or BODY

Dictates whether the specification or body of a
package is stored in the database, respectively.

Comments If OWNER is not specified, Procedure Builder assigns the currently
connected user as the owner of the stored program units.
If neither SPECIFICATION nor BODY is supplied, both the body and the specification
(if available) of the designated package(s) are stored in the database.

STORE command examples
The following command stores procedure proc1 and function func2 in the current
database:
.STORE PROGRAMUNIT proc1, func2

The following command stores the specification and body of package pack1 and
specifies the owner to be SCOTT:
.STORE PACK pack1 OWNER scott

Forms Developer Procedure Builder Reference 15

Debug Action
Commands

BREAK command
Description Establishes a breakpoint at the specified source line within a program
unit.
Syntax
BREAK {[USER schema] PROGRAMUNIT name | PROGRAMUNIT [schema.]name}
 [LINE number]
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK {USER schema PACKAGE name | PACKAGE schema.name}
 [LINE number]
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK {USER schema SUBPROGRAM name | SUBPROGRAM schema.name}
 [LINE number]
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK {USER schema PROCEDURE name | PROCEDURE schema.name}
 [LINE number]
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK {USER schema FUNCTION name | FUNCTION schema.name}
 [LINE number]
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK ACTION number
 [LINE number]
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK BREAKPOINT number
 [LINE number]
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK .

Forms Developer Procedure Builder Reference16

 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK PC
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]
BREAK SCOPE
 [ENABLED | DISABLED]
 [TRIGGER plsql-block]

Keywords and Values
USER schema Specifies a schema name in the database

where the stored program unit is located.
PROGRAMUNIT
name

Specifies a program unit body.

PACKAGE name Specifies a package body.
SUBPROGRAM
name

Specifies a subprogram body.

PROCEDURE
name

Specifies a procedure body.

FUNCTION nameSpecifies a function body.
ACTION number Specifies a debug action (breakpoint or

trigger).
BREAKPOINT
number

Specifies a breakpoint.

. Specifies the current source location. This is
the default.

PC Specifies the current execution location.
SCOPE Specifies the current scope location.
LINE number Specifies the line in a program unit at which

to establish the breakpoint.
ENABLED or
DISABLED

Specifies whether or not the breakpoint is
initially enabled or disabled. The default is
ENABLED.

TRIGGER pl/sql-
block

Defines a PL/SQL trigger for the breakpoint.
The trigger fires each time the breakpoint is
reached.

Note If supplied, the TRIGGER keyword must appear as the last command option.
Comments BREAK may operate only on executable source lines.
Trigger blocks may span multiple input lines. As is the case when entering PL/SQL
constructs elsewhere in the Interpreter, no line continuation characters are required
when entering the trigger body (nor are they allowed).
If you wish to interrupt your program conditionally, you should use the TRIGGER
command in conjunction with the DEBUG.BREAK exception.

Forms Developer Procedure Builder Reference 17

If the statement is reached while running PL/SQL, Procedure Builder suspends
execution just before the statement is executed, and passes control to the Interpreter. At
this point, you can inspect and even modify program state using a variety of Procedure
Builder functions.
Once satisfied, you can resume execution with the GO or STEP commands.
Alternatively, you can abort execution using the RESET command.

BREAK command examples
The following command sets a breakpoint at the current source location:
.BREAK .

The following command sets a breakpoint at the second line of the procedure named
my_proc:
.BREAK PROCEDURE my_proc LINE 2

The following command sets a breakpoint at the tenth line of my_proc that shows all of
the local variables and their values whenever the breakpoint is entered:
.BREAK PROC my_proc LINE 10 TRIGGER
 debug.interpret('.SHOW LOCALS')

The following command sets a breakpoint at line twelve of the program unit that
contains debug action number four:
.BREAK ACTION 4 LINE 12

The following command sets a breakpoint at the current source location in a server-side
program unit my_proc from the schema owned by user scott:
.BREAK USER scott PROC my_proc

or
.BREAK PROC scott.my_proc

DELETE (debug actions) command
Description Deletes one or more debug actions.
Syntax
DELETE ACTION number [, number...]
DELETE BREAKPOINT number [, number...]
DELETE TRIGGER number [, number...]

Keywords and Values
ACTION number Specifies one or more debug actions

(breakpoint or trigger), by number.
BREAKPOINT
number

Specifies one or more breakpoints, by number.

TRIGGER Specifies one or more debug triggers, by

Forms Developer Procedure Builder Reference18

number number.

Comments This command permanently removes one or more debug actions. If
you wish to temporarily remove a debug action, use the DISABLE command instead.

DELETE (debug actions) command example
The following command deletes debug actions two and three:
.DELETE ACTION 2,3

DESCRIBE (debug actions) command
Description Displays detailed information about the specified debug action.
Syntax
DESCRIBE ACTION number
DESCRIBE BREAKPOINT number
DESCRIBE TRIGGER number

Keywords and Values
ACTION number Specifies a debug action (a breakpoint or a

trigger).
BREAKPOINT
number

Specifies a breakpoint.

TRIGGER
number

Specifies a trigger.

Comments The information displayed for a debug action includes its ID, the
source location with which it is associated, and whether or not it is enabled.

DESCRIBE (debug actions) command examples
The following command displays information about breakpoint number two:
.DESCRIBE BREAK 2

The following command displays information about debug action number three:
.DESCRIBE ACTION 3

DISABLE (debug actions) command
Description Removes one or more debug actions temporarily.

Forms Developer Procedure Builder Reference 19

Syntax
DISABLE ACTION number [, number...]
DISABLE BREAKPOINT number [, number...]
DISABLE TRIGGER number [, number...]

Keywords and Values
ACTION number Specifies one or more debug actions

(breakpoints and triggers).
BREAKPOINT
number

Specifies one or more breakpoints.

TRIGGER
number

Specifies one or more triggers.

Comments DISABLE has no effect on debug actions that are already disabled.
You can restore disabled debug actions using the ENABLE command.

DISABLE (debug actions) command examples
The following command disables breakpoint number two:
.DISABLE BREAK 2

The following command disables debug action number three:
.DISABLE ACTION 3

ENABLE (debug actions) command
Description Reactivates disabled debug actions.
Syntax
ENABLE ACTION number [, number...]
ENABLE BREAKPOINT number [, number...]
ENABLE TRIGGER number [, number...]

Keywords and Values
ACTION number Specifies a debug action.
BREAKPOINT
number

Specifies a breakpoint.

TRIGGER
number

Specifies a trigger.

Comments ENABLE has no effect on debug actions that are already enabled. To
temporarily disable a debug action, use the DISABLE command.

Forms Developer Procedure Builder Reference20

ENABLE (debug actions) command examples
The following command enables breakpoint number two, which was previously
disabled:
.ENABLE BREAK 2

The following command enables debug action number one:
.ENABLE ACTION 1

LIST (debug actions) command
Description Displays the program unit source text to which the specified debug
action is attached.
Syntax
LIST ACTION number
LIST BREAKPOINT number
LIST TRIGGER number

Keywords and Values
ACTION number Specifies a debug action (breakpoint or

trigger).
BREAKPOINT
number

Specifies a breakpoint.

TRIGGER
number

Specifies a trigger.

Comments LIST displays the text associated with the specified debug action in the
Source pane of the Interpreter. The line on which the specified debug action appears
becomes the current source location.

LIST (debug actions) command examples
The following command displays breakpoint number one and sets the source location:
.LIST BREAK 1

The following command displays debug action number three and sets the current source
location:
.LIST ACTION 3

Forms Developer Procedure Builder Reference 21

SHOW (debug actions) command
Description Enumerates the debug actions that are currently defined in the
development session.
Syntax
SHOW ACTION
SHOW BREAKPOINTS
SHOW TRIGGERS

Keywords and Values
ACTION Specifies all debug actions.
BREAKPOINTS Specifies all breakpoints.
TRIGGERS Specifies all triggers.

SHOW (debug actions) command example
The following command lists all of the breakpoints that are currently set:
.SHOW BREAKPOINTS

TRIGGER command
Description Creates a debug trigger, which is a PL/SQL block associated with the
specified source location.
Syntax
TRIGGER {[USER schema] PROGRAMUNIT name | PROGRAMUNIT [schema.]name}
 [LINE number]
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER {USER schema PACKAGE name | PACKAGE schema.name}
 [LINE number]
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER {USER schema SUBPROGRAM name | SUBPROGRAM schema.name}
 [LINE number]
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER {USER schema PROCEDURE name | PROCEDURE schema.name}
 [LINE number]
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER {USER schema FUNCTION name | FUNCTION schema.name}
 [LINE number]
 [ENABLED | DISABLED]
 [IS plsql-block]

Forms Developer Procedure Builder Reference22

TRIGGER ACTION number [LINE number]
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER BREAKPOINT number [LINE number]
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER TRIGGER number [LINE number]
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER .
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER PC
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER SCOPE
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER DEBUG
 [ENABLED | DISABLED]
 [IS plsql-block]
TRIGGER *
 [ENABLED | DISABLED]
 [IS plsql-block]

Keywords and Values
USER schema Specifies a schema name in the database

where the stored program unit is located.
PROGRAMUNIT
name

Specifies a program unit.

PACKAGE name Specifies a package.
SUBPROGRAM
name

Specifies a subprogram.

PROCEDURE
name

Specifies a procedure.

FUNCTION nameSpecifies a function.
ACTION number Specifies a debug action (breakpoint or

trigger).
BREAKPOINT
number

Specifies a breakpoint.

TRIGGER
number

Specifies a trigger.

LINE number Specifies the line of the program unit where
the trigger should be located.

. Specifies the current source location.
PC Specifies the current execution location.
SCOPE Specifies the current scope location.

Forms Developer Procedure Builder Reference 23

DEBUG Specifies entry into the debugger (i.e., when
program execution is suspended due to a
breakpoint, program stepping, etc.).

* Specifies every PL/SQL source line. Thus,
placing a trigger on * will cause the specified
block to be evaluated just prior to executing
every PL/SQL source line.

ENABLED or
DISABLED

Dictates whether the trigger is initially
enabled or disabled. The default is
ENABLED.

IS pl/sql-block Defines the body of the trigger.

Note: IS must appear as the last command option.
Comments Procedure Builder executes the trigger just before the program reaches
the specified location. The trigger block may span multiple input lines. As is the case
when entering PL/SQL constructs elsewhere in the Interpreter, no line continuation
characters are required when entering the trigger body (nor are they allowed).
TRIGGER is especially handy for creating conditional breakpoints. This is done by
raising the exception DEBUG.BREAK from within the arbitrarily complex control logic
of the trigger body. The exception is trapped by the debugger, which interrupts program
execution and passes control to the Interpreter as if a breakpoint had been entered at the
trigger location.

TRIGGER command examples
The following trigger establishes a conditional breakpoint on line ten of my_proc that is
only reached if the local NUMBER variable `i' exceeds 100:
.TRIGGER PROC my_proc LINE 10 IS
IF DEBUG.GETN('i') > 100 THEN
 RAISE DEBUG.BREAK;
END IF;

Triggers can also be used to trace program execution. The following trigger lists every
source statement as it is executed:
.TRIGGER * IS debug.interpret('LIST PC');

The following command sets a trigger at line 8 in a server-side program unit my_proc
from the schema owned by user scott:
.TRIGGER USER scott PROC my_proc LINE 8

or
.TRIGGER PROC scott.my_proc LINE 8

Forms Developer Procedure Builder Reference24

Forms Developer Procedure Builder Reference 25

Debugging
Commands

DESCRIBE (locals) command
Description Displays the name, type, and value of a variable or parameter that is
local to the current scope location.
Syntax
DESCRIBE LOCAL name
DESCRIBE PARAMETER name
DESCRIBE VARIABLE name

Keywords and Values
LOCAL name Specifies a parameter or variable local to the

current scope location.
PARAMETER
name

Specifies a parameter local to the current
scope location.

VARIABLE nameSpecifies a variable local to the current scope
location.

DESCRIBE (locals) command examples
The following command displays information about the parameter p1:
.DESCRIBE PARAM p1

The following command displays information about the local variable sal:
.DESCRIBE LOCAL sal

Forms Developer Procedure Builder Reference26

GO command
Description Resumes program execution indefinitely, after a breakpoint or debug
trigger.
Syntax
GO

Comments GO resumes program execution until the currently executing thread of
execution either terminates or is interrupted by a debug action.

GO command example
The following command resumes program execution:
.GO

RESET command
Description Returns control to an outer debug level without continuing execution
in the current debug level.
Syntax
RESET LEVEL number

Keywords and Values
LEVEL number Specifies an outer debug level.

Comments RESET effectively aborts execution at the current and possibly higher
debug levels.
You can perform a relative reset by supplying a negative value for LEVEL number.
Invoking RESET with no options always returns to top level.

RESET command examples
The following command resets to the previous debug level:
.RESET LEVEL -1

The following command resets to the top level:
.RESET

Forms Developer Procedure Builder Reference 27

SET command
Description Changes the current scope location to a specified frame of the call
stack. The current scope location affects how local variable references are treated in the
Interpreter.
Syntax
SET SCOPE FRAME number
SET SCOPE UP [COUNT number]
SET SCOPE DOWN [COUNT number]
SET SCOPE TOP
SET SCOPE BOTTOM
SET SCOPE PROGRAMUNIT name
SET SCOPE PACKAGE name
SET SCOPE SUBPROGRAM name
SET SCOPE PROCEDURE name
SET SCOPE FUNCTION name

Keywords and Values
FRAME number Specifies a frame by number.
UP Specifies relative motion toward the top of the

stack.
DOWN Specifies relative motion toward the bottom of

the stack.
COUNT number Specifies a repeat count in the specified

direction (UP or DOWN). The default is one.
TOP Specifies the top frame in the call stack.
BOTTOM Specifies the bottom frame in the call stack.
PROGRAMUNIT
name

Specifies a program unit.

PACKAGE name Specifies a package.
SUBPROGRAM
name

Specifies a subprogram.

PROCEDURE
name

Specifies a procedure.

FUNCTION nameSpecifies a function.

Comments Frames are numbered from 0 (top frame) to n (bottom frame).

SET command examples
The following command moves up one stack frame:
.SET SCOPE UP

The following command moves down two frames:

Forms Developer Procedure Builder Reference28

.SET SCOPE DOWN COUNT 2

The following command moves to the frame associated with the function func1:
.SET SCOPE FUNCTION func1

The following command moves to the top of the stack:
.SET SCOPE TOP

The following command moves to the fifth frame:
.SET SCOPE FRAME 5

SHOW (call stack) command
Description Lists the frames on the current call stack.
Syntax
SHOW STACK
SHOW SCOPE

Keywords and Values
STACK Lists the program unit name and line number

for every frame on the call stack.
SCOPE Lists the frames from the top of the call stack

down to the frame containing the current
scope location.

SHOW (call stack) command example
The following command lists the current call stack:
.SHOW STACK

STEP command
Description Advances execution of an interrupted program unit.
Syntax
STEP INTO
STEP OVER
STEP OUT
STEP TO PROGRAMUNIT name [LINE number]
STEP TO PACKAGE name [LINE number]
STEP TO SUBPROGRAM name [LINE number]
STEP TO PROCEDURE name [LINE number]
STEP TO FUNCTION name [LINE number]

Forms Developer Procedure Builder Reference 29

STEP TO ACTION number
STEP TO BREAKPOINT number
STEP TO TRIGGER number
STEP TO . [LINE number]
STEP COUNT number

Keywords and Values
INTO Enables stepping into subprogram calls. This

is the default if no keywords are specified.
OVER Prevents stepping into a called subprogram

body.
OUT Resumes execution until the current

subprogram has returned.
TO ... Continues execution until the specified source

location is reached. Using the TO option is
analogous to setting a temporary breakpoint at
the specified location.

PROGRAMUNIT
name

Specifies a program unit.

PACKAGE name Specifies a package.
SUBPROGRAM
name

Specifies a subprogram.

PROCEDURE
name

Specifies a procedure.

FUNCTION nameSpecifies a function.
ACTION number Specifies a debug action (breakpoint or

trigger).
BREAKPOINT
number

Specifies a breakpoint.

TRIGGER
number

Specifies a trigger.

. Specifies the current source location.
LINE number Specifies the line of the program unit.
COUNT number Dictates how many times the STEP command

(as qualified by the other options) is repeated.
The default is 1.

Comments Control returns to the current debug level after the specified set of
statements have been executed.

STEP command examples
The following command resumes execution until the first breakpoint is reached:

Forms Developer Procedure Builder Reference30

.STEP TO BREAK 1

The following command resumes execution for five lines:
.STEP COUNT 5

Forms Developer Procedure Builder Reference 31

Library Commands

ATTACH command
Description Attaches a PL/SQL library to the current session.
Syntax
ATTACH LIBRARY [directory]name[extension]
 [FILESYSTEM | DB]
 [BEFORE library]
 [AFTER library]
 [START | END]

Keywords and Values
LIBRARY name Specifies the name of the library, including

the optional directory path and extension if
stored in the file system.

FILESYSTEM or
DB

Specifies whether the specified library is
stored in the file system or in the currently
connected database. If neither keyword is
specified, tries to access the specified library
first in the file system and then, if
unsuccessful, in the current database.

BEFORE library Specifies to attach the library before the
named attached library.

AFTER library Specifies to attach the library after the named
attached library.

START or END Specifies whether the attached library is
placed at the beginning or the end of the
attach list, respectively. The default is
START.

Comments If you attempt to attach a library in the file system, the load path and
the extension .pll are used when resolving lib-name, unless directory and extension are
specified explicitly. Note that the syntax of directory is operating system-specific. For
more information about syntax, see the Oracle product documentation for your operating
system.

Forms Developer Procedure Builder Reference32

Libraries are attached read-only. If you want to modify the contents of a library, use the
OPEN command to open the library for editing.

ATTACH command example
The following command attaches to the library residing in the file lib1:
.ATTACH LIB lib1 FILE

CLOSE command
Description Removes one or more libraries from the current set of open libraries.
Syntax
CLOSE LIBRARY name[, name...] [DISCARD]

Keywords and Values
LIBRARY name Specifies one or more currently open libraries

that you wish to close.
DISCARD Discards changes made to the libraries since

the last save.

Comments Closing a library removes all program units loaded from that library
into the environment. The namespace used to represent the library is also removed.
Closing a library automatically saves any changes made to the library since it was
opened. Specifying DISCARD discards any changes made to the library since the last
save operation.

CLOSE command example
The following command closes the libraries lib1 and lib2:
.CLOSE LIB lib1, lib2

COMPILE (libraries) command
Description Compiles/recompiles all of the program units in one or more open
libraries.
Syntax
COMPILE LIBRARY name[, name...] [INCREMENTAL]

Keywords and Values
LIBRARY name Specifies one or more open libraries whose

Forms Developer Procedure Builder Reference 33

program units you wish to compile.
INCREMENTAL Compiles only those program units within the

library that need to be compiled.

Comments When invoked, COMPILE first checks for any currently loaded
program unit(s) that match the name and type of the program unit(s) in the library to be
compiled. If there is at least one match, you are asked if you wish to continue
compilation.
Answering Yes removes all of the matching program units from the environment,
compiles them, and saves them in the specified open library. Answering No aborts the
operation.
Note: The compiled program unit(s) are saved in the open library, but are not reloaded
into the environment. You can invoke the LOAD command (via the Interpreter
command line or File Load) to reload them into the environment.
If INCREMENTAL is not specified, all program units in the library are force-compiled.

COMPILE (libraries) command example
The following command compiles all of the program units in the open library named
lib1:
.COMPILE LIB lib1

CREATE (libraries) command
Description Creates a new library that can be stored in either the file system or the
current database.
Syntax
CREATE LIBRARY [directory]lib-name[extension]
 [SOURCE pld-file]
 [NOCOMPILE]
 [FILESYSTEM | DB]
 [BEFORE | AFTER]
 [NOCONFIRM]

Keywords and Values
LIBRARY name Specifies the name of the library, including

the optional directory path and extension if
created in the file system.

SOURCE pld-file Specifies a file containing the source of one or
more program units.

NOCOMPILE Prevents the contents of the newly created
library from being compiled.

Forms Developer Procedure Builder Reference34

FILESYSTEM or
DB

Indicates whether the specified library should
be created in the file system or in the currently
connected database. The default is
FILESYSTEM.

BEFORE or
AFTER

Dictates whether the attached library is placed
at the beginning or the end of the attach list,
respectively. The default is BEFORE.

NOCONFIRM Specifies to overwrite an existing library
without prompting you for confirmation.

Comments For libraries created in the file system, the name of the library is
designated by the basename of the file (the full filename minus any leading directory
and any trailing extension). For example, in UNIX, the file /private/libs/emplib.pll
holds the library named emplib.
The syntax of directory is operating system-specific. For more information about
syntax, see the Oracle product documentation for your operating system.
The newly created library is automatically opened. Once a library has been opened, you
can modify its contents using the INSERT and DELETE commands.
Using the SOURCE keyword, you can immediately populate the newly created library
with the source of one or more program units contained in the specified pld-file. The
library is then compiled (using the COMPILE LIBRARY command) unless you specify
the NOCOMPILE keyword.
If you try to create a library with the same name as an existing library, a message box
displays, asking if you want to overwrite the existing library. Specifying NOCONFIRM
in the command string suppresses the alert.

CREATE (libraries) command example
In UNIX, the following command creates a new library named lib1 residing in the file
/private/libs/lib1.pll:
.CREATE LIBRARY /private/libs/lib1.pll FILE

DELETE (libraries) command
Description Deletes one or more libraries that reside in the current database.
Syntax
DELETE LIBRARY name[, name...]

Keywords and Values
LIBRARY name Specifies a library.

Forms Developer Procedure Builder Reference 35

Comments You cannot delete a library that is currently attached. Use the
DETACH command to detach a library before you delete it.

DELETE (libraries) command example
The following command deletes library lib1 from the database:
.DELETE LIB lib1

DELETE (library program units) command
Description Deletes one or more program units from an open library.
Syntax
DELETE PROGRAMUNIT name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
DELETE PACKAGE name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
DELETE SUBPROGRAM name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
DELETE PROCEDURE name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
DELETE FUNCTION name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]

Keywords and Values
PROGRAMUNIT
name

Specifies one or more program units.

PACKAGE name Specifies one or more packages.
SUBPROGRAM
name

Specifies one or more subprograms.

PROCEDURE
name

Specifies one or more procedures.

FUNCTION nameSpecifies one or more functions.
LIBRARY name Specifies the library from which the program

unit(s) should be deleted.
SPECIFICATION
or BODY

Specifies that either the specification or the
body of the program unit be deleted.

Forms Developer Procedure Builder Reference36

DELETE (library program units) command example
The following command deletes the package named p2 from the library named lib1:
.DELETE PACKAGE p2 LIBRARY lib1

DESCRIBE (libraries) command
Description Displays detailed information about an attached library.
Syntax
DESCRIBE LIBRARY name

Keywords and Values
LIBRARY name Specifies the name of an attached library.

Comments The information displayed for a library includes the mode in which it
was attached, its external location, and its contents.

DESCRIBE (libraries) command example
The following command displays information about the library named lib1:
.DESCRIBE LIBRARY lib1

DETACH command
Description Removes one or more libraries from the current set of attached
libraries.
Syntax
DETACH LIBRARY name[, name...]

Keywords and Values
LIBRARY name Specifies one or more attached libraries.

Comments Detaching a library removes all unmodified program units loaded from
that library into the environment. Note that once a program unit loaded from a library
has been modified within the environment (e.g., by compilation), it will not be removed
when the library is detached.

DETACH command example
The following command detaches the libraries lib1 and lib2:
.DETACH LIBRARY lib1, lib2

Forms Developer Procedure Builder Reference 37

EXPORT (libraries) command
Description Writes the source of a library to a text file.
Syntax
EXPORT {LIBRARY name}
 FILE [directory]name[extension]
 [NOWARN]

Keywords and Values
LIBRARY name Specifies an attached library.
FILE name Specifies the name of the file, including the

optional directory path and extension.
NOWARN Suppresses the warning that a built-in

program unit was not added to the attached
library.

Comments If unspecified, the file extension defaults to .pld. The syntax of
directory is operating system-specific. For more information about syntax, see the
Oracle product documentation for your operating system.

EXPORT (libraries) command example
The following command writes the source of procedure p1 and function f3 to the file
pl1.pld:
.EXPORT LIB my_lib FILE lib1

GENERATE command
Description Creates a runtime version of a currently open library.
Syntax
GENERATE LIBRARY name
 FILE [directory]name
 [INCREMENTAL]

Keywords and Values
LIBRARY name Specifies the name of the open library.
FILE name Specifies the file name of the runtime library,

including the optional directory path. The
default file extension .plx is automatically
assigned.

INCREMENTAL Specifies that only the uncompiled program
units in the open library are to be compiled.

Forms Developer Procedure Builder Reference38

Comments This command creates a temporary library, copies all program units
from the open library and inserts them in the temporary library, compiles the program
units, then executes the SAVE command on the temporary library using the
NOSOURCE and NODIANA keywords.
The resulting library is identified as a runtime only library with the .plx file extension.
If you specify a different file extension, that extension will be used instead of .plx.

GENERATE command example
The following command creates a runtime library named runlib1.plx based on the open
library mylib.pll:
.GENERATE LIB mylib FILE runlib1

Since the INCREMENTAL keyword was not specified, all program units in the library
mylib will be force compiled.

GRANT command (Library commands)
Description Grants a user access to a library stored in the database.
Syntax
GRANT LIBRARY name USER name

Keywords and Values
LIBRARY name Specifies the library.
USER name Specifies a user name.

Comments You can specify any single valid user name, or PUBLIC (all users).

GRANT command example (Library commands)
The following command grants user SCOTT access to database library lib1:
.GRANT LIB lib1 USER scott

INSERT (library program units) command
Description Inserts one or more program units into an open library.
Syntax
INSERT PACKAGE name[, name...]
 [SPECIFICATION | BODY]
 LIBRARY name
 [NOPCODE] [NODIANA] [NOSOURCE] [NOWARN]

Forms Developer Procedure Builder Reference 39

INSERT SUBPROGRAM name [, name...]
 [SPECIFICATION | BODY]
 LIBRARY name
 [NOPCODE] [NODIANA] [NOSOURCE] [NOWARN]
INSERT PROCEDURE name [, name...]
 [SPECIFICATION | BODY]
 LIBRARY name
 [NOPCODE] [NODIANA] [NOSOURCE] [NOWARN]
INSERT FUNCTION name [, name...]
 [SPECIFICATION | BODY]
 LIBRARY name
 [NOPCODE] [NODIANA] [NOSOURCE] [NOWARN]

Keywords and Values
PACKAGE name Specifies one or more packages.
SUBPROGRAM
name

Specifies one or more subprograms.

PROCEDURE
name

Specifies one or more procedures.

FUNCTION nameSpecifies one or more functions.
SPECIFICATION
or BODY

Specifies the specification or the body of the
designated program unit(s), respectively. If
neither keyword is supplied, both are inserted
into the library.

LIBRARY name Specifies the target library.
NOPCODE Adds the program unit(s) to the library

without the PCODE.
NODIANA Adds the program unit(s) to the library

without the DIANA.
NOSOURCE Adds the program unit(s) to the library

without the source code.
NOWARN Suppresses the warning that a built-in

program unit was not inserted into the open
library.

Comments You can use NODIANA and NOSOURCE to dramatically reduce the
size of a PL/SQL library.
Note: Program units inserted into libraries with NODIANA and NOSOURCE can be
used only in a runtime environment, because it is impossible to compile references to
program units that do not include DIANA.
Attempting to insert a built-in program unit into an open library (e.g., .INSERT PROG
* LIB lib3) displays a warning in the Interpreter pane (Warning: Program
unit <progunit name> has no source to insert...). Specifying
NOWARN in the command string suppresses the warning.

Forms Developer Procedure Builder Reference40

INSERT (library program units) command example
The following command inserts the packages p1 and p2 into the library named lib1:
.INSERT PACKAGE p1,p2 LIBRARY lib1

LOAD (library program units) command
Description Loads one or more program units from an attached library.
Syntax
LOAD PROGRAMUNIT name[, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
 [NOCONFIRM]
LOAD PACKAGE name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
 [NOCONFIRM]
LOAD SUBPROGRAM name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
 [NOCONFIRM]
LOAD PROCEDURE name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
 [NOCONFIRM]
LOAD FUNCTION name [, name...]
 LIBRARY name
 [SPECIFICATION | BODY]
 [NOCONFIRM]

Keywords and Values
PROGRAMUNIT
name

Specifies one or more program units.

PACKAGE name Specifies one or more packages.
SUBPROGRAM
name

Specifies one or more subprograms.

PROCEDURE
name

Specifies one or more procedures.

FUNCTION nameSpecifies one or more functions.
LIBRARY name Specifies an attached library.
SPECIFICATION
or BODY

Specifies that either the specification or the
body of the program unit be loaded,
respectively. If neither is specified, both are
loaded.

NOCONFIRM Specifies to redefine an existing program unit

Forms Developer Procedure Builder Reference 41

without prompting you for confirmation.

Comments If you try to load a library program unit with the same name and type
as an existing program unit, a message box displays, asking if you want to redefine the
existing program unit. Specifying NOCONFIRM in the command string suppresses the
alert.

LOAD (library program units) command example
The following command loads the function f1 and the procedure p3, both of which are
stored in the attached library lib1:
.LOAD PROGRAMUNIT f1, p3 LIB lib1

OPEN command
Description Opens a library for modification.
Syntax
OPEN LIBRARY [directory]lib-name[extension]
 [FILESYSTEM | DB]

Keywords and Values
LIBRARY name Specifies the name of the library, including

the optional directory path and extension if
stored in the file system.

FILESYSTEM or
DB

Specifies whether the specified library is
stored in the file system or in the currently
connected database. The default is
FILESYSTEM.

Comments If neither FILESYSTEM nor DB is specified, Procedure Builder tries
to access the specified library first in the file system and then, if unsuccessful, in the
current database.
If you attempt to open a library in the file system, the load path and the extension .pll
are used when resolving lib-name, unless directory and extension are specified
explicitly. Note that the syntax of directory is operating system-specific. For more
information about syntax, see the Oracle product documentation for your operating
system.

OPEN command examples
The following command opens the library named lib1, which is stored in the file system.
.OPEN LIB /private/libs/lib1

Forms Developer Procedure Builder Reference42

The following command opens the library named libdb, which is stored in the current
database:
.OPEN LIB libdb DB

RENAME (libraries) command
Description Renames a library that resides in the current database.
Syntax
RENAME LIBRARY oldname TO newname

Keywords and Values
LIBRARY
oldname

Specifies the current library name.

TO newname Specifies the new library name.

Comments You cannot rename a library to the name of a library that is currently
attached. Use the DETACH command to detach the library specified by the new name,
or use a different new name.
You cannot use this command to rename libraries stored in files. You must use
operating system commands.

RENAME (libraries) command example
The following command renames database library lib1 to lib4:
.RENAME LIB lib1 TO lib4

REVERT command
Description Reverts one or more libraries to their previously saved state.
Syntax
REVERT LIBRARY name[, name...]

Keywords and Values
LIBRARY name Specifies one or more open libraries.

REVERT command example
The following command reverts the library lib1:
.REVERT LIB lib1

Forms Developer Procedure Builder Reference 43

REVOKE command (Library commands)
Description Revokes a user's access to a library stored in the database.
Syntax
REVOKE LIBRARY name USER name

Keywords and Values
LIBRARY name Specifies a library.
USER name Specifies a user.

Comments You can specify any single valid user name, or PUBLIC (all users).

REVOKE command example (Library commands)
The following command revokes user SCOTT's access to database library lib1:
.REVOKE LIB lib1 USER scott

SAVE command
Description Saves changes made to one or more open libraries.
Syntax
SAVE LIBRARY name[, name...]
 [AS name]
 [NOPCODE]
 [NODIANA]
 [NOSOURCE]

Keywords and Values
LIBRARY name Specifies one or more open libraries.
AS name Specifies a new name for the saved library.
NOPCODE Saves the library without the PCODE.
NODIANA Saves the library without the DIANA.
NOSOURCE Saves the library without the source code.

Comments Saving a library issues an implicit COMMIT. This operation commits
any changes made to any database object, not just library objects. For more information
on COMMIT, refer to the Oracle7 SQL Language Reference Manual or the Oracle8
SQL Reference Manual.
You can use NODIANA and NOSOURCE to dramatically reduce the size of a PL/SQL
library.
Note: Libraries saved with NODIANA and NOSOURCE can be used only in a runtime
environment, because it is impossible to compile references to library program units that
do not include DIANA.

Forms Developer Procedure Builder Reference44

SAVE command examples
The following command saves the libraries lib1 and lib2:
.SAVE LIB lib1, lib2

The following command saves library lib1 as library lib1a:
.SAVE LIB lib1 AS lib1a

The following command saves the libraries lib1 and lib2 without DIANA or source:
.SAVE LIB lib1, lib2 NODIANA NOSOURCE

SHOW (libraries) command
Description Enumerates the libraries that are currently attached.
Syntax
SHOW LIBRARIES

SHOW (libraries) command example
The following command displays the currently attached libraries:
.SHOW LIB

Forms Developer Procedure Builder Reference 45

Load Path
Commands

DELETE (load path) command
Description Resets the load path to contain no elements.
Syntax
DELETE LOADPATH

DELETE (load path) command example
The following command clears the load path of all entries:
.DELETE LOADPATH

DESCRIBE (load path) command
Description Displays the current load path.
Syntax
DESCRIBE LOADPATH

DESCRIBE (load path) command example
The following command displays all entries in the current load path:
.DESCRIBE LOADPATH

INSERT (load path) command
Description Inserts directories into the load path.

Forms Developer Procedure Builder Reference46

Syntax
INSERT LOADPATH
 {DIRECTORY path[, path...] | CURRENTDIR}
 [BEFORE | AFTER]

Keywords and Values
LOADPATH Specifies the current load path.
DIRECTORY
path

Specifies one or more directory paths.

CURRENTDIR Specifies the current directory path.
BEFORE or
AFTER

Specifies whether the directories should be
inserted before or after the existing directories
in the load path, respectively. The default is
AFTER.

Comments The syntax of path is operating system-specific. For more information
about syntax, see the Oracle product documentation for your operating system.

INSERT (load path) command example
In UNIX, the following command appends the directory /usr/plsql to the load path:
.INSERT LOADPATH DIRECTORY /usr/plsql

Forms Developer Procedure Builder Reference 47

Logging Commands

DISABLE (logging) command
Description Suspends logging to the current log file.
Syntax
DISABLE LOGGING

Comments DISABLE has no effect on logging if no log file has been specified
(via the LOG command) or if logging is already disabled.
You can enable disabled logging by using the ENABLE command.

DISABLE (logging) command example
The following command temporarily suspends logging:
.DISABLE LOG

ENABLE (logging) command
Description Resumes logging to the current log file.
Syntax
ENABLE LOGGING

Comments ENABLE has no effect if no log file has been specified via the LOG
command, or if logging is already enabled.
You can temporarily disable logging with the DISABLE command.

ENABLE (logging) command example
The following command resumes logging after it has been suspended:
.ENABLE LOG

Forms Developer Procedure Builder Reference48

LOG command
Description Saves a transcript of Interpreter input and output to the specified log
file.
Syntax
LOG FILE [directory]name[extension]
 [APPEND]
 [ENABLED | DISABLED]
 [OFF]

Keywords and Values
FILE name Specifies the log file name and, optionally, the

directory path and file extension.
APPEND Indicates that log output should be appended

to the specified file; otherwise, the file is
overwritten.

ENABLED or
DISABLED

Specify whether logging is initially enabled or
disabled, respectively. The default is
ENABLED.

OFF Terminates logging and saves the log file.

Comments If unspecified, the log file extension defaults to .log. The syntax of
directory is operating system-specific. For more information about syntax, see the
Oracle product documentation for your operating system.
If the specified log file does not exist, a new file is created in the specified directory. If
no directory path is specified, the log file is created in the current directory.
You can temporarily disable logging and then enable it again using the DISABLE and
ENABLE commands, respectively.

LOG command examples
The following command begins logging Interpreter input and output in the file
debug.log in the current directory:
.LOG FILE debug

The following command terminates logging and saves the log file:
.LOG OFF

Forms Developer Procedure Builder Reference 49

Program Unit
Commands

COMPILE (program units) command
Description Compiles/recompiles the specified program units.
Syntax
COMPILE PROGRAMUNIT name[, name...]
 [SPECIFICATION | BODY]
COMPILE PACKAGE name[, name...]
 [SPECIFICATION | BODY]
COMPILE SUBPROGRAM name[, name...]
 [SPECIFICATION | BODY]
COMPILE PROCEDURE name[, name...]
 [SPECIFICATION | BODY]
COMPILE FUNCTION name[, name...]
 [SPECIFICATION | BODY]

Keywords and Values
PROGRAMUNIT
name

Specifies one or more program units.

PACKAGE name Specifies one or more packages.
SUBPROGRAM
name

Specifies one or more subprograms.

PROCEDURE
name

Specifies one or more procedures.

FUNCTION nameSpecifies one or more functions.
SPECIFICATION
or BODY

Specifies that either the specification or the
body of the program unit be compiled. By
default, both are compiled

Forms Developer Procedure Builder Reference50

COMPILE (program units) command example
The following command compiles procedure proc1 and package pkg1:
.COMPILE PROG proc1, pkg1

DELETE (program units) command
Description Deletes one or more program units from the current development
session.
Syntax
DELETE PROGRAMUNIT name [, name...]
 [SPECIFICATION | BODY]
DELETE PACKAGE name [, name...]
 [SPECIFICATION | BODY]
DELETE SUBPROGRAM name [, name...]
 [SPECIFICATION | BODY]
DELETE PROCEDURE name [, name...]
 [SPECIFICATION | BODY]
DELETE FUNCTION name [, name...]
 [SPECIFICATION | BODY]

Keywords and Values
PROGRAMUNIT
name

Specifies one or more program units.

PACKAGE name Specifies one or more packages.
SUBPROGRAM
name

Specifies one or more subprograms.

PROCEDURE
name

Specifies one or more procedures.

FUNCTION nameSpecifies one or more functions.
SPECIFICATION
or BODY

Specifies that either the specification or the
body of the program unit be removed. By
default, both are removed.

Comments Once deleted from the current development session, a program unit
and any of its subobjects (types, variables, subprograms, etc.) are no longer defined
within the development session. Deleting a program unit from the current development
session can cause the invalidation of other program units that depend upon it. This is
analogous to what happens when the specification of a program unit is changed.

Forms Developer Procedure Builder Reference 51

DELETE (program units) command example
The following command deletes the package named p2 from the current development
session:
.DELETE PACKAGE p2

DESCRIBE (program units) command
Description Displays detailed information about a specific program unit instance.
Syntax
DESCRIBE PROGRAMMUNIT name [SPECIFICATION | BODY]
DESCRIBE PACKAGE name [SPECIFICATION | BODY]
DESCRIBE SUBPROGRAM name [SPECIFICATION | BODY]
DESCRIBE PROCEDURE name [SPECIFICATION | BODY]
DESCRIBE FUNCTION name [SPECIFICATION | BODY]

Keywords and Values
PROGRAMUNIT
name

Specifies a program unit.

PACKAGE name Specifies a package.
SUBPROGRAM
name

Specifies a subprogram.

PROCEDURE
name

Specifies a procedure.

FUNCTION nameSpecifies a function.
SPECIFICATION
or BODY

Specifies that either the specification or the
body of the program unit be added to the
library. The default is SPECIFICATION.

Comments The information displayed includes the program unit name, its type,
its parameters (if any), its external location, whether it is compiled, whether it is open
for editing, and cross reference information. In addition, describing a package also
indicates whether the package is a built-in program unit, and whether it is an extension
to the STANDARD package.
Describing a package specification lists all of the subprograms defined within the
specification.

DESCRIBE (program units) command example
The following command displays information about the body of package pkg1:
.DESCRIBE BODY PACKAGE pkg1

Forms Developer Procedure Builder Reference52

DISABLE (compiler options) command
Description Removes one or more compiler options temporarily.
Syntax
DISABLE COMPILER SIZECHECK

Comments The SIZECHECK compiler option is automatically disabled for batch
compilations. You can reactivate a compiler option using the ENABLE command.

DISABLE (compiler options) command example
The following command temporarily disables the SIZECHECK compiler option:
.DISABLE COMPILER SIZECHECK

ENABLE (compiler options) command
Description Activates or reactivates one or more compiler options.
Syntax
ENABLE COMPILER SIZECHECK

Comments You can activate the SIZECHECK compiler option for interactive
compilations only. Once enabled, the compiler option remains active until disabled.
This option is automatically disabled for batch compilations.
Enable the SIZECHECK option prior to compiling a program unit to raise an alert if the
size of a program unit source is approaching an operating system limit for memory
allocation. If the size of the source is close to an operating system limit, the compiled
state of that source will probably be larger and may exceed the operating system limit.
The SIZECHECK option also raises an alert if the compiled state of the program unit is
approaching or exceeds an operating system specific limit for memory allocation.
If the source of the program unit, or the compiled program unit exceeds an operating
system-specific memory allocation limit, you may wish to break the program unit into
smaller program units.
Check your operating system documentation for the memory allocation limit on your
platform.
You can temporarily remove a compiler option using the DISABLE command.

ENABLE (compiler options) command example
The following command enables the SIZECHECK compiler option:
.ENABLE COMPILER SIZECHECK

Forms Developer Procedure Builder Reference 53

EXECUTE command (PB standalone only)
Description Executes a named anonymous block or a parameterless procedure.
This command is valid only when Procedure Builder is invoked as a standalone session.

Syntax
EXECUTE PROGRAMUNIT name
EXECUTE PROCEDURE name

Keywords and Values
PROGRAMUNIT
name

Specifies a named anonymous block.

PROCEDURE
name

Specifies a parameterless procedure.

Comments Use the EXECUTE command to execute program units and
procedures that have no source or that have not been compiled.

EXECUTE command example
You create a library named lib1.pll. You insert the procedure x1 into that library using
the NOSOURCE and NODIANA keywords. Although the x1 procedure is not compiled,
you can run it with the EXECUTE command as follows:
.EXECUTE PROC x1

EXPORT (program units) command
Description Writes the source of one or more program units to a text file.
Syntax
EXPORT PROGRAMUNIT name [, name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
 [NOWARN]
EXPORT PACKAGE name [, name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
 [NOWARN]
EXPORT SUBPROGRAM name [, name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
 [NOWARN]
EXPORT PROCEDURE name [, name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]

Forms Developer Procedure Builder Reference54

 [NOWARN]
EXPORT FUNCTION name [, name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
 [NOWARN]

Keywords and Values
PROGRAMUNIT
name

Specifies one or more program units.

PACKAGE name Specifies one or more packages.
SUBPROGRAM
name

Specifies one or more subprograms.

PROCEDURE
name

Specifies one or more procedures.

FUNCTION nameSpecifies one or more functions.
FILE name Specifies the name of the file, including the

optional directory path and extension.
SPECIFICATION
or BODY

Specifies either the specification or the body of
the designated program unit(s). By default,
both are written to the file.

NOWARN Suppresses the warning that a built-in
program unit has no source for export.

Comments If you export more than one program unit, Procedure Builder sorts the
program units to avoid forward references--that is, each program unit appears after the
program unit(s) it references. This enables you to reload exported program units into
Procedure Builder using INTERPRET.
If unspecified, the file extension defaults to .PLD. The syntax of directory is operating
system-specific. For more information about syntax, see the Oracle product
documentation for your operating system.
Attempting to export a built-in program unit to a text file (e.g., .EXPORT PROG *
FILE allprogs.txt) displays a warning in the Interpreter pane (Warning:
Program unit <progunit name> has no source to export...). Specifying NOWARN in the
command string suppresses the warning.

EXPORT (program units) command example
The following command writes the source of procedure p1 and function f3 to the file
pl1.pld:
.EXPORT PROG p1,f3 FILE pl1

Forms Developer Procedure Builder Reference 55

EXPORT (stored program units) command
Description Writes the source of one or more stored program units to a text file.
Syntax
EXPORT {STORED} PROGRAMUNIT schema.name [, schema.name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
EXPORT {STORED} PACKAGE schema.name [,schema.name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
EXPORT {STORED} SUBPROGRAM schema.name [,schema.name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
EXPORT {STORED} PROCEDURE schema.name [,schema.name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]
EXPORT {STORED} FUNCTION schema.name [,schema.name...]
 FILE [directory]name[extension]
 [SPECIFICATION | BODY]

Keywords and Values
PROGRAMUNIT
name

Specifies one or more program units.

PACKAGE name Specifies one or more packages.
SUBPROGRAM
name

Specifies one or more subprograms.

PROCEDURE
name

Specifies one or more procedures.

FUNCTION nameSpecifies one or more functions.
FILE name Specifies the name of the file, including the

optional directory path and extension.
SPECIFICATION
or BODY

Specifies either the specification or the body of
the designated stored program unit(s). By
default, both are written to the file.

Comments If you export more than one stored program unit, Procedure Builder
sorts the stored program units to avoid forward references--that is, each stored program
unit appears after the stored program unit(s) it references. This enables you to reload
exported stored program units into Procedure Builder using INTERPRET.
If unspecified, the file extension defaults to .PLD. The syntax of directory is operating
system-specific. For more information about syntax, see the Oracle product
documentation for your operating system.

Forms Developer Procedure Builder Reference56

EXPORT (stored program units) command example
The following command writes the source of stored procedure p1 and stored function f3
to the file pl1.pld:
.EXPORT STORED PROG SCOTT.p1,SCOTT.f3 FILE pl1

LIST (program units) command
Description Displays the specified program unit text and sets the current source
location.
Syntax
LIST {[USER schema] PROGRAMUNIT name | PROGRAMUNIT [schema.]name}
 { . | PC | SCOPE}
 [LINE number]
 [SPECIFICATION | BODY]
LIST {[USER schema] PACKAGE name | PACKAGE schema.name}
 { . | PC | SCOPE}
 [LINE number]
 [SPECIFICATION | BODY]
LIST {[USER schema] SUBPROGRAM name | SUBPROGRAM schema.name}
 { . | PC | SCOPE}
 [LINE number]
 [SPECIFICATION | BODY]
LIST {[USER schema] PROCEDURE name | PROCEDURE schema.name}
 { . | PC | SCOPE}
 [LINE number]
 [SPECIFICATION | BODY]
LIST {[USER schema] FUNCTION name | FUNCTION schema.name}
 { . | PC | SCOPE}
 [LINE number]
 [SPECIFICATION | BODY]

Keywords and Values
USER schema Specifies a schema name in the database

where the stored program unit is located.
PROGRAMUNIT
name

Specifies a program unit.

PACKAGE name Specifies a package.
SUBPROGRAM
name

Specifies a subprogram.

PROCEDURE
name

Specifies a procedure.

FUNCTION nameSpecifies a function.
. Specifies the current source location. This is

the default.

Forms Developer Procedure Builder Reference 57

PC Specifies the current execution location.
SCOPE Specifies the current scope location.
LINE number Specifies the line of the program unit that

should become the current source location.
SPECIFICATION
or BODY

Specifies that either the specification or the
body of the program unit be displayed,
respectively. The default is
SPECIFICATION.

Comments LIST displays the text of a program unit in the Source pane of the
Interpreter. If no line is specified using LINE, the first line of the program unit becomes
the current source location.
This rule does not apply if you specify ., PC, or SCOPE. Specifying . or PC sets the
source location to the current execution location. Specifying SCOPE sets the source
location to the current scope location.
Note PC and SCOPE are useful only when program execution has been interrupted.

LIST (program units) command examples
The following command displays the source text of procedure p1 and sets the source
location to line one:
.LIST PROC p1

The following command displays the source text of p1 and sets the source location to
line eighteen:
.LIST PROGRAMUNIT p1 LINE 18

The following command sets the source location to the current execution location and
displays the source text:
.LIST PC

The following command displays the source text in a server-side program unit my_proc
from the schema owned by user scott and retains the current source location:
.LIST USER scott PROC my_proc

or
.LIST PROC scott.my_proc

LOAD (program units) command
Description Loads one or more program units from the file system.
Syntax
LOAD FILE [directory]name[extension]
 [, [directory]name...]
 [NOCONFIRM]

Forms Developer Procedure Builder Reference58

Keywords and Values
FILE name Specifies one or more files containing the

program unit text.
NOCONFIRM Specifies to redefine an existing program unit

without prompting you for confirmation.

Comments Each file you specify must contain the source text of a single program
unit. If unspecified, the directory defaults to the current directory, and the file extension
defaults to .pls.
The syntax of directory is operating system-specific. For more information about
syntax, see the Oracle product documentation for your operating system.
The source text is compiled as it is loaded. If the resulting program unit is a named
entity (i.e., a subprogram or package), processing is complete. If the program unit is an
anonymous block, it is executed and automatically discarded upon completion.
If you try to load a program unit with the same name and type as an existing program
unit, a message box displays, asking if you want to redefine the existing program unit.
Specifying NOCONFIRM in the command string suppresses the alert.

LOAD (program units) command example
The following command loads the program units whose source is contained in the files
proc1.pls and func2.pls in the current directory:
.LOAD FILE proc1, func2

LOAD (stored program units) command
Description Loads one or more program units stored in the database.
Syntax
LOAD STORED PROGRAMUNIT [owner]name[, [owner]name...]
 [SPECIFICATION | BODY]
 [NOCONFIRM]
LOAD STORED PACKAGE [owner]name[, [owner]name...]
 [SPECIFICATION | BODY]
 [NOCONFIRM]
LOAD STORED SUBPROGRAM [owner]name[, [owner]name...]
 [SPECIFICATION | BODY]
 [NOCONFIRM]
LOAD STORED PROCEDURE [owner]name[, [owner]name...]
 [SPECIFICATION | BODY]
 [NOCONFIRM]
LOAD STORED FUNCTION [owner]name[, [owner]name...]
 [SPECIFICATION | BODY]
 [NOCONFIRM]

Forms Developer Procedure Builder Reference 59

Keywords and Values
PROGRAMUNIT
name

Specifies one or more program units,
including the optional owner.

PACKAGE name Specifies one or more packages, including the
optional owner.

SUBPROGRAM
name

Specifies one or more subprograms, including
the optional owner.

PROCEDURE
name

Specifies one or more procedures, including
the optional owner.

FUNCTION nameSpecifies one or more functions, including the
optional owner.

SPECIFICATION
or BODY

Specifies that either the specification or the
body of the stored program unit be loaded,
respectively. If neither is specified, both are
loaded.

NOCONFIRM Specifies to redefine an existing program unit
without prompting you for confirmation.

Comments The source text is compiled as it is loaded. If the resulting program
unit is a named entity (i.e., a subprogram or package), processing is complete. If the
program unit is an anonymous block, it is executed and automatically discarded upon
completion.
If you try to load a program unit with the same name and type as an existing program
unit, a message box displays, asking if you want to redefine the existing program unit.
Specifying NOCONFIRM in the command string suppresses the alert.

LOAD (stored program units) command example
The following command loads the program units whose source is contained in the files
proc1.pls and func2.pls in the current directory:
.LOAD STORED PROG scott.proc1, scott.func2

SHOW (locals) command
Description Lists the current local variables and parameters that are defined at the
current scope location.
Syntax
SHOW LOCALS
SHOW PARAMETERS
SHOW VARIABLES

Forms Developer Procedure Builder Reference60

Keywords and Values
LOCALS Specifies all parameters and variables.
PARAMETERS Specifies all parameters.
VARIABLES Specifies all variables.

SHOW (locals) command example
The following command displays information about all of the current parameters:
.SHOW PARAMETERS

SHOW (program units) command
Description Enumerates the program units that are currently defined in the
development session.
Syntax
SHOW PROGRAMUNITS
 [USER | BUILTIN]
 [SPECIFICATION | BODY]
SHOW PACKAGES
 [USER | BUILTIN]
 [SPECIFICATION | BODY]
SHOW SUBPROGRAMS
 [USER | BUILTIN]
 [SPECIFICATION | BODY]
SHOW PROCEDURES
 [USER | BUILTIN]
 [SPECIFICATION | BODY]
SHOW FUNCTIONS
 [USER | BUILTIN]
 [SPECIFICATION | BODY]

Keywords and Values
PROGRAMUNIT
S

Specifies all program units.

PACKAGES Specifies all packages.
SUBPROGRAMS Specifies all subprograms.
PROCEDURES Specifies all procedures.
FUNCTIONS Specifies all functions.
USER or
BUILTIN

Specifies whether to show user-defined or
built-in program units, respectively. The
default is USER.

SPECIFICATION
or BODY

Dictate whether specifications or bodies are
listed, respectively. By default, both are listed.

Forms Developer Procedure Builder Reference 61

SHOW (program units) command examples
The following command lists the names and types of all current user-defined program
units:
.SHOW PROGRAMUNITS

The following command lists all of the built-in package specifications:
.SHOW PACK SPEC BUILT

Forms Developer Procedure Builder Reference62

Forms Developer Procedure Builder Reference 63

Session Commands

DESCRIBE (version) command
Description Displays detailed information about the current version of Procedure
Builder and the PL/SQL compiler.
Syntax
DESCRIBE VERSION

DESCRIBE (version) command example
The following command displays information about Procedure Builder:
.DESCRIBE VER

HELP command
Description Provides descriptions and syntax summaries for commands.
Syntax
HELP [COMMAND name] [SYNTAX]

Keywords and Values
COMMAND
name

Specifies the Procedure Builder command.

SYNTAX Displays the syntax of the specified command.

Comments If no command name is supplied, a list of all Procedure Builder
commands is displayed.

HELP command examples
The following command displays a brief description and the syntax of the BREAK
command:
.HELP COM BREAK SYNTAX

Forms Developer Procedure Builder Reference64

The following command lists all of Procedure Builder commands:
.HELP

INTERPRET command
Description Executes one or more Procedure Builder scripts.
Syntax
INTERPRET FILE name[, name...]
 [ECHO]
 [SILENT]
 [NOCONFIRM]

Keywords and Values
FILE name Specifies a file containing a Procedure Builder

script.
ECHO Displays each line of the script as it is

processed.
SILENT Suppresses status messages issued by the

Interpreter.
NOCONFIRM Specifies to redefine an existing program unit

without prompting you for confirmation.

Comments A Procedure Builder script consists of a sequence of constructs that
can be any combination of program units, Procedure Builder commands, and SQL
statements. The script is processed as if its contents had been typed directly into the
Interpreter. Each PL/SQL construct found in the script is processed as if it had been
loaded individually by the LOAD command.
If unspecified, the file extension(s) default to .pld.
If you try to load a program unit with the same name and type as an existing program
unit, a message box displays, asking if you want to redefine the existing program unit.
Specifying NOCONFIRM suppresses the alert.
You can include SQL statements in your script, but SQL*Plus statements and syntax are
not supported.
INTERPRET provides a mechanism for loading multiple program units from a single
file. However, INTERPRET lacks the performance of LOAD because Procedure Builder
must preparse the source text and send program units to the PL/SQL compiler one at a
time.

INTERPRET command example
The following command interprets (with ECHO enabled) the script in the file named
script1:

Forms Developer Procedure Builder Reference 65

.INTERPRET FILE script1 ECHO

QUIT command (Procedure Builder standalone only)
Description Exits the current Procedure Builder session. This command is valid
only when Procedure Builder is invoked as a standalone session.
Syntax
QUIT [NOCONFIRM]

Forms Developer Procedure Builder Reference 67

Index

A
ATTACH command 31

B
BREAK command: 15

C
CLOSE command: 32
COMPILE command

COMPILE (libraries) command 32
COMPILE (program units)

command 49
COMPILE command: 32, 49
CONNECT command: 11
CREATE command

CREATE (bind variable)
command 9

CREATE (libraries) command 33
CREATE command: 9, 33

D
database connection

CONNECT command 11
DELETE command

DELETE (bind variables)
command 10

DELETE (debug actions)
command 17

DELETE (libraries) command 34
DELETE (library program units)

command 35
DELETE (load path) command 45
DELETE (program units)

command 50
DELETE command:10, 17, 34, 35, 45, 50

DESCRIBE command
DESCRIBE (debug actions)

command 18
DESCRIBE (libraries) command36
DESCRIBE (load path) command45
DESCRIBE (locals) command 25
DESCRIBE (program units)

command 51
DESCRIBE (tables and views)

command 12
DESCRIBE (version) command63

DESCRIBE command:12, 18, 25, 36, 45, 51, 63
DETACH command: 36
DISABLE command

DISABLE (compiler options)
command 52

DISABLE (debug actions)
command 18

DISABLE (logging) command 47
DISABLE command: 18, 47, 52
DISCONNECT command: 12

E
ENABLE command

ENABLE (compiler options)
command 52

ENABLE (debug actions)
command 19

ENABLE (logging) command 47
ENABLE command: 19, 47, 52
EXECUTE command: 53
EXPORT command

EXPORT (libraries) command 36
EXPORT (program units)

command 53
EXPORT (stored program units)

command 55
EXPORT command: 36, 53, 55

G
GENERATE command: 37
GO command: 26

Forms Developer Procedure Builder Reference68

GRANT command: 12, 38

H
HELP command: 63

I
INSERT command

INSERT (library program units)
command 38

INSERT (load path) command 45
INSERT command: 38, 45
INTERPRET command: 64
Interpreter commands

all 7
for bind variables 5
for debug actions 5
for debugging 6
for libraries 6
for logging 7
for program units 7
for sessions 7
for the database 5
for the load path 6
using 1

Interpreter commands: 1, 5, 6, 7

L
LIST command

LIST (debug actions) command20
LIST (program units) command56

LIST command: 20, 56
LOAD command

LOAD (library program units)
command 39

LOAD (program units) command57
LOAD (stored program units)

command 58
LOAD command: 39, 57, 58
LOG command

LOG command 48
LOG command: 48

O
OPEN command: 41

P
PL/SQL Interpreter commands

see Interpreter commands 1
PL/SQL Interpreter commands: 1

Q
QUIT command: 65

R
RENAME (libraries) command 41
RESET command: 26
REVERT command: 42
REVOKE command: 13, 42

S
SAVE command: 43
SET command: 27
SHOW command

SHOW (call stack) command 28
SHOW (debug actions) command20
SHOW (libraries) command 44
SHOW (locals) command 59
SHOW (program units) command60

SHOW command: 20, 28, 44, 59, 60
STEP command

STEP commands 28
STEP command: 28
STORE command: 13

T
TRIGGER command: 21

