
Oracle Reports Services
Release Notes

Release 1.0.2 for Windows or UNIX

October 2000

Part No. A86271-01
Copyright 2000, Oracle Corporation.

All Rights Reserved.
The following changes and enhancements have been made for Oracle
Reports Services with Oracle9i Application Server release 1.0.2:

■ Availability of Oracle Portal release 3.0 with Oracle Reports Services 6i
security

■ Changes for NLS

■ Changes for server configuration with Oracle Portal release 2.2 and
Oracle Portal release 3.0

■ Changes in the security API in the RWK layer

■ Extended aggregate operations and analytic functions

■ Oracle Reports Services server X Windows session requirement

Oracle Portal
This release introduces Oracle Portal release 3.0, which works with Oracle
Reports Services 6i security. The following changes have been made:

■ The images are installed with Oracle Portal release 3.0. You no longer
needs to manually copy the image files as mentioned in the previous
Release Notes. The files are no longer staged in the release 2 patch.

■ If the login server is not on the same database as Oracle Portal when
you install Oracle Reports Services with Oracle Portal integration
scripts, then you are prompted to input the user name, password, and
TNSname of the login server. Internally, the script creates a database
link from Oracle Portal to the login server and allows you to access
some of the functions in the login server.
Oracle is a registered trademark, and Oracle9i Application Server, Oracle Reports Services, Oracle Express, and Oracle

Installer are trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their respective

owners.

NLS
Oracle Corporation provides a translated user interface (UI) for all Oracle
Reports Services languages. This allows you to use the Oracle Reports
Services 6i security feature with Oracle Portal in a language other than
English, except for Arabic and Hebrew. The UI can be installed by using
SQL*Plus and SQL*Loader scripts. These scripts are installed automatically
but must be run by you. The scripts are installed at the following location:

<ORACLE_HOME>/<REPORTS60>/ADMIN/SECURITY

SQL*Plus

To run the SQL*Plus SQL script, you do the following:

1. Set the NLS_LANG=language_territory.charset parameter to
the O/S character set. For example, to install French in UNIX, you
would set the character set to WE8ISO8859P1. The scripts are encoded
in the usual character set for the language and platform combination.

2. Run SQL*Plus and log into the Oracle Portal database instance using
the administrative user ID and password. Refer to Oracle Portal
documentation for more information about logging into the Oracle
Portal database.

3. Run the SQL script by typing the following:

START rep<lang>30.sql

4. If there are any errors, then they are displayed in the SQL*Plus session.
Errors can occur for the following reasons:

■ An unforeseen database problem

■ An attempt was made to run the script language more than once

■ An attempt was made to process a multibyte language in a
single-byte operating system locale

5. You can install as many languages as you want. The strings are stored
separately in the database and do not overwrite each other. The
language displayed is controlled by the NLS_LANG parameter for
Oracle Portal release 3.0.
 2

SQL*Loader

To run the SQL*Loader CTL script, you do the following:

1. Set the NLS_LANG=language_territory.charset parameter to
the O/S character set. For example, to install French in UNIX, you
would set the character set to WE8ISO8859P1. The scripts are encoded
in the usual character set for the language and platform combination.

2. Run the SQL*Loader CTL script using the following command line:

SQLLDR userid=<admin>/<password>CONTROL=rep<lang>30.ctl

3. Errors are logged to the rep<lang>30.log file. Rejected lines are
logged to the rep<lang>.bad file. Errors can occur for the following
reasons:

■ An unforeseen database problem

■ An attempt was made to run the script for a language more than
once

■ An attempt was made to process a multibyte language in a
single-byte operating system locale

4. You can install as many languages as you want. The strings are stored
separately in the database and do not overwrite each other. The
language displayed is controlled by the NLS_LANG parameter for
Oracle Portal release 3.0.

Server Configuration
You need to have the following entry in the Oracle Reports Services server
configuration file if you are installing Oracle Portal release 2.2, where
tnsname is the instance where Oracle Portal release 2.2 is installed:

SECURITYTNSNAMES=<webdb_2.2_tnsname>
 3

You need to have the following entries in the Oracle Reports Services server
configuration file if you are installing Oracle Portal release 3.0:

SECURITYTNSNAMES=<oracle_portal_tnsname>
PORTALUSERID=<portal_username>/<portal_password>

where:

The SECURITYTNSNAME and PORTALUSERID parameters can be added
to the Oracle Reports Services server configuration file. For example,
rep60_machinename.ora found in the following Windows NT directory:

 %ORACLE_HOME%\REPORT60\SERVER

Or, rep60_machinename.ora found in the following UNIX directory:

$ORACLE_HOME/reports60/server

Security
Oracle Corporation has modified the security API in the RWK layer. If you
have created your own version of RWK60.DLL for an earlier version, then
you need to make some changes in your code and recompile with the new
RWKSS.H. The RWKSS_ValidateSession() function has been added for
validating an Oracle Portal user session, and
RWKSS_AuthenticationSystemUser() has been added to distinguish the
database authentication RWKSS_AuthenticateUser().

Extended Aggregate Operations and Analytic Functions
Oracle Reports Services now supports extended aggregate operations and
analytic functions.

tnsname is the instance where Oracle Portal release 3.0 is
installed.

portal_username is the name of the user authorized to log into the
Oracle Portal database.

portal_password is the password of the authorized Oracle Portal user.
 4

Aggregate operations return a single result row based on the groups of
rows, rather than on single rows. Aggregate functions can appear in select
lists and in ORDER BY and HAVING clauses. They are commonly used
with the GROUP BY clause in a SELECT statement, where Oracle8i divides
the rows of a queried table or view into groups. For example:

SELECT dname, sum(sal)
FROM dept, emp
WHERE dept.deptno =emp.deptno
GROUP BY dname

The database applies the aggregate functions to each group of rows and
returns a single result row for each group. So the above example shows the
total sum of all salaries on an individual department basis.

Introduced in Oracle8i release 8.1.5, extended aggregate operations extend
this functionality by adding CUBE and ROLLUP extension, where super
aggregate groups are produced in addition to the regular groupings (as
extra rows). ROLLUP creates subtotals at increasing levels of aggregation,
from the most detailed up to a grand total. CUBE is an extension similar to
ROLLUP, enabling a single statement to calculate all possible combinations
of subtotals. CUBE can generate the information needed in cross-tabulation
reports with a single query. You can distinguish between the real data rows
being returned by the query and the extra rows added by the CUBE and
ROLLUP extensions by using the GROUPING function in the select list. For
real rows the GROUPING function returns a 0; otherwise, it returns a 1.

Oracle8i release 2 (8.1.6) introduced a powerful new family of SQL
functions for business intelligence and data warehousing applications.
These functions are collectively called analytic functions and they provide
significantly improved performance and simplified coding for many
business analysis queries. These new SQL functions are also being reviewed
by ANSI for addition to the new SQL standard. Oracle Corporation has
created four families of analytic functions, each of which contains several
functions:

■ Ranking family

■ Window aggregate family

■ Reporting aggregate family

■ LAG and LEAD family
 5

Ranking Family

This family supports business questions such as "show the top 10 and
bottom 10 salespersons for each region" or "show, for each region, the
salespersons that make up 25% of the sales." The functions examine the
entire output before producing an answer. Oracle Corporation provides
RANK, DENSE_RANK, PERCENT_RANK, CUME_DIST, and NTILE
functions.

Window Aggregate Family

This family addresses questions such as "show the 13-week moving average
of a stock price" or "show the cumulative sum of sales per each region." The
new features provide moving and cumulative processing for all the SQL
aggregate functions, including AVG, SUM, MIN, MAX, COUNT,
VARIANCE, and STDDEV.

Reporting Aggregate Family

One of the most common types of calculations is the comparison of a
non-aggregate value to an aggregate value. All percent-of-total and market
share calculations require this processing. The reporting aggregate family
makes these sorts of calculations simple. It lets you place values calculated
at different aggregation levels on the same row. Without needing a join
operation, you can now compare aggregate values to the detail rows. The
new family provides reporting aggregate processing for all SQL functions,
including AVG, SUM, MAX, COUNT, VARIANCE, and STDDEV.

LAG and LEAD Family

Studying change and variation is at the heart of analysis. Necessarily, this
involves comparing the values of different rows in a table. While this has
been possible in SQL, usually through self-joins, it has not been efficient or
easy to formulate. The LAG and LEAD family enables queries to compare
different rows of a table simply by specifying an offset from the current row.

Look at the following example of the application of some of these functions
and operations. Imagine that the HR manager in your organization has
requested the following information about the employees in your company:

"I’m trying to make sure our compensation policy and job bands are fair
and in line with corporate directives. To determine this, I need to see
the following from our HR database:

1. A breakdown of the number of employees and the average salary for
each job we have in the company. I’d like to see the first for the entire
company, and then on a per department basis.
 6

2. For each employee, on a per department basis, I would like to see
their total compensation and how this compensation ranks within the
company as a whole, within their department (and it’s proportion), and
how much above or below the company compensation average this is.

On the same report, I’d like to see their date of employ, their seniority in
the company (that is, the order in which they were employed), who was
the next person employed after them, and how long afterwards."

With the new Oracle8i analytic functions, you can now achieve all of this for
your HR manager with just two SQL statements and no processing of the
data in PL/SQL. Take a look at the first request. This can be written as
follows:

SELECT GROUPING(dname) dept_grouping_code,
 DECODE(GROUPING(dname), 1, ’All Departments’,initcap(dname)) AS dname,
 GROUPING(job) job_grouping_code,
 DECODE(GROUPING(job), 1, ’All Jobs’, job) AS job, COUNT(*) "Total Empl",

 AVG(sal+nvl)(comm,0)) "Average Comp"
FROM emp, dept
WHERE dept.deptno = emp.deptno
GROUP BY CUBE (dname, job)

For the second request, this can be expressed in SQL as follows:

SELECT emp.deptno,
 dept.dname,
 avg(sal+nvl(comm,9)) over (partition by dept.deptno) avg_dept_sal,

 ename,
 job,
 sal,
 nvl(comm,0),
 (sal+nvl(comm,0)) Compensation,
 hiredate
RANK () OVER (PARTITION BY emp.deptno ORDER BY (sal+nvl(comm,0)) DESC) as rk,

RANK () OVER (ORDER BY (sal+nvl(comm,0)) DESC) "Rank in Company",
RANK () OVER (ORDER BY hiredate) "rank in employ",
((LEAD(hiredate, 1) OVER (ORDER BY hiredate))-hiredate) "Days over emp",
(LEAD(ename,1) OVER (ORDER BY hiredate)) next_emp
FROM emp, dept
WHERE dept.deptno = emp.deptno
ORDER BY rk

Naturally, you want to produce boardroom quality output for your HR
manager, so instead of SQL*Plus, you use Oracle Reports Services to
produce these reports.
 7

Now, the question is, how do you put these queries with this special syntax
in your enterprise report? The answer is simple, just as you would do it
with any other regular SQL statement.

Oracle Reports Services passes the SQL straight through to the database so
developers can utilize all these functions and the extended aggregate
operations within individual (stand-alone or not linked) queries in all
versions of Oracle Reports Services. In addition, Oracle Reports Services 6i
release 2 has been further enhanced to understand these extensions to the
SQL syntax, so that queries using these functions can be linked to any other
query or the break order of fields changed in the data model. Oracle
Reports Services 6i release 2 is required since these features actually rewrite
the SQL statement behind the scenes in Oracle Reports Services.

You can create your reports either with the wizard or by manually creating
the queries with break groups defined for a group-above report. You do not
link the queries since the HR manager wanted two summaries. You can use
the multisectioning and bursting feature of Oracle Reports Services to
display the results of the first query on the first section, and then the results
of the second query in another. Of course, with a single run of the report,
you can run each section to a number of different formats (for example,
PDF, PostScript, HTML, or RTF) and to a number of different destinations
(for example, a printer, e-mail, or a portal).

You now run the report wizard again and create your layout for the second
analysis. You can also invoke the chart wizard to view some of the data
pictorially.

As you can see, the new extended aggregate operations and analytic
functions are very powerful and can easily be used to enhance the analysis
of your data from within Oracle Reports Services.

Oracle Reports Services Server X Windows Session Requirement
In order to run bitmapped reports, the engines spawned by the Oracle
Reports Services server need to have access to an appropriate windowing
system. On Windows platforms this is a non-issue, but on non-Windows
platforms this means that a valid X Windows session must be available. To
ensure that this is the case, be sure that the Oracle Reports Services server is
started from the session that has a valid DISPLAY environment variable. If
this is not the case, then you see REP-3000 and REP-1800 errors.
 8

	Oracle Portal
	NLS
	SQL*Plus
	SQL*Loader

	Server Configuration
	Security
	Extended Aggregate Operations and Analytic Functions
	Ranking Family
	Window Aggregate Family
	Reporting Aggregate Family
	LAG and LEAD Family

	Oracle Reports Services Server X Windows Session Requirement

