
1

The Oracle Open Client Adapter for ODBC (OCA) allows Forms Developer and
Reports Developer on Microsoft Windows 95 and Windows NT to access
ODBC-compliant data sources through ODBC drivers.

Using the Oracle Open Client Adapter, an application can access different data
sources in a consistent manner. This allows an application developer to build an
application that can run unmodified against one of several databases.
Alternatively, the application can be targeted at a specific database, and take
advantage of features particular to that system.

This document explains how to build Forms Developer and Reports Developer
applications that access data stored in ODBC data sources. The first chapter,
Getting Started, gives general guidelines that apply to any ODBC data source.
The second chapter, "Building Oracle Forms Developer and Oracle Reports
Developer Applications for ODBC Data Sources", gives instructions for building
applications that can access any ODBC data source. For additional information
about specific ODBC data sources please refer to the database-specific
information chapters.

The absence of a specific chapter for a given database does not mean we do not
support ODBC access of that database using the OCA. There are a limited
number of databases we can test and document, but the OCA should work with
any ODBC data source, provided the ODBC driver is compliant with ODBC
version 2.0 or above.

This document is meant to assist you in using the Oracle Open Client Adapter.
The document is divided into chapters on certain areas, but you should be able to
start using the OCA just by reading the first two chapters: "Getting Started" and
"Building Oracle Forms Developer and Oracle Reports Developer Applications
for ODBC Data Sources".

Using Oracle® Forms Developer,
Oracle® Reports Developer and
the Oracle Open Client Adapter
to access ODBC Data sources

Overview

How To Use This Document

2

Several issues concerning usage of the OCA are discussed in the appendices of
this document because they deal with situations many users will not meet.

3

Table of Contents

1. GETTING STARTED.. 6

1.1 SUPPORTED DATA SOURCES AND ODBC COMPLIANCE.. 6
1.2 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS .. 6
1.3 CONNECTING TO AN ODBC DATA SOURCE..10

2. BUILDING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER
APPLICATIONS FOR ODBC DATA SOURCES...12

2.1 OVERVIEW ...12
2.2 USING SQL PLUS WITH OCA CONNECTIONS ...12
2.3 WRITING PL/SQL FOR USE WITH OCA (ODBC) CONNECTIONS..15
2.4 PASS-THROUGH SQL: TECHNIQUES FOR EXECUTING NATIVE SQL ...17
2.5 USING ORACLE FORMS WITH OCA CONNECTIONS ...18
2.6 USING ORACLE REPORTS WITH OCA CONNECTIONS ..20
2.7 USING ORACLE GRAPHICS WITH OCA CONNECTIONS...21
2.8 USING ORACLE PROCEDURE BUILDER WITH OCA CONNECTIONS..21
2.9 CONNECTING TO DIFFERENT DATABASES ...21
2.10 TRANSACTION ISOLATION LEVELS..21
2.11 OCA ERROR HANDLING ...22
2.12 DEBUGGING AN APPLICATION USING THE OCA ..23

3. HOW TO USE THE OPENDB PL/SQL LIBRARY FOR DATA SOURCE
INDEPENDENCE...25

3.1 OVERVIEW ...25
3.2 OBTAINING DETAILS ABOUT THE DATASOURCE ..25
3.3 OVERRIDING THE DEFAULT BEHAVIOR OF THE OCA ...26
3.4 USING THE OPENDB LIBRARY IN ORACLE FORMS DEVELOPER AND ORACLE REPORTS
DEVELOPER APPLICATIONS...26

4. CALLING STORED PROCEDURES THROUGH THE ORACLE OPEN CLIENT
ADAPTER...27

4.1 OVERVIEW ...27
4.2 CALLING STORED PROCEDURES FROM PL/SQL..27
4.3 CALLING STORED PROCEDURES USING THE EXEC_SQL PACKAGE ..28

5. USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER WITH
ORACLE LITE...31

5.1 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS ...31
5.2 USING FORMS DEVELOPER AND REPORTS DEVELOPER WITH ORACLE LITE31
5.3 SQL DIFFERENCES BETWEEN ORACLE AND ORACLE LITE...33
5.4 CLIENT-SIDE PL/SQL ...34

6. USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER WITH
MICROSOFT SQL SERVER...36

6.1 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS ...36
6.2 MICROSOFT ODBC DRIVER VERSUS INTERSOLV ODBC DRIVER ...37
6.3 USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER - FORMS WITH
MICROSOFT SQL SERVER...37
6.4 USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER - REPORTS WITH
MICROSOFT SQL SERVER...38

4

6.5 SQL DIFFERENCES BETWEEN ORACLE AND MICROSOFT SQL SERVER39
6.6 MICROSOFT SQL SERVER TRANSACTIONS AND LOCKING ...40
6.7 HANDLING OF DDL STATEMENTS..41
6.8 CLIENT-SIDE PL/SQL ...41
6.9 ADDITIONAL RESTRICTIONS..44

7. USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER WITH
SYBASE ..46

7.1 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS ...46
7.2 USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER - FORMS WITH SYBASE 47
7.3 USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER - REPORTS WITH SYBASE48
7.4 SQL DIFFERENCES BETWEEN ORACLE AND SYBASE ...48
7.5 SYBASE TRANSACTIONS AND LOCKING ..50
7.6 HANDLING OF DDL STATEMENTS..50
7.7 CLIENT-SIDE PL/SQL ...51
7.8 ADDITIONAL RESTRICTIONS..53

8. USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER WITH
ORACLE RDB..55

8.1 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS ...55
8.2 CONNECTING TO DIFFERENT DATABASES ..56
8.3 USING ORACLE FORMS DEVELOPER WITH ORACLE RDB..57
8.4 SQL DIFFERENCES BETWEEN ORACLE AND ORACLE RDB ...59
8.5 ORACLE RDB TRANSACTIONS AND LOCKING ..60
8.6 CLIENT-SIDE PL/SQL ...61

9. USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER WITH
INFORMIX ...64

9.1 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS ...64
9.2 USING ORACLE FORMS DEVELOPER WITH INFORMIX ..65
9.3 SQL DIFFERENCES BETWEEN ORACLE AND INFORMIX ..66
9.4 CLIENT-SIDE PL/SQL ...67

10. USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER
WITH MICROSOFT ACCESS..70

10.1 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS..70
10.2 DATA DICTIONARY VIEWS ...70
10.3 USING ORACLE FORMS DEVELOPER WITH MICROSOFT ACCESS ...71
10.4 SQL DIFFERENCES BETWEEN ORACLE AND MICROSOFT ACCESS...71
10.5 MICROSOFT ACCESS TRANSACTIONS AND LOCKING ...71
10.6 CLIENT-SIDE PL/SQL ...72

11. USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER
WITH INGRES...74

11.1 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS..74
11.2 USING ORACLE FORMS DEVELOPER WITH INGRES ..74
11.3 USING ORACLE REPORTS DEVELOPER WITH INGRES ...75
11.4 SQL DIFFERENCES BETWEEN ORACLE AND INGRES ..75
11.5 INGRES TRANSACTIONS AND LOCKING...76
11.6 CLIENT-SIDE PL/SQL ...76
11.7 ADDITIONAL RESTRICTIONS ..78

12. USING ORACLE FORMS DEVELOPER AND ORACLE REPORTS DEVELOPER
WITH DB2/400 ...80

5

12.1 INSTALLATION, SETUP AND SYSTEM REQUIREMENTS..80
12.2 USING ORACLE FORMS DEVELOPER WITH DB2/400..81
12.3 SQL DIFFERENCES BETWEEN ORACLE AND DB2/400 ...82
12.4 CLIENT-SIDE PL/SQL ...83

13. UNIVERSAL BACK-END TESTER (UBT) ..85

13.1 OVERVIEW ...85
13.2 SQL COMMAND SYNTAX..85
13.3 UBT COMMAND SYNTAX ...85
13.4 UBT COMMANDS ...86

APPENDIX A: CASE SENSITIVITY ISSUES ...91

APPENDIX B: ADVANCED OCA CONNECT STRINGS ..92

APPENDIX C: ORACLE DATA TYPE MATCHING...93

APPENDIX D: NOTES ON DATETIME TYPES WITH FRACTIONAL SECONDS............94

APPENDIX E: AUTOMATIC ADJUSTMENTS IN FORMS BEHAVIOR FOR OCA DATA
SOURCES ...95

APPENDIX F: NOTES ON DRIVERS SUPPORTING ONLY ONE ACTIVE STATEMENT
PER CONNECTION ..99

APPENDIX G: ERROR MESSAGES...100

6

1. Getting Started
1.1 Supported Data Sources and ODBC Compliance

The Oracle Open Client Adapter (OCA) is an ODBC 2.0 application. It should
therefore be used with drivers which are ODBC version 2.0 or above. The OCA
requires the ODBC driver to be ODBC API Level 1-compliant. The OCA also
uses certain ODBC API level 2 functionality to achieve greater performance if that
capability is provided by the ODBC driver. Level 2 functions are required for
calling database stored procedures.

In addition to these requirements, we also strongly recommend using drivers
which support an unlimited number of active statements per database connection
(that is, drivers which report a value of 0 when SQLGetInfo is called for
information type SQL_ACTIVE_STATEMENTS). The OCA does support
drivers which only support one active statement per connection, but there are
certain issues and limitations. Please refer to "Appendix F: Notes on drivers
supporting only one active statement per connection" if you intend to use such a
driver.

The Open Client Adapter allows Oracle Developer to access any ODBC data
source, of which there are many, provided the driver meets the requirements
stated above. Oracle has tested the OCA with the following data sources, and
provides some additional information for them:

• Oracle Lite

• Oracle Rdb

• IBM DB2

• Informix

• Ingres

• Microsoft SQL Server

• Microsoft Access

• Sybase System 10

1.2 Installation, Setup and System Requirements
Using Forms Developer and Reports Developer to access an ODBC data source
typically requires installation of components from Oracle, from the data source
you wish to access, and from your ODBC driver vendor.

7

1.2.1 OCA Installation Directories
The location for the OCA is $(ORACLE_HOME)\OCA60 in Forms Developer
and Reports Developer release 6.0, unless you specified a different location when
you installed it.

It contains the following directories:

sql consists of several subdirectories that contain SQL scripts
to create the data dictionary views used by the Forms
Developer and Reports Developer Builders.

plsqllib contains the following files:

opendb.pll PL/SQL library of functions for making
applications datasource independent

drivers contains programs and subdirectories pertinent to ODBC
drivers (if installed).

odbcad32.exe Microsoft ODBC Administrator (redistributed with any
ODBC driver)

odbctst.exe Oracle ODBC test program distributed with the Oracle
Rdb driver.

rdbcnv32.exe Oracle Rdb conversion utility (from prior driver versions).

Rdb60 subdirectory containing documentation, license and sample
files distributed with the Oracle Rdb driver.

demo The OCA demos are included in the Forms Developer and
Reports Developer standard demonstration (located
under $(ORACLE_HOME)\tools). The OCA demo
directory only exists for compatibility with previous
releases. It contains just one file:

open_db.fmb Form containing property classes
for different data sources. This is now
OBSOLETE and is only supplied to
allow existing applications which
reference the classes to continue to work.

1.2.2 Setup for Forms Developer, Reports Developer and Oracle Net8
Client

Oracle Forms Developer, Oracle Reports Developer, Oracle Net8 Client1, and the
Open Client Adapter must be installed on the machine where Forms Developer

1 Oracle Net8 Client is required for Oracle Developer release 6.0, even if only OCA (ODBC) connections are to
be used. This is a change from previous releases where SQLNet was not required. It is not necessary to install
any Protocol Adapters however.

8

and Reports Developer are to run. In addition, the Oracle software distribution
includes ODBC drivers from INTERSOLV that allow access to many different
ODBC data sources. Use the Oracle Installer to install them.

1.2.2.1 Net8 Client Configuration to minimize connect time
For Forms Developer and Reports Developer release 6i it is preferable to make a
change to the sqlnet.ora configuration file once Oracle Net8 has been installed (the
need for this will be eliminated in a future release). The change will minimize the
time taken to connect to ODBC data sources by instructing Net8 not to attempt to
contact an Oracle Names server when resolving database connect strings. If this
change is not made, the connection time may be as long as 20 or 30 seconds
instead of just a few seconds. The sqlnet.ora file is usually found in
%ORACLE_HOME%\net80\admin. Please modify the file as follows:

Remove "HOSTNAME" from the names.directory_path entry. For example,
if the file has the entry:

names.directory_path = (HOSTNAME, TNSNAMES)

change it to:

names.directory_path = (TNSNAMES)

1.2.3 Setup for ODBC Data Sources
1.2.3.1 Client Setup

Many data sources require special setup for their clients. This setup will often
include the installation of networking libraries, the installation of client side tools
(like an interactive SQL tool1), and configuring the client software to point at the
correct server. This procedure differs substantially from database to database, and
you should refer to the documentation provided with your database for more
information.

1.2.3.2 ODBC Setup
You need to set up an ODBC data source before you can access it using Forms
Developer and Reports Developer . To configure ODBC data sources, run the
ODBC Administrator (installed with your ODBC driver), choose the driver you
wish to use, and create a new data source.

When you set up an ODBC data source, you must give it a name. This name will
be used in the connect string you specify to establish a connection to the data
source (see information on connect strings later in this chapter in the section "How
to specify an OCA Data Source").

The other information you usually specify includes the server name, default login
ID, and whatever other driver-specific information is required. See your driver
documentation for more information.

1 Oracle supplies SQL*Plus for this purpose. Microsoft SQL Server and Sybase SQL Server supply ISQL.

9

You can create several ODBC data sources that access the same DBMS (perhaps
in order to access different databases and/or different database servers). Each data
source will have a unique name.

1.2.3.3 Server Setup
When you install a database server, you can set a number of options, such as sort
order and language to be used, that help customize the database.

There are several things you can do at server setup time to better prepare your
database for use with Oracle Forms Developer and Oracle Reports Developer .

If you data source supports case-sensitive objects, you should configure your data
source in case insensitive mode (if it is available and feasible). If your data source
cannot be configured to be case insensitive, create all database objects (tables,
columns, views, and stored procedures) in upper case. User names should be
created in upper case if possible, to remove the need to quote them if used in
client-side PL/SQL. If it is not possible or feasible to configure the data source to
be case insensitive, or to create objects with upper case names, you can still use
Forms Developer and Reports Developer , but you should refer to the ppendix A:
Case Sensitivity Issues appendix for more information.

1.2.3.4 Data Dictionary Setup
The Forms Developer and Reports Developer builder tools will benefit if certain
views are present in the data source in order to properly access data dictionary
information. They use this information to display lists of tables, columns, views,
etc.. If these views are not present, you will be unable to see lists of tables,
columns, etc., though you may still develop applications and reference any object
in the database in your applications.

The Oracle Open Client Adapter provides scripts for generating these data
dictionary tables on some popular data sources. If there is no script provided for
your data source, you can build your own, basing it on the supplied scripts for
other data sources1.

The following scripts are provided:

Database View Creation Script
Sybase SQL Server 4.x $ORACLE_HOME\oca60\sql\sqlsrv\sqsvubld.sql

Microsoft SQL Server 4.x $ORACLE_HOME\oca60\sql\sqlsrv\sqsvubld.sql

Microsoft SQL Server 6.x $ORACLE_HOME\oca60\sql\sqlsrv\sqs60bld.sql

Sybase System 10 or 11 $ORACLE_HOME\oca60\sql\sybase\sybvubld.sql

DB2 for AS 400 $ORACLE_HOME\oca60\sql\db2_400\db4vubld.sql

1 Some data sources, like Microsoft Access, do not expose data dictionary information in accessible SQL tables
and views. For these data sources, it is impossible to build data dictionary views.

10

DB2 for AIX1 $ORACLE_HOME\oca60\sql\db2_aix\db2vubld.sql

DB2 for MVS $ORACLE_HOME\oca60\sql\db2_mvs\dbmvubld.sql

Informix $ORACLE_HOME\oca60\sql\informix\infvubld.sql

Ingres $ORACLE_HOME\oca60\sql\ingres\ingvubld.sql

Non-Stop SQL (Tandem) $ORACLE_HOME\oca60\sql\nonstop\nssvubld.sql

Oracle Rdb (6.1 and above) $ORACLE_HOME\oca60\sql\rdb\rdbvubld.sql

Oracle Lite (3.0 and above) $ORACLE_HOME\oca60\sql\polite\polvubld.sql

Run these scripts using the SQL*Plus utility. The example below is for Microsoft
SQL Server 6.5, creating the tables in the pubs database:
plus80.exe scott/tiger1@odbc:sql65:pubs

@c:\orant\oca60\sql\sqlsrv\sqs60bld.sql

Create these views in all databases that will be accessed by Forms Developer and
Reports Developer during application development.

Runtime components do not use the data dictionary views, so they are not
required on production systems. However, they may access a table called
"DUAL" if the PL/SQL built-in functions SYSDATE or USER are used, or if any
application code references the DUAL table (something which is frequent in
applications initially developed for use against Oracle) . The "DUAL" table is a
table with only one row in it. We have provided a script valid for all data sources
to create this table. You can find it at:
$ORACLE_HOME\oca60\sql\dual.sql

and you should run it using the SQL*Plus utility. The example below is for
Microsoft SQL Server 6.5, creating the table in the pubs database, owned by the
user scott.
plus80.exe scott/tiger1@odbc:sql65:pubs
 @c:\orant\oca60\sql\dual.sql

1.3 Connecting to an ODBC Data Source
You should verify successful connectivity to your data source in two stages. First,
verify that you have native (non-ODBC) connectivity using native data source
tools (For example, for Microsoft SQL Server, use the ISQL utility). Then verify
Forms Developer and Reports Developer connectivity by using the SQL*Plus
utility.

1.3.1 How to specify an OCA Data Source
When connecting to an Oracle database from Forms Developer and Reports
Developer tools (using Oracle Net), the connection information is provided in the
form:
<username>/<pwd>@<connect_string>

1 You should be able to use this script against DB2 for WindowsNT and DB2 for OS2.

11

where <connect_string> is an Oracle Net TNS alias. When connecting through
the Open Client Adapter, the connect string must be of the form (items in square
brackets[] are optional):
ODBC:<DataSourceName>[:<DataBaseName>]

Where <DataSourceName> is the name of the ODBC data source you defined
using the ODBC administrator. See "Appendix B: Advanced OCA Connect
Strings" for information about advanced usage of connect string formats.

1.3.2 Verifying Oracle Forms Developer and Oracle Reports Developer
OCA Connectivity with SQL*Plus

You can test connectivity using any component, or with SQL*Plus. A simple first
test is to execute the following command from a command shell:
plus80 <username>/<password>@odbc:<datasource>

If SQL*Plus generates an error message and asks for a user-name, then you have
failed to connect. Otherwise, SQL*Plus will generate some status messages, and
should connect you to the data source.

12

2. Building Oracle Forms Developer and Oracle Reports
Developer Applications for ODBC Data Sources
2.1 Overview

This chapter describes the differences in building Forms Developer and Reports
Developer applications against Oracle7 or Oracle8 (connected via SQL*Net), and
any ODBC data source accessed via the Open Client Adapter. The following
general restrictions and differences in behavior apply to all the Forms Developer
and Reports Developer builder components:

• A non-Oracle database cannot be used as a repository for storing Forms,
Reports or Graphics modules. You should store your modules in the file
system.

• Trigger information cannot be accessed from the Database Objects Node
of the Object Navigator.

• You can view stored procedure text only for data sources that can emulate
the Oracle ALL_SOURCE table (Examples are Microsoft SQL Server and
Sybase). You can never edit database stored procedure text.

• You cannot drag and drop PL/SQL program units from the client to a non-
Oracle data source.

• Forms Developer and Reports Developer cannot use primary and foreign
key constraint information from OCA data sources for default creation of
Master-Detail relationships or for marking Primary Key items. These must
be identified manually where required.

• Optimizer hints (/*hint*/ style comments) will not cause errors but are
ignored by any data source connected to via the OCA (because the OCA
SQL parser removes comments from SQL statements).

• Oracle8-specific features (such as user-defined data types and object
extensions to SQL) will not work against OCA connections

2.2 Using SQL Plus with OCA Connections
2.2.1 Avoiding truncation of DATE, TIME and TIMESTAMP values

SQL Plus 8.0 fetches all column values as character strings, relying on the data
source to perform the conversion from native to character format. The ODBC
standard is for ODBC drivers to return DATE values in the format 'YYYY-MM-
DD', TIME values as 'HH24:MI:SS' and DATETIME (or TIMESTAMP) values
as 'YYYY-MM-DD HH24:MI:SS'. Fractional seconds may also be present in
some cases.

13

All native columns which map to the Oracle DATE type are displayed in SQL Plus
8.0 only up to a certain maximum length. This maximum length is determined
from the client-side Oracle NLS environment parameters, notably NLS_LANG
and NLS_DATE_FORMAT (if present). If a date, time or datetime value
exceeds this maximum length, it will be truncated when displayed by SQL Plus.

The length to which values are truncated is equal to the length of the format mask
given in NLS_DATE_FORMAT, or, if that is absent, by the length of the default
date format mask for the territory specified in NLS_LANG. Note that the actual
contents of the mask are ignored by SQL Plus. For example, if
NLS_DATE_FORMAT is not set and the territory part of NLS_LANG is
America, then the default date mask is 'DD-MON-YY' which is of length 9, so all
date, time or datetime values will be truncated to 9 characters. This is insufficient
to display date and time values as they are typically returned by the ODBC
datasources, for example, January 31st 1997 would appear as "1997-01-3".

2.2.1.1 Recommended action
We recommend explicitly setting the Oracle environment variable
NLS_DATE_FORMAT to a mask which is long enough for all required date,
time or datetime values. For example, "YYYY-MM-DD" (length 11) will allow
date and time values such as "1997-01-31" or "10:15:05" to be displayed fully. A
longer value (such as "YYYY-MM-DD HH24:MI:SS") would be needed for
displaying datetime data.

On Windows 32-bit platforms (Windows 95, 98 and NT) the
NLS_DATE_FORMAT value should be created (or updated) in the Windows
Registry under the "ORACLE" key, using a registry editor such as regedit or
regedt32.

2.2.2 Supported SQL statements
SQL Plus passes most SQL statements straight through to the data source, so in
general it is possible to use any SQL statements, whether or not they conform to
Oracle SQL syntax. However, there are some special cases which it is important
to note. These are detailed in the following sections.

2.2.2.1 How to terminate commands which look like PL/SQL
By default, SQL Plus assumes that input SQL statements are terminated by the
character ";" (semi-colon), unless they have the appearance either of an Oracle
SQL command containing PL/SQL (Create Procedure, Create Function or Create
Package) or of an anonymous PL/SQL block (starting with "BEGIN" or
"DECLARE") . If the command has this appearance, then embedded semi-colons
will be accepted as part of the command and will not be interpreted as indicating
the end of the command. So such commands should instead be terminated with a
single line containing just the character "/" (to execute the command) or "." (to

14

terminate command input without immediately executing it). This is in fact good
practice for all commands anyway.

As an example, a SQL*Plus script to create a Sybase stored procedure might be
written as follows:
CREATE PROCEDURE sptest_emp_2parms @empno_in
smallint, @empno_out smallint output
AS
SELECT @empno_out = @empno_in
return 33
/

Note the use of "/" to terminate (and execute) the command instead of ";".

2.2.2.2 Issuing SQL commands with embedded semi-colons (";")
By default, SQL Plus assumes that input SQL statements are terminated by (i.e.
end before) the character ";" (semi-colon), unless they have the appearance of an
Oracle SQL command containing PL/SQL (see previous section).

So in order to execute statements containing semi-colons and which do not
resemble PL/SQL, such as RDB "Create Module" statements, it is necessary to
change the SQL command terminator to something else. This can be done, for
example, as follows (sets the terminator to "\"):

set sqlterminator "\"

2.2.2.3 Issuing SQL commands with embedded "@" characters
Input lines starting with the character "@" (including lines which are part of a SQL
statement) will be interpreted as an instruction to execute a file of SQL*Plus
commands. To avoid this problem, arrange the SQL statement so that no lines
start with "@". For example, when creating a stored procedure in Sybase, the
following will fail because SQL*Plus will attempt to interpret the files
empno_in.sql, etc:

CREATE PROCEDURE sptest_emp_2parms
 @empno_in smallint,
 @empno_out smallint output
AS
SELECT @empno_out = @empno_in
return 33
/

However, it will work if input as:
CREATE PROCEDURE sptest_emp_2parms @empno_in
smallint, @empno_out smallint output
AS
SELECT @empno_out = @empno_in
return 33
/

2.2.2.4 SQL commands starting with non-standard keywords
SQL*Plus recognizes SQL statements by their leading keyword or keywords.
Certain data source-specific (non-standard) SQL commands starting with non-
standard keywords are not recognized, and therefore cannot be executed under
SQL*Plus. For example, CALL statements against RDB are rejected as

15

"unknown commands". These commands should be executed using the native
SQL interpreter supplied with the DBMS.

2.3 Writing PL/SQL for use with OCA (ODBC) connections
2.3.1 SQL within PL/SQL

SQL statements embedded in PL/SQL program units must conform to both
Oracle SQL and the SQL dialect of the data source (or data sources) against
which the application is to run. Any statements which would fail against Oracle
will cause the PL/SQL to fail to compile, and any statements using syntax not
supported by the data source will fail at execution time. Exceptions to this are the
SYSDATE and USER functions which are specific to Oracle SQL. These will be
translated by the OCA to the corresponding ODBC functions and will work
against all data sources1.

If your data source has case sensitive names for items in the database, and some
are not upper case, you should refer to "Appendix A: Case Sensitivity Issues" for
details on how to handle these in PL/SQL.

2.3.2 "Where current of <cursor>" is not supported
The syntax "Where current of <cursor_name>" is sometimes used in "UPDATE"
and "DELETE" SQL statements within PL/SQL against Oracle. However, it will
not work against ODBC connections and should be avoided in all applications
which are required to work against ODBC data sources. The reason is that it is
implemented using Oracle rowid's which are not portable to other data sources.
The solution is to use primary keys instead. For example, in the code:
Declare
 Cursor C is select empno, ename from emp for update;
 v_empno emp.empno%type;
 v_ename emp.ename%type;
Begin
 Open C;
 Fetch C into v_empno, v_ename;
 Update emp set ename = 'Updated'
 where current of C; --This is forbidden against ODBC
connections
 Close C;
End;

the Update statement should be changed to read:
 Update emp set ename = 'Updated'
 where empno = v_empno; --Use primary key to identify row

1 except when the ODBC driver does not support the now() function, but almost all drivers do support it.

16

2.3.3 Native SQL and multiple database connections
If you wish to issue SQL statements using syntax specific to the data source (and
conflicting with Oracle syntax), you may do so using one of the pass-through SQL
techniques described in section 2.4 below. Note that the EXEC_SQL package,
which is a built-in package in the Forms Developer and Reports Developer tools,
not only allows native SQL, but may also be used to handle multiple simultaneous
database connections and to fetch result sets returned from stored procedures.

2.3.4 Writing code branches specific to a data source
When using native SQL you can benefit from functionality specific to a particular
data source. However, to allow the application to continue to work against other
data sources, you may wish to ensure that such statements are issued only against
the data source which supports them. The OPENDB PL/SQL library (also
supplied with the Open Client Adapter) provides functions which allow you to find
out which data source you are connected to at a given time. You may use these
functions to write data source specific branches in your code. Please refer to the
chapter "How to use the OPENDB PL/SQL library for data source independence"
for more details.

2.3.5 Referencing tables from more than one database
Many databases (e.g. Microsoft SQL Server) allow you to access table in a
database other than the one you are connected to, by using a three-part tablename
syntax like:
database.owner.tablename

PL/SQL does not recognize the three-part table name syntax, and your client-side
program unit or trigger will not compile. To work-around this problem, enclose
the three-part name in double quotes, after calling the appropriate function from
the OPENDB PL/SQL library to instruct the OCA to strip double quotes. Refer
to the chapter "How to use the OPENDB PL/SQL library for data source
independence" for details about the OPENDB library.

For example:
dbinfo.set_quote_char(NULL);
select ename, sal into v_ename, v_sal from “hrdb.scott.emp”;

2.3.6 Using PL/SQL predefined exceptions
Most predefined (i.e. built-in) PL/SQL exceptions work the same way against
ODBC connections as against native Oracle connections, even exceptions relating
to database access. Examples are: NO_DATA_FOUND, CURSOR_ALREADY_OPEN,
INVALID_CURSOR, TOO_MANY_ROWS and ROWTYPE_MISMATCH.

However, some predefined exceptions are never raised against ODBC
connections. These are:
DUP_VAL_ON_INDEX, INVALID_NUMBER and TIMEOUT_ON_RESOURCE.

17

Instead, an exception is raised with an error code and error message specific to
the Open Client Adapter (and not corresponding to a predefined PL/SQL
exception). The native error message from the data source or ODBC driver will
be included as part of the error message. Most often the OCA error code
reported is -30021 ("error preparing/executing SQL statement"). This will cause
an unhandled exception unless there is a "WHEN OTHERS" exception handler or
a specific handler for the -30021 error code.

2.3.6.1 Example exception handler for unique key violation
One exception which will not fire against ODBC data sources is
DUP_VAL_ON_INDEX (corresponding to Oracle error ORA-00001). So for
example, if an INSERT statement is attempted against Oracle Lite which would
result in a duplicate value for a primary key, the statement will fail with error code
-30021, but DUP_VAL_ON_INDEX will not be raised. The error message is:
OCA-30021: error preparing/executing SQL statement
[POL-3220] duplicate keys in unique/primary index

Ways of catching this error are: (a) use the "WHEN OTHERS" exception clause,
or (b) define and catch a named exception corresponding to error code -30021
(using the syntax "pragma exception_init"). The error message may then either be
displayed to the user or analyzed further to determine the cause of the error.
Here is an example:
EXCEPTION
 When dup_val_on_index
 --Duplicate key value against native Oracle connection
 then
 message('This department number already exists !');
 When Others then
 If sqlcode = -30021 /* OCA statement execution error */
 and (upper(sqlerrm)) like '%DUPLICATE%'
 --Duplicate key value against ODBC connection
 then
 message('This department number already exists !');
 else
 message('Unexpected error: ' || sqlerrm);
 end if;
END;

2.3.7 PL/SQL REF CURSOR variables
REF CURSOR variables may be used in client-side PL/SQL against ODBC data
sources. However, they may not be passed into or out of the data source (as
stored procedure parameters) because they are Oracle-specific; they are not
recognized by the ODBC standard, nor by any non-Oracle database management
systems. As already mentioned, the ROWTYPE_MISMATCH exception works as
expected.

2.4 Pass-through SQL: techniques for executing native SQL
We have already seen in the previous sections that whilst SQL*Plus allows the
execution of almost any native SQL command, PL/SQL does not. There are

18

however ways of executing native SQL statements from within PL/SQL with no
limitations, by using special built-in routines. These are illustrated in the following
table, which shows ways of executing a statement specific to Microsoft SQL
Server (sets current database to "pubs"):

Forms: FORMS_DDL ('use pubs');

Reports: SRW.DO_SQL ('use pubs');

Graphics: DO_SQL ('use pubs');

Any
PL/SQL:

(Forms,
Graphics,
Reports or
Procedure
Builder)

DECLARE
 v_curs EXEC_SQL.CursType;
 v_numrows INTEGER;
BEGIN
 v_curs := EXEC_SQL.OPEN_CURSOR;
 EXEC_SQL.PARSE(v_curs, 'use pubs');
 v_numrows := EXEC_SQL.EXECUTE(v_curs);
 EXEC_SQL.CLOSE_CURSOR(v_curs);
END;

Note that bind variables are not allowed when using the FORMS_DDL built-in.

The most general technique is to use the EXEC_SQL package, which offers full
support for bind variables and for re-executing statements efficiently without
having to re-parse. The EXEC_SQL package is documented in the Procedure
Builder on-line help and documentation. It may also be used to open and handle
multiple simultaneous database connections, and to fetch result sets returned by
stored procedures.

2.5 Using Oracle Forms with OCA Connections
2.5.1 Form, data block and item properties
2.5.1.1 Automatic runtime adjustment of Form and Data Block properties

The Oracle RDBMS offers locking and concurrency features that some other
databases do not. As a result, the way Forms interacts with the database when
running against Oracle may not be appropriate for other data sources.

In order to deal with this, Oracle Forms automatically detects certain
characteristics of the data source at connect time and changes it's behavior
accordingly. Certain Form and Data Block properties are automatically adjusted.
The changes are documented in in "Appendix E: Automatic Adjustments in
Forms Behavior for OCA Data Sources" for completeness. It is not normally
necessary for users to make any other changes1. However, the Form-level
"Isolation Mode" property may optionally be used to change the transaction

1 The only known case where it is necessary to make other changes (by calling OPENDB.INIT_FORM) is for
certain forms running against Rdb. Please refer to the chapter on RDB for further details.

19

isolation level from read committed (the default) to serializable. If set to
serializable, the OCA will set the transaction isolation level to
TXN_SERIALIZABLE (if supported) or, failing that, leave it unchanged.

Please note that for most data sources it is still necessary to set the item-level
Primary Key property to TRUE for items based on primary key columns (see Item
Properties below).

2.5.1.2 Item Properties
Primary Key (Item) Identifies which items are primary key items. For

OCA data sources other than RDB, it is a
requirement to set this property to TRUE for all
items which are based on primary key columns in
the database. Otherwise runtime errors will occur
when attempting to update or delete rows, as
Forms will be unable to uniquely identify a row in
the database.

2.5.1.3 Data Block properties
In certain (exceptional) circumstances it may be necessary to modify the following
properties for base-table data blocks :

Update Changed Columns When an item in a row is changed, Forms will
build an update statement that includes all
columns. This improves performance by allowing
the same cursor to be used for all updated rows,
even though different columns may have been
updated in each. However, if there are primary
key items, and the data source does not allow
updating of primary keys, the update may fail with
the error ‘Primary key column colname cannot be
updated’. If you encounter this error in your OCA
application, set the Update Changed Columns
property to True so that Forms will include only
columns that changed in the update statement.

Records Fetched (Block) Some ODBC drivers have limits on the number of
records fetched at a time. For this reason, the
Records Fetched property for base table blocks
should be set no higher than the maximum number
of records your ODBC documentation says the
driver can fetch. In general you will obtain best
apparent performance by leaving this property at
its default of zero, which fetches enough records
to fill one screen at a time.

20

2.5.2 Data Types
The OCA automatically maps Oracle data types to the corresponding data type for
the data source. Please see Appendix C: Oracle Data Type Matching for details.

Some ODBC drivers can only support one LONG column per SELECT
statement, and some additionally require that that LONG column be last in the
SELECT list. If your ODBC driver has this limitation (see your driver's
documentation), then you must only have one LONG column per base table data
block.

2.5.3 Multiple sessions
Multiple sessions against a single database connection are NOT supported for
ODBC connections (because this is very Oracle-specific). If a new form is opened
using "OPEN_FORM(… ,SESSION)", then any database interaction in the
opened form will be done in the same database session (and transaction) as the
calling form. In addition, errors may occur as "OCA-30002: ubofscr function not
supported". It is therefore strongly recommended to use
OPEN_FORM(… ,NO_SESSION)" when running against an ODBC database
connection.

2.6 Using Oracle Reports with OCA Connections
2.6.1 Referencing tables from more than one database

Some ODBC data sources allow you to access tables in a database other than the
one you are connected to. For example, in SQL Server, you can access tables in
other databases using the syntax database.owner.tablename. Reports supports
this syntax (which is very data source dependent) in queries, but does not usually
generate correct SQL if you build master-detail relationships between them. To
work around this, build the master-detail relationship using a group link instead of
column links (click on the link tool and drag the mouse from the master to the
detail groups), and explicitly specify the master-detail relationship. For more on
group links, consult the Reports documentation.

2.6.2 Executing DML from within Reports
In order to avoid acquiring table-level locks during the execution of a report,
Reports runs in Auto-commit mode. If you use DML inside Reports, for example
to log progress or populate temporary tables, be aware that each statement will be
committed immediately after execution

Other than the above notes, and the general differences described earlier, Reports
can be used against OCA data sources with no other changes to its default
processing.

21

2.7 Using Oracle Graphics with OCA Connections
Other than the general differences between Oracle and non-Oracle databases
described earlier, Oracle Graphics may be used against OCA data sources with no
changes to its default processing.

2.8 Using Oracle Procedure Builder with OCA Connections
Other than the general differences between Oracle and non-Oracle databases
described earlier, Procedure Builder may be used against any OCA data source
with no changes to its default processing. Although no editing of database stored
procedures is possible, Procedure Builder is nonetheless a valuable tool for
managing client-side PL/SQL libraries, and testing stand-alone client-side PL/SQL
modules and libraries.

2.9 Connecting to different databases
Some data sources, such as Microsoft SQL Server, allow one database server to
manage several databases. You can usually specify which database to connect to
when you set up your ODBC driver, but sometimes you may want to switch
databases when running an application.

You can specify which database to connect to by using the following syntax for
the connect string1:
ODBC:<DataSourceName>:<DataBasename>

Alternatively, to change the current database when the connection has already
been established, you may execute a native (database-specific) SQL command for
switching databases in a client-side trigger or program unit. Use one of the pass-
through SQL techniques described in section 2.4.

2.10 Transaction isolation levels
The ODBC specification defines various transaction isolation levels which describe
different types of transactional support. Examples of transaction isolation levels
are SQL_TXN_READ_COMMITTED and SQL_TXN_SERIALIZABLE.
Often a given data source can support several isolation levels depending on the
needs of the application. Which levels which are supported depends on the
ODBC driver and on the characteristics of the underlying DBMS. Higher
isolation levels (like Serializable) give better transaction isolation but often at the
expense of throughput (because they cause more locking of data to occur).

2.10.1 Default transaction isolation level
On connecting to an ODBC data source, the OCA makes no attempt to set or
change the transaction isolation level so it will remain set to whatever is the default
for the ODBC data source. Some drivers (such as the Oracle Lite driver) allow

1 See " Appendix B: Advanced OCA Connect Strings" for more information on this format of connect strings.

22

the default transaction isolation level to be configured for each data source using
the ODBC Administrator utility.

2.10.2 Setting the transaction isolation level
It is possible for applications to change the transaction isolation level dynamically.
This can be done in one of several ways when using the Open Client Adapter
(listed in order of preference):
1. Use the Isolation Mode property in Forms (see next section)
2. Issue one of the following Oracle-style ALTER SESSION commands using

one of the pass-through SQL techniques described in section 2.4:
ALTER SESSION SET ISOLATION LEVEL=SERIALIZABLE
ALTER SESSION SET ISOLATION LEVEL=READ COMMITTED

The OCA will intercept these commands and issue the appropriate ODBC
command to set the isolation level to SQL_TXN_SERIALIZABLE or
SQL_TXN_READ_COMMITTED respectively. If the requested level is
not supported by the ODBC driver, then the OCA leaves the level
unchanged and returns Oracle error 2248 (invalid option for ALTER
SESSION) with a corresponding OCA error message.

3. Issue a native SQL command (if the DBMS has one) to change the isolation
level, using one of the pass-through SQL techniques described in section
2.4. This method has the disadvantage of being specific to a particular
DBMS.

2.10.3 SERIALIZABLE Isolation Mode in Forms
In Forms it is possible to set the Form-level "Isolation Mode" property to either
"Read Committed" (the default) or "Serializable".

The default ("Read Committed") value causes the data source's default isolation
level to be used (as described in section 2.10.1 above). This will not necessary
actually be Read Committed.

If the "Serializable" value is selected, Forms runtime will attempt to set the
transaction isolation level to SERIALIZABLE by issuing the command "ALTER
SESSION SET ISOLATION LEVEL=SERIALIZABLE". If this succeeds, no more
lock-record processing will be done in base table data blocks (because it is
essentially redundant when transactions are SERIALIZABLE because lost
updates cannot then occur). The Forms Developer and Reports Developer
Forms documentation gives further details on this.

2.11 OCA Error Handling
Open Client Adapter error messages have the same general form as Oracle error
messages. Their format is as follows:
OCA-XXXXX: Error Message Text

Where XXXXX is a 5 digit number for the OCA error code (in the range 30000
to 31000).

23

If the error being reported was an error reported by the ODBC driver, the OCA
appends the ODBC error message to the end of the error message. For example,
the following error message can be returned by the OCA:
OCA-30037: datasource not available
[Microsoft][ODBC Driver Manager] Data source name not found
and no default driver specified

This information greatly assists in identifying the source of the error.

Note that the OCA attempts to map its errors to corresponding Oracle error codes
where possible. This means the reported error code (SQLCODE in PL/SQL or
embedded SQL) after a failed database operation will be set to an Oracle error
code if there is a suitable corresponding one. Otherwise it will be set to the OCA
code, in the range 30000 to 31000 (which is also the number which appears in the
error message text).

For a list of possible OCA error messages, and for the mapping with Oracle error
codes, see "Appendix G: Error Messages".

2.12 Debugging an Application using the OCA
2.12.1 OCA debug options

The Open Client Adapter supports two environment entries which cause it to
display useful debugging information. Set these entries in ORACLE.INI on
Windows 3.1, or in the registry under Windows 95 or NT (under the sub-key
\\HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE1).

Setting OCA_DEBUG_SQL=TRUE will result in each SQL statement that is sent
to the ODBC driver being displayed in a dialog before it is transmitted. For
example:

Setting OCA_DEBUG_ERROR=TRUE will result in any errors returned by the
ODBC driver being displayed in a dialog before it is passed back to the Forms
Developer and Reports Developer tools. This allows you to inspect the error
before it is processed in any way by the tool. For example:

1 All of these variables are String Values

24

Please note when using OCA_DEBUG_ERROR that some errors are to be
expected (i.e. do not indicate that there is a problem), for example, when a SQL
statement is being described the columns are sometimes described one by one until
an error indicates there are no more columns.

Using OCA_DEBUG_SQL and OCA_DEBUG_ERROR in combination will
help you pinpoint the cause of SQL failures when using Forms Developer and
Reports Developer against OCA data sources.

2.12.2 Using ODBC Driver Manager tracing
Under certain circumstances, it can be useful to generate a trace of all ODBC
commands which are being executed (by the OCA). Oracle Technical Support
may ask you to do this if you encounter problems specific to a particular data
source or ODBC driver.

Tracing may be requested by running the Microsoft ODBC 3.0 administrator
(ODBCAD32.EXE). This is included and installed with your ODBC driver, for
example, the Intersolv ODBC drivers and the Oracle RDB ODBC driver which
are included in the Forms Developer and Reports Developer distributions. It is
also usually available in the Windows Control Panel (marked for example "32-bit
ODBC"). To turn on ODBC tracing, quit all ODBC applications, run the ODBC
Administrator, select the tab marked "Tracing", type a suitable trace file name into
the field marked "Log file path", and click on the button marked "Start tracing
now". Leave the ODBC administrator running and run the application you need
to trace. Then return to the ODBC administrator and click on the button which is
now marked "Stop tracing now" to turn off tracing. The log file will contain a
trace of all ODBC calls which were made during tracing (this includes ALL
running ODBC applications, so it is best to run only one). Copy it to a new
location to avoid it being overwritten or expanded by any future tracing which
may be done.

25

3. How to use the OPENDB PL/SQL library for data source
independence
3.1 Overview

This chapter explains how to use the OPENDB library (opendb.pll) from within
Forms Developer and Reports Developer applications to write data source
independent applications. This library allows you to :

1. Obtain the DBMS and ODBC Driver names and versions for the current
connection.

2. Override the default behavior of the Open Client Adapter.

In addition, a routine called "opendb.init_form" is provided which automatically
adjusts Data Block properties at runtime to suit the data source. This routine is
only needed when running against RDB (although it does no harm against other
data sources). Please refer to the chapter on RDB for more details.

The OPENDB library is primarily intended for use against non-Oracle datasources
(via ODBC), but it may also be used when directly connected to Oracle (i.e. not
through ODBC). This allows applications to be developed and deployed against a
mixture of Oracle and other datasources.

3.2 Obtaining details about the Datasource
The following routines (which are in the DBINFO package) are available for
specific programming needs. They allow you to obtain information about the
datasource, as reported by the ODBC driver. They all return NULL if the current
connection is a native Oracle connection (i.e. not ODBC).

3.2.1 DBINFO.GetDBMSName
FUNCTION GETDBMSNAME
RETURN VARCHAR2; /* DBMS name */

3.2.2 DBINFO.GetDBMSVer
FUNCTION GETDBMSVER
RETURN VARCHAR2; /* DBMS version */

3.2.3 DBINFO.GetDriverName
FUNCTION GETDRIVERNAME
RETURN VARCHAR2; /* Driver name */

3.2.4 DBINFO.GetDriverVer
FUNCTION GETDRIVERVER
RETURN VARCHAR2; /* Driver version */

3.2.5 DBINFO.GetCursorMode
FUNCTION GETCURSORMODE
RETURN PLS_INTEGER; /* Cursor mode, either DBINFO.CURSOR_CLOSE
or
 ** DBINFO.CURSOR_OPEN */

26

3.2.6 DBINFO.GetSavepointMode
FUNCTION GETSAVEPOINTMODE(ConnID in pls_integer)
RETURN PLS_INTEGER; /* Savepoint mode, either
DBINFO.SP_SUPPORTED
 ** or DBINFO. SP_NOT_SUPPORTED */

Of these, only dbinfo.GetCursorMode requires any further explanation. If this
function returns dbinfo.CURSOR_CLOSE, this means that the data source
behavior is such that whenever a database transaction is COMMITTED (save) or
ROLLED BACK (clear all), the positions of all open cursors are lost. In practice,
this means that if a user executes a query in a data block, then makes changes and
saves (commit), they will have to RE-EXECUTE the query before they can scroll
down any further. An attempt to scroll down without re-querying will result in an
error message. The dbinfo.GetCursorMode function allows applications to trap
this condition and handle it in a more user-friendly manner (for example, by
automatically clearing the block or automatically re-executing the query).

3.3 Overriding the default behavior of the OCA
The following routines (which are in the DBINFO package) allow you to change
the behavior of the Open Client Adapter.

3.3.1 DBINFO.SetQuoteChar
DBINFO.SetQuoteChar allows you to set the character (or characters) used to
delimit quoted identifiers. The OCA transforms identifier names within double
quotes within SQL statements by changing the double quotes into the appropriate
delimiter for the data source (as reported by the ODBC driver). Occasionally it is
necessary to override the character used, for example you may wish to strip the
double quotes altogether to allow the use of three-part table names in PL/SQL in
the form “database.user.table”. This may be done by supplying a value of NULL
for the quotechar parameter :
DBINFO.SetQuoteChar(NULL); /* OCA will now strip double quotes
*/

Syntax:
PROCEDURE SetQuoteChar (quotechar IN VARCHAR2);

3.4 Using the OPENDB library in Oracle Forms Developer and
Oracle Reports Developer applications

When the Open Client Adapter for ODBC is installed, the installer copies the
OPENDB PL/SQL library to the plsqllib directory under the OCA home directory.
It also adds this directory to the path used by Forms to search for PL/SQL
libraries (FORMS60_PATH). This ensures that the library will always be found
by Oracle Forms when attaching it to new forms and when opening or running
existing forms which use it.

27

4. Calling Stored Procedures through the Oracle Open Client
Adapter
4.1 Overview

Oracle Forms Developer and Oracle Reports Developer allow users to call stored
procedures in non-Oracle databases from PL/SQL in much the same way as they
can call stored procedures in Oracle databases. However, due to differing kinds of
stored procedures depending on data sources, there are some limitations of this
support.

For example, some databases (like Rdb) do not support stored procedures that
return a value (a FUNCTION in PL/SQL). Others, like Microsoft SQL Server,
can return multiple result sets from a stored procedure.

This chapter discusses some of the aspects of stored procedure support in Oracle
Forms Developer and Oracle Reports Developer , and shows how to deal with
any limitations in calling non-Oracle stored procedures.

4.2 Calling Stored Procedures from PL/SQL
Oracle Forms Developer and Oracle Reports Developer client-side PL/SQL
allows you to call database stored procedures as if they were just regular PL/SQL
procedures. For example, a Transact SQL (Microsoft SQL Server or Sybase)
procedure like this:
create proc demoproc @var1 varchar(20), @var2 integer output
as
 select @var2 = convert(integer, @var1)

can be called from PL/SQL as1:
DECLARE
 v_ret INTEGER;
 v_var1 VARCHAR2(20);
 v_var2 NUMBER;
BEGIN
 v_var1 := '134.35';
 v_ret := demoproc(v_var1, v_var2);
END;

The PL/SQL compiler will figure out what kind of stored procedure you are trying
to invoke, and will make sure that all arguments match. For example, if you try to
execute:
v_ret := demoproc(v_var2, v_var1);

the compiler will return an error because of the mismatched parameters.

1 All SQL Server and Sybase stored procedures are treated as FUNCTIONS by PL/SQL, as they always return
an INTEGER value.

28

4.2.1 Handling Stored Procedures That Return Result Sets
Some non-Oracle databases allow stored procedures to return result sets directly,
instead of via REF CURSOR variables as used by Oracle stored procedures.
PL/SQL does not implicitly allow you to access these non-Oracle result sets.

Therefore, if you call a stored procedure like (using Transact SQL again):
create proc demoproc2 @var1 varchar(20), @var2 integeroutput
as
 select empno from emp
 select @var2 = convert(integer, @var1)
 select deptno from dept
 return 99

You will be unable to retrieve the results sets generated. However, all variables
will be correctly set.

If you need to retrieve a result set returned by a stored procedure, you must use
the EXEC_SQL package (see the section "Calling Stored Procedures Using The
EXEC_SQL Package" later in this chapter).

4.2.2 Compiling Non-Oracle Stored Procedure calls in PL/SQL
When PL/SQL attempts to compile a call to a non-Oracle stored procedure, it
asks the OCA to provide a PL/SQL wrapper function of the same name that calls
the database stored procedure using dynamic SQL methods. The OCA constructs
a PL/SQL wrapper with the same arguments that the ODBC driver reports for the
stored procedure. PL/SQL then takes this wrapper, and makes sure that all
arguments match the invocation given by the user.

For example, for the Transact SQL procedure demoproc2 above, the OCA would
generate a wrapper PL/SQL function that has the signature:
FUNCTION demoproc2 (p1 IN VARCHAR2, p2 IN OUT NUMBER)
 RETURN NUMBER IS
...

Sometimes the arguments in the wrapper function do not exactly match what
might be expected. To help the user compile calls to Non-Oracle stored
procedures, he/she can turn on OCA SQL debugging (see the section "Debugging
an Application using the OCA" in chapter 2). The code for all wrapper functions
will then be displayed when PL/SQL attempts to compile. The user can then
compare the order and types of arguments in the wrapper function to make sure
they agree.

4.3 Calling Stored Procedures Using The EXEC_SQL Package
If you want to retrieve a result set from a stored procedure in an ODBC data
source, you must use the EXEC_SQL built-in package. Please refer to the
Procedure Builder documentation or on-line help for complete information about
the EXEC_SQL package.

29

To call a stored procedure through the OCA using EXEC_SQL, you must use the
following syntax1. Specifically, your call should be of the form (where items in
square brackets [] are optional):

{ [:parameter] = call procedure-name [([:parameter][,parameter...])] }

For example, a call to the stored procedure demoproc2 above, would be:
{ :ret_val = call demoproc2(:v_val1, :v_val2) }

The following code is an example of executing a stored procedure against SQL
Server, fetching all result sets, and getting all output variables. It assumes you are
familiar with the basics of EXEC_SQL:
DECLARE
 v_cursor EXEC_SQL.CursType;
 v_empno VARCHAR2(20);
 v_deptno VARCHAR2(20);
 v_retval PLS_INTEGER;
 v_val2 NUMBER;
 v_numrows PLS_INTEGER;
BEGIN
 -- Opens a new cursor to do all work on.
 v_cursor := EXEC_SQL.OPEN_CURSOR;

 -- Parses the call to the stored procedure.
 EXEC_SQL.PARSE(v_cursor,
 '{ :ret_val = call demoproc2 (:v_val1, :v_val2) }');

 -- Binds a PL/SQL variable to each parameter in the stored
 -- procedure call.

 -- Bind the return value
 EXEC_SQL.BIND_VARIABLE(v_cursor, ':ret_val', v_retVal);

 -- Bind the first parameter. Since it is an input only
 -- parameter, we don't bother specifing a variable, and
 -- instead just give the value we care about.
 EXEC_SQL.BIND_VARIABLE(v_cursor, ':v_val1', '1344.5');

 -- Bind the second parameter. The second parameter is only
 -- used for OUTPUT, but we need to BIND it, to inform
EXEC_SQL
 -- it will need to retrieve the value later.
 EXEC_SQL.BIND_VARIABLE(v_cursor, ':v_val2', v_val2);

 -- Now, execute the stored procedure
 v_numrows := EXEC_SQL.EXECUTE(v_cursor);

 -- For the first result set, we define one column.
 -- For VARCHAR columns, we need to specify the maximum
 -- length we will retrieve into v_ename.
 EXEC_SQL.DEFINE_COLUMN(v_cursor, 1, v_ename, 20);

 -- And we keep fetching the rows until we're done.

1 The syntax is a mixture of ODBC stored procedure SQL syntax and Oracle SQL syntax. Notably, all
parameter markers must be in Oracle Form (:parameter) instead of ODBC form (?).

30

 WHILE EXEC_SQL.FETCH_ROWS(v_cursor) != 0 LOOP
 -- Retrieve each column value into our PL/SQL variable.
 EXEC_SQL.COLUMN_VALUE(v_cursor, 1, v_ename);
 TEXT_IO.PUT_LINE('Ename: ' || v_ename);
 END LOOP;

 -- We are done fetching, but need to prepare the next
 -- result set.
 IF NOT EXEC_SQL.MORE_RESULT_SETS(v_cursor) THEN
 -- Error. We expected another result set.
 TEXT_IO.PUT_LINE('Error. No second result set');
 RAISE EXEC_SQL.PACKAGE_ERROR;
 END IF;

 -- Define the new column
 EXEC_SQL.DEFINE_COLUMN(v_cursor, 1, v_dname, 20);

 -- And fetch the rows again.
 WHILE EXEC_SQL.FETCH_ROWS(v_cursor) != 0 LOOP
 -- Retrieve each column value into our PL/SQL variable.
 EXEC_SQL.COLUMN_VALUE(v_cursor, 1, v_dname);
 TEXT_IO.PUT_LINE('Dname: ' || v_dname);
 END LOOP;

 -- Now, retrieve our output variables.
 EXEC_SQL.VARIABLE_VALUE(v_cursor, ':ret_val', v_retVal);
 EXEC_SQL.VARIABLE_VALUE(v_cursor, ':v_val2', v_val2);
 TEXT_IO.PUT_LINE('Stored Procedure returned '
 || TO_CHAR(v_retVal));
 TEXT_IO.PUT_LINE('Val2 is ' || TO_CHAR(v_val2));

 -- And close the cursor
 EXEC_SQL.CLOSE_CURSOR(v_cursor);
EXCEPTION
 WHEN EXEC_SQL.PACKAGE_ERROR THEN
 TEXT_IO.PUTLINE('Error (' ||
 TO_CHAR(EXEC_SQL.LAST_ERROR_CODE) ||
 '): ' ||
 EXEC_SQL.LAST_ERROR_MESG);
 EXEC_SQL.CLOSE_CURSOR(v_cursor);
 WHEN EXEC_SQL.INVALID_CONNECTION THEN
 TEXT_IO.PUT_LINE('Invalid connection');
END;

Note: Some data sources do not set output variables until all result sets have been
fetched. Be sure not to call VARIABLE_VALUE before all result sets have been
fetched, or the value you receive may not be valid.

31

5. Using Oracle Forms Developer and Oracle Reports
Developer with Oracle Lite
5.1 Installation, Setup and System Requirements

Using Oracle Forms Developer and Oracle Reports Developer to access an
ODBC data source requires the installation of components from the Forms
Developer and Reports Developer CD-ROM. In addition, Oracle Lite must be
properly installed and configured.

5.1.1 Installation of Forms Developer, Reports Developer and Oracle
Lite

Forms Developer, Reports Developer , the Open Client Adapter, Oracle Lite and
the ODBC driver for Oracle Lite must be installed on the same machine, since
Oracle Lite is a local database which must run on the same machine as the client
applications.

First use the Oracle Installer to install Oracle Lite runtime (which includes the
ODBC driver) and any other Oracle Lite components you wish to use. Then use
the Oracle Installer to install Forms Developer, Reports Developer and the Open
Client Adapter from the Forms Developer and Reports Developer CD-ROM1.

5.1.2 Setup for Oracle Lite
When you install Oracle Lite, a default database and an ODBC Data Source
(called “POLITE”) are automatically created along with a schema (database user)
called “system” and a demo schema called "scott". No additional system setup is
required to use Oracle Lite, although it is possible to create and use other
databases and/or users (please refer to the Oracle Lite documentation). Additional
ODBC data sources may be created to access new databases (this is required if
they are in different directories).

5.2 Using Forms Developer and Reports Developer with Oracle
Lite
5.2.1 Data Types

The Oracle Lite date types (DATE, TIMESTAMP and TIME) are initially
mapped to Forms’ DATE item data type. You should be aware of the following
points :

• The DATE type contains “YEAR", "MONTH" and "DAY” fields and is
correctly mapped. The is no time component (unlike Oracle dates).

1 If Oracle Developer is already installed, there is no need to reinstall it: just install the Open Client Adapter
from the Oracle Developer distribution after installing Oracle Lite.

32

• The TIMESTAMP type contains fields “YEAR” to “SECOND” and
fractional seconds up to 6 decimal places. When creating a table, the
fraction is specified as TIMESTAMP(frac), where frac is a number
between 0 and 6. TIMESTAMP without a frac qualifier defaults to
TIMESTAMP(6). To handle “YEAR to SECOND” fields, allowing
updating, map TIMESTAMP to Forms’ DATETIME with a format mask.
To handle fractional seconds, map TIMESTAMP to Forms’ CHAR type
and set the item’s Max Length and Query Length properties to 26.
Updating is correctly handled in this case although the user must respect
the Oracle Lite input format for timestamps (YYYY-MM-DD
HH24:MI:SS.FFFFFF where FFFFFF is the fraction).

• The TIME type contains “HOUR to SECOND” fields. There is no
fractional component. Map TIME to Forms’ item data type DATETIME,
and set the corresponding item’s Format Mask property to a suitable
format (e.g. “HH24:MI:SS”), and set the Max. Length property to the
corresponding length (e.g. 8), and the Query Length property to the same
value or greater.

Text and image (LONG and LONG RAW) columns of length greater than 64k
cannot be updated from within client-side PL/SQL (this is a PL/SQL limitation).
They can be updated via base table image or text items however.

To change the data type of an item (or any other property), go to its property
sheet, and choose the desired value for its Data Type property (or other property).

5.2.2 Implications of Oracle Lite’s Locking Model
Oracle Lite versions 3.0 and above has full transaction support, as described in the
Oracle Lite documentation. The standard SQL-92 transaction isolation levels
READ COMMITTED, REPEATEABLE READ and SERIALIZABLE are
supported. By default, READ COMMITTED is used. However, it is possible to
configure it in the ODBC Administrator. That way, it can be set to Read
Committed (the default), Repeatable Read or Serializable. To change it, run the
ODBC administrator, select the relevant data source (for example, "POLITE")
and click the <Configure> button. In the dialogue which appears, use the drop list
marked "Default Isolation level:"

Oracle Forms Developer automatically uses the Immediate locking mode for base
table data blocks when running against Oracle Lite. This means a shared lock is
taken out on a row (by issuing "SELECT… FOR UPDATE… ") as soon as the
user starts to modify it on the screen, to ensure no other process can modify it. At
the same time, a check is done to see if the row has been changed since it was last
read. If it has changed, an error is raised and the row must be re-queried before it
can be modified. If lost updates are not a concern, or if the datasource has been
configured to use isolation levels REPEATABLE READ or SERIALIZABLE
(which garantee against lost updates anyway), then a block-level or form-level
ON-LOCK trigger may be created with the PL/SQL code:

33

null;

to avoid the “lock record” processing altogether and improve performance.
Alternatively, SERIALIZABLE transaction isolation can be requested on a Form
by Form basis by setting the Form-level property "Isolation Mode" to Serializable.
This will also eliminate "lock record" processing. Please refer to section 2.10.3 for
more details.

Note that if one process has already started to modify a row (i.e has locked it) then
an attempt by a second process to post an update to the same row will block until
the first process has ended it's transaction.

5.3 SQL Differences between Oracle and Oracle Lite
5.3.1 Connecting to Different Databases

An Oracle Lite ODBC data source may specify a database name. In this case, the
user is always connected to that database when connecting to that data source.
However, if the data source does NOT specify a database name, then it is possible
to choose the database at connect time using the following syntax for the connect
string:
ODBC:<DataSourceName>:<Dbname>

Alternatively, to change the current database when a connection to a given data
source has already been established, execute a 'SET CATALOG <dbname>' SQL
statement in a client-side trigger or program unit. See the section "Connecting to
different databases" in chapter 2.

5.3.2 SQL Constructs
Use of ANSI standard SQL constructs is recommended from applications if they
are to run against multiple database systems. However, most Oracle7 SQL dialect
is supported by Oracle Lite (e.g. decode, to_char, to_date, to_number, user,
sysdate, ||, nvl, etc.), so there are very few restrictions if the application is only to
run against Oracle Lite and/or Oracle. Oracle Lite-specific SQL within client-side
PL/SQL will fail with syntax errors, unless executed via pass-through functions.
Some other differences which you may encounter are:

• User-supplied object names can be longer than 30 characters in Oracle Lite.
In Oracle the maximum length of user-supplied names is 30. However,
use of table or column names longer than 30 characters will not work
with Forms Developer and Reports Developer or SQL*Plus.

• The following Oracle-specific features are not supported by Oracle Lite:
database roles, pseudo column ROWNUM.

You should refer to the Oracle Lite SQL documentation (reference manual or on-
line help) for a complete description of the differences between Oracle Lite and
Oracle SQL.

34

5.4 Client-side PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. Forms Developer and
Reports Developer use PL/SQL as its programming language. PL/SQL supports
Oracle8 SQL, which is a superset of Oracle7 SQL syntax. Since Oracle Lite
supports almost all Oracle7 constructs, there are very few restrictions when using
PL/SQL with Oracle Lite, provided Oracle8-specific syntax is avoided.

If you need to use Oracle Lite-specific SQL constructs not conforming to Oracle
SQL, you need to use a pass-through interface, such as the interface the
EXEC_SQL package provides. The EXEC_SQL package is documented in the
Procedure Builder on-line help and documentation.

5.4.1 PL/SQL and Oracle Lite Data Types
The following PL/SQL datatypes may be used freely in client-side PL/SQL
program units:

• NUMBER and its subtypes DECIMAL (DEC), DOUBLE PRECISION,
FLOAT, INTEGER

• (INT), NUMERIC, REAL, and SMALLINT.

• CHAR and its subtypes CHARACTER and STRING. Note that a CHAR
value in client-side PL/SQL can have a maximum length of 32767, but a
CHAR column in the database has a maximum length of 2048.

• VARCHAR and VARCHAR2. Note that a VARCHAR value in client-
side PL/SQL can have a maximum length of 32767, but a VARCHAR
column in the database has a maximum length of 2048.

• LONG. This is similar to VARCHAR, except that while it is limited to a
maximum size of 32767 on the client, a database value can be up to 2
Gigabytes in size.

• RAW. A RAW value in client-side PL/SQL can have a maximum length of
32767, but a RAW column in the database has a maximum length of 2048.

• LONG RAW. Analogous to LONG, but for RAW data.

• BOOLEAN

• DATE

Oracle Lite data types can be mapped directly to their equivalent PL/SQL data
types, with the following exceptions and caveats:

Oracle Lite Datatype PL/SQL Datatype
TINYINT NUMBER(3)

SMALLINT NUMBER(5)

INT NUMBER(10)

35

BIGINT FLOAT or
NUMBER(19)

LONG VARCHAR LONG

DATE
TIMESTAMP
TIME

DATE
(Mapping to CHAR is required
to handle fractional seconds)

5.4.2 Supported PL/SQL Statements and Functions
The following PL/SQL statements and attributes are supported with Oracle Lite:

COMMIT LOOP
CLOSE OPEN
CURSOR ROLLBACK
DECLARE ROLLBACK TO
DELETE SAVEPOINT
FETCH SELECT INTO
GOTO UPDATE
INSERT

%FOUND %NOTFOUND
%ROWCOUNT %ISOPEN
%TYPE %ROWTYPE

as well as most exceptions and all looping and conditional constructs.

Oracle Lite (versions 2.3 and above) supports almost all Oracle7 SQL functions
(the Oracle Lite documentation gives an exact comparison of Oracle Lite and
Oracle7 SQL). SQL functions common to both Oracle Lite SQL and Oracle8
SQL (by name, number and type of arguments) can be used in SQL statements
within PL/SQL. Oracle8 SQL is a superset of Oracle7 SQL.

5.4.3 SYSDATE and USER on the client, DUAL table
The client-side constructs SYSDATE and USER reference the dual table in the
database. As in Oracle, the dual table always exists in Oracle Lite, so these
constructs, and any SELECT statements referencing the dual table, can be used
freely in PL/SQL without worrying about manually creating the dual table.

36

6. Using Oracle Forms Developer and Oracle Reports
Developer with Microsoft SQL Server
6.1 Installation, Setup and System Requirements

Using Forms Developer and Reports Developer to access an ODBC data source
requires the installation of components from Oracle, Microsoft SQL Server and
the ODBC driver vendor on the client machine, and proper configuration of
Microsoft SQL Server.

6.1.1 Setup for Forms Developer and Reports Developer
Forms Developer and Reports Developer and the Open Client Adapter must be
installed on the client. In addition, Forms Developer and Reports Developer
include ODBC drivers from INTERSOLV that allow access to Microsoft SQL
Server databases. If you choose to use one of these drivers, you should run the
Oracle Installer to install it from the Forms Developer and Reports Developer
CD-ROM. For more information on this process, please refer to the Oracle
Forms Developer and Oracle Reports Developer Installation Guide.

6.1.2 Setup for Microsoft SQL Server
6.1.2.1 Client Requirements and Setup

The INTERSOLV DataDirect driver for Microsoft SQL Server uses the
Microsoft SQL Server DB-Library interface to access SQL Server databases.
You must install the Microsoft SQL Server client-side net libraries before
configuring the ODBC driver and accessing the data source.

If you will be using an ODBC driver other than that provided with Forms
Developer and Reports Developer , install it according to the instructions from the
supplier, and install any necessary database access software.

6.1.2.2 Server Requirements and Setup
If possible, we recommend configuring your Microsoft SQL Server database to
use case-insensitive sort order. This enables the use of both upper, lower and
mixed case names for database objects. If your Microsoft SQL Server database
cannot conveniently be configured to use case-insensitive sort order, try to use
upper case names for database objects (table, columns, views, and stored
procedures). User names should be also created in upper case if possible, to
remove the need to quote them if used in client-side PL/SQL. If it is necessary to
use lower or mixed case object names, you will need to take certain precautions
during application development. These are detailed in the appendix ppendix A:
Case Sensitivity Issues.

If you will be calling Transact-SQL stored procedures from Forms Developer and
Reports Developer , you should raise the procedure cache server configuration

37

parameter from its default of 20 to 40. This parameter controls how much of the
cache is used for stored procedures, and how much is used for data.

6.2 Microsoft ODBC Driver Versus INTERSOLV ODBC Driver
Oracle provides the INTERSOLV ODBC Driver for Microsoft SQL Server on
the Forms Developer and Reports Developer CD-ROM. However, Microsoft
also provides its own ODBC driver with its SQL Server product. There are some
differences between the two drivers that are documented here to help you choose
which driver to use.

Characteristic Microsoft Driver INTERSOLV Driver
Open Cursors The Microsoft driver, when used

with the OCA, uses Server Cursors
for all select statements. This
allows the driver to have multiple
active statements per connection
when running against SQL Server
versions 6.0 and above. This
means all COMMITs and
ROLLBACKs are safe, and the
chance of locking yourself out in
an application is vasty reduced.

The INTERSOLV driver uses
Client Cursors, which means it
can only have one active
statement per connection. When
an application needs to open
another cursor, another
connection to the database is
created by the OCA. (see the
Appendix F: Notes on drivers
supporting only one active
statement per connection
Appendix). COMMITs and
ROLLBACKs may not be
transactionally pure in case of
failure, and there is a chance of
deadlock if two different SQL
statements modify rows on the
same data page without
committing in between .

Handling of Long Data The Microsoft driver can insert
LONG or LONG RAW values
greater than 64K.

The INTERSOLV driver
truncates all LONG and LONG
RAW data to 64K

6.3 Using Oracle Forms Developer and Oracle Reports Developer -
Forms with Microsoft SQL Server
6.3.1 Data Types

The NCHAR, NVARCHAR, SENSITIVITY, and
SENSITIVITY_BOUNDARY data types are not supported.

When creating a data block based on a table or view, all other Microsoft SQL
Server data types are automatically mapped to Forms items of the equivalent
Oracle data type. This mapping is usual satisfactory but you may wish to override
it for DATETIME and SMALLDATIME columns which are mapped to Forms’
DATE items. The data displayed in this case is limited to days, months and years.
You may want to change the item’s data type depending on what portion of the
time information you wish to display and/or edit.

38

• To display and update only days, months and years, the mapping to DATE
items is sufficient. The default format mask in this case depends on the
setting of NLS_LANG. It is dd-mon-yy for territory=America.

• To display and update hours, minutes and seconds (instead of or in addition
to days, months and years) use Forms’ DATETIME data type. Specify a
format mask to display the fields of interest.

• If you need to display and/or update fractional seconds, use CHAR items
with length 26. This will display the data in a canonical date format, which
should be respected if the user wishes to edit the data.

An item based on a Microsoft SQL Server TIMESTAMP column must be query
only and of data type CHAR. The value will be fetched as a hexadecimal string,
and attempting to update such a column will fail.

To change the data type of an item, go to its property sheet, and choose the
desired value for its Data Type property.

6.3.2 Implications of Microsoft SQL Server's Locking Model
Microsoft SQL Server SQL does not support a lock time-out feature to return an
error if a connection attempting to get a write lock on a page is blocked by
another connection. Instead, a connection attempting to get a lock on a resource
waits until the locks already held on that resource are released. If two or more
Forms applications are trying to update the same page in the database, they will
hang until the locks are released. If they are on the same workstation (two
instances of Forms runtime, for example) a deadlock condition might completely
lock up the machine. For this reason, we recommend using Forms’ Delayed
locking mode, and will default to it unless you specify otherwise.

6.4 Using Oracle Forms Developer and Oracle Reports Developer -
Reports with Microsoft SQL Server

SQL Server does not support duplicate column references in the ORDER BY
clause (see the "Additional Restrictions" section in this chapter). This can
sometimes cause problems for Reports. To avoid this problem, there should be no
ORDER BY on a column which is also a break column or a target of a link in a
child query.

SQL Server does not support implicit type conversion as Oracle does, so you
cannot compare a character value to a number value without first converting one
of the two. When creating a link, make sure the proper conversion is specified in
the child column in the query.

For example, if you have a SQL statement like:
SELECT ename FROM emp WHERE empno >= :ID_EMPNO

Where empno is a number field, make sure that :ID_EMPNO is also a number
field.

39

6.5 SQL Differences between Oracle and Microsoft SQL Server
6.5.1 Connecting to Different Databases

A Microsoft SQL Server server can control multiple databases. Each user has a
default database, to which they are connected at logon. A user can switch to other
databases controlled by the same server by executing a 'USE <dbname>' SQL
statement.

In Forms Developer and Reports Developer , there are two ways to connect to a
database other than the user’s default. The database name can be specified at
connect time, as in:
ODBC:<DataSourceName>:<Dbname>

Alternatively, execute a 'USE <dbname>' SQL statement in a client-side trigger or
program unit. . See the section "Connecting to different databases" in chapter 2.

6.5.2 SQL Constructs
Use of ANSI standard SQL constructs is recommended from Forms Developer
and Reports Developer applications when using Microsoft SQL Server.
Microsoft SQL Server-specific SQL will fail with syntax errors, unless used via
pass-through functions. In particular, the following Microsoft SQL Server-
specific SQL constructs are not supported:

SELECT… HOLDLOCK
SELECT… INTO(although Oracle-style
SELECT… INTO statements are supported within
PL/SQL)
SELECT… FOR BROWSE
COMPUTE

When issuing an INSERT statement from within Forms Developer and Reports
Developer , always include the INTO clause, as in INSERT INTO <table>
VALUES…

6.5.3 SQL Functions and Operators
Only those SQL functions and operators common to Oracle SQL and Microsoft
SQL Server Transact-SQL can be used in SQL statements, except via pass-
through functions. These common functions include:

ABS RTRIM
ASCII SIGN
AVG SIN
COS SOUNDEX
COUNT SQRT
LOWER SUM
LTRIM SYSDATE
MAX TAN
MIN UPPER

40

ROUND USER

6.5.4 Comparison Operators
The following comparison operators are either not supported, or have an Oracle
or ANSI equivalent which should be used from within an application:

Operator Equivalent
!> <=

!< >=

LIKE ‘a[x-z]’ Not Supported

LIKE ‘a[^x-z]’ Not Supported

= NULL IS NULL

!= NULL IS NOT NULL

!> ANY <= ANY

!< ANY >= ANY

!> ALL <= ALL

!< ALL >= ALL

6.5.5 Arithmetic Operators
The modulo operator (%) can not be used in SQL statements within Forms
Developer and Reports Developer .

6.5.6 String Operators
Microsoft SQL Server uses “+” for string concatenation, whereas Oracle uses “||”.
Reports and Graphics allow the use of “+” for string concatenation in queries, but
PL/SQL does not permit its use. As a workaround, you can select the columns
individually, and concatenate them on the client side.

6.5.7 Bit Operators
The &, |, ^, and ~ operators cannot be used in SQL statements within Forms
Developer and Reports Developer .

6.6 Microsoft SQL Server Transactions and Locking
Forms applications run with AUTO-COMMIT mode OFF. All SQL statements
are executed in the context of transactions, which run in unchained mode. A SQL
statement issued immediately after connecting to the database or issued after a
commit or rollback implicitly starts a transaction.

Microsoft SQL Server uses exclusive locks for data modifications and shared
locks for non-update or read operations. The granularity of locking is page-level.
Page-level locks are escalated to table level locks if more than a specified
percentage of pages are locked by a transaction.

SELECT statements obtain shared locks on pages. This prevents other statements
from obtaining an exclusive lock on those pages. Hence a SELECT statement
blocks other data modification operations as long as the transaction that includes

41

the SELECT statement does not commit or roll back. There is no lock time-out
feature in Microsoft SQL Server. This means that applications waiting for a lock
on a resource will block until the locks held on that resource are released. This
might cause a Windows 3.1 client system to appear to hang until the lock is
attained.

6.7 Handling of DDL statements
SQL Server only allows the execution of DDL statements (such as CREATE
TABLE…) when running with AUTO-COMMIT mode ON. If auto-commit
mode is OFF and the Open Client Adapter is requested to execute a DDL
command, it will temporarily set the mode to ON in order to process the
command without provoking an error. This is done to allow the execution of
DDL commands from tools, such as SQL Plus and Forms applications, where
AUTO-COMMIT mode is usually OFF. An important consequence is that DDL
statements cause an implicit COMMIT (as is the case against Oracle). The exact
processing of the execution of DDL statements (when AUTO-COMMIT mode is
OFF) is as follows:

1. If a transaction is pending, COMMIT

2. Set auto-commit mode ON

3. Execute the DDL

4. Set auto-commit mode back to OFF

6.8 Client-side PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. Forms Developer and
Reports Developer use PL/SQL as its programming language. Certain
restrictions and limitations will apply when using PL/SQL with Microsoft SQL
Server via ODBC.

PL/SQL is case insensitive. To use PL/SQL effectively, either the database has to
be configured to use case-insensitive sort order, or object names have to be
created in upper case, or object (table and column) names used in PL/SQL must
be surrounded with double quotes (“ ”). The PL/SQL compiler will then preserve
the case. For example, if you have a column Ename in a table Emp in a case-
sensitive database, the following statement will work within PL/SQL :
Cursor C IS SELECT "Ename" FROM "Emp"

Use of standard SQL constructs (as opposed to Oracle or Microsoft SQL Server-
specific) is recommended when using PL/SQL with Microsoft SQL Server
databases.

If you need to use SQL constructs not conforming to Oracle SQL, you need to
use a pass-through interface, such as the interface the EXEC_SQL package
provides. The EXEC_SQL package is documented in the Procedure Builder on-
line help and documentation.

42

6.8.1 PL/SQL and Microsoft SQL Server Data Types
The following PL/SQL data types can be used freely in client-side PL/SQL
program units:

• NUMBER and its subtypes DECIMAL (DEC), DOUBLE PRECISION,
FLOAT, INTEGER (INT), NUMERIC, REAL, and SMALLINT.

• CHAR and its subtypes CHARACTER and STRING. Note that a CHAR
value in client-side PL/SQL can have a maximum length of 32767, but a
CHAR column in the database has a maximum length of 255.

• VARCHAR and VARCHAR2. Note that a VARCHAR value in client-
side PL/SQL can have a maximum length of 32767, but a VARCHAR
column in the database has a maximum length of 255.

• LONG. This is similar to VARCHAR, except that while it is limited to a
maximum size of 32767 on the client, the equivalent SQL Server data type,
TEXT, can be up to 2 Gigabytes in size.

• RAW. A RAW value in client-side PL/SQL can have a maximum length of
32767, but a RAW column in the database has a maximum length of 255.

• LONG RAW. Analogous to LONG, but for RAW data.

• BOOLEAN

• DATE

Microsoft SQL Server data types can be mapped to their equivalent PL/SQL data
type, with the following exceptions and caveats:

Microsoft SQL Server Data
Type

PL/SQL Data Type

TINYINT SMALLINT

BIT RAW(1)

TEXT LONG (Max length < 32768)

IMAGE RAW (Max length < 32768)

BINARY RAW

VARBINARY RAW

DATETIME DATE

SMALLDATETIME DATE

MONEY FLOAT

SMALLMONEY FLOAT

NCHAR, NVARCHAR, SENSITIVITY and SENSITIVITY_BOUNDARY data
types are not supported.

43

6.8.2 Supported PL/SQL Statements and Functions
The following PL/SQL statements and attributes are supported with Microsoft
SQL Server:

COMMIT LOOP
CLOSE OPEN
CURSOR ROLLBACK
DECLARE ROLLBACK TO1

DELETE SAVEPOINT¹
FETCH SELECT INTO
GOTO UPDATE
INSERT

%FOUND %NOTFOUND
%ROWCOUNT %ISOPEN

as well as all exception, looping and conditional constructs

Only SQL functions common to both Microsoft SQL Server Transact-SQL and
Oracle SQL (by name, number and type of arguments) can be used in SQL
statements within procedures. All other PL/SQL functions can be used in the body
of procedures only.

6.8.3 Calling Stored Procedures from Client-side PL/SQL
Stored procedures can be called from client-side PL/SQL program units and
triggers. Stored Procedures with IN, OUT, IN/OUT parameters or return values
are fully supported. Result sets cannot be retrieved when calling a stored
procedure directly from PL/SQL, but you can use the EXEC_SQL package to
execuate a stored procedure and get result sets back. See the chapter "Calling
Stored Procedures through the Oracle Open Client Adapter" for an example.

For example, this Microsoft SQL Server stored procedure:
create proc testproc @arg1 int, @outarg2 float out
as
begin
 select @outarg2=sum(sal) from emp where deptno = @arg1
end

could be called from a client-side program unit as follows:
FUNCTION compute_deptsal (Param1 IN NUMBER) RETURN FLOAT IS
 Param2 FLOAT;
 retVal INTEGER;
BEGIN
 retVal := testproc (Param1, Param2);
 RETURN (Param2);
END;

1 But only if the ODBC driver supports multiple active statements per connection.

44

Note: All Microsoft SQL Server functions must be called from PL/SQL as
functions, because they all return an integer value (even without an implicit return
statement in the procedure body).

Note: Microsoft SQL Server stored procedure arguments are always of type IN
or INOUT. There are no OUTPUT-only arguments.

Note: Due to what appears to be a bug in the INTERSOLV driver for Microsoft
SQL Server, the return value returned by a Microsoft SQL Server 4.2 stored
procedure is always NULL. However, you still must specify it when you call the
stored procedure from PL/SQL. Return values are returned correctly for SQL
Server Version 6.0 and above.

6.9 Additional Restrictions
ORDER BY Within ORDER BY clauses, Microsoft SQL Server permits
positional references to columns only if the columns are explicitly listed.

For example,
SELECT * FROM TABLE_NAME ORDER BY <column_number>

will raise an error.

Suggestion: Replace the "*" with explicit column names, or substitute the
<column_number> with a <column_identifier>.

In addition, Microsoft SQL Server does not permit duplicate column references in
the order by clause, such as:
SELECT C1, C2, C3 from TABLE_NAME ORDER BY C2, 2

Global Variables Microsoft SQL Server global variables cannot be used with
Forms Developer and Reports Developer .

Transact SQL Statements Use of the following Transact SQL statements is
restricted:

• The PRINT statement cannot be used with PL/SQL, although I/O routines
can be called from within user exits.

• The WAIT FOR {DELAY 'time' | TIME 'time' | ERROREXIT |
PROCESSEXIT | MIRROR EXIT} statement cannot be used within
PL/SQL.

• The WHERE CURRENT OF <cursor> clause is not supported with
Microsoft SQL Server (or indeed with any ODBC data source).

• The FOR UPDATE… clause in SELECT statements may be used, but is
automatically removed by the OCA before the statement is passed to the
database, because it is not supported by MS SQL Server.

45

Using IMAGE and TEXT data with the Microsoft ODBC Driver Some
versions of the Microsoft ODBC driver for SQL Server would incorrectly return
data for IMAGE or TEXT columns which actually contained NULL data when
using server cursors. This problem has been fixed as of Version 3.00.0075 of the
Microsoft ODBC Driver. You should acquire this version or above (you can find
it at http://www.microsoft.com).

46

7. Using Oracle Forms Developer and Oracle Reports
Developer with Sybase
7.1 Installation, Setup and System Requirements

Using Forms Developer and Reports Developer to access an ODBC data source
requires installation of components from Oracle, Sybase and the ODBC driver
vendor on the client machine, and proper configuration of the Sybase server.

7.1.1 Setup for Oracle Forms Developer and Oracle Reports Developer
Forms Developer, Reports Developer and the Open Client Adapter must be
installed on the client. In addition, Forms Developer and Reports Developer
include ODBC drivers from INTERSOLV that allow access to Sybase databases.
Use the Oracle Installer to install them from the Forms Developer and Reports
Developer CD-ROM to the client. For more information on this process, refer to
the Oracle Forms Developer and Oracle Reports Developer Installation Guide.

7.1.2 Setup for Sybase
7.1.2.1 Client Requirements and Setup

The INTERSOLV DataDirect driver for Sybase System 10 uses the Sybase CT-
Library interface to access System 10 or System 11. You must install the Sybase
Open Client Library/C version 10.0.2 or later, and the corresponding Net-Library,
before configuring the ODBC driver and accessing the data source.

For System 10, you will need to set the client environment variable SYBASE to
the directory where the client libraries are installed. Add the server name entries
to the SQL.INI file in the $SYBASE\INI directory. Also make sure that the client
library DLL’s (contained in $SYBASE\DLL or $SYBASE\BIN) are on the path,
either by editing the PATH environment variable, or copying them to a directory
already on the path.

If you will be using an ODBC driver other than that provided with Forms
Developer and Reports Developer , install it according to the instructions from the
supplier, and install any necessary database access software.

7.1.2.2 Server Requirements and Setup
If possible, we recommend configuring your Sybase database to use case-
insensitive sort order. This enables the use of both upper, lower and mixed case
names for database objects. If your Microsoft SQL Server database cannot
conveniently be configured to use case-insensitive sort order, try to use upper case
names for database objects (table, columns, views, and stored procedures). User
names should also be created in upper case if possible, to remove the need to
quote them if used in client-side PL/SQL. If it is necessary to use lower or mixed
case object names, you will need to take certain precautions during application

47

development. These are detailed in the appendix ppendix A: Case Sensitivity
Issues.

If you will be calling Transact-SQL stored procedures from Forms Developer and
Reports Developer , you should raise the procedure cache server configuration
parameter from its default of 20 to 40. This parameter controls how much of the
cache is used for stored procedures, and how much is used for data.

7.2 Using Oracle Forms Developer and Oracle Reports Developer -
Forms with Sybase
7.2.1 Data Types

The NCHAR, NVARCHAR, SENSITIVITY, and
SENSITIVITY_BOUNDARY data types are not supported.

All other Sybase data types are automatically mapped to their equivalent Oracle
data types with the exception of DATETIME and SMALLDATIME which are
mapped to Forms’ DATE type. The data displayed in this case is limited to days,
months and years. You may want to change the mapping depending on what
portion of the time types you want to edit.

• To display and update only days, months and years, the mapping to DATE
is sufficient. The default format mask in this case is dd-mon-yy.

• To display and update the hours, minutes and seconds, use Forms’
DATETIME data type. Specify a format mask to display the fields of
interest.

• If you need to display and update fractional seconds, map these data types
to CHAR(26). This will display the data in a canonical date format, which
should be respected if the user wishes to edit the data.

An item based on a Sybase TIMESTAMP column must be query only and of data
type CHAR. The value will be fetched as a hexadecimal string, and attempting to
update such a column will fail.

To change the data type of an item, go to its property sheet, and choose the
desired value for its Data Type property.

Text and image type columns of length greater than 64k will be truncated to 64k if
using certain combinations of databases and drivers. The following table describes
which driver/database combinations support full access to long data from Forms
Developer and Reports Developer :

Database Driver Longs > 64K
Sybase SQL Server 4.x INTERSOLV No

Sybase System 10, 11 INTERSOLV Yes

48

7.2.2 Implications of Sybase's Locking Model
Sybase SQL does not support a lock time-out feature to return an error if a
connection attempting to get a write lock on a page is blocked by another
connection. Instead, a connection attempting get a lock on a resource waits until
the locks already held on that resource are released. If two or more Forms
applications are trying to update the same page in the database, they will hang until
the locks are released. If they are on the same workstation (two instances of
Forms runtime, for example) a deadlock condition might completely lock up the
machine. For this reason, we recommend using Forms’ Delayed locking mode,
and will default to it unless you specify otherwise.

7.3 Using Oracle Forms Developer and Oracle Reports Developer -
Reports with Sybase

Sybase does not support duplicate column references in the ORDER BY clause
(see the "Additional Restrictions" section in this chapter). This can sometimes
cause problems for Reports. To avoid this problem, there should be no ORDER
BY on a column which is also a break column or a target of a link in a child query.

Sybase does not support implicit type conversion like Oracle does, so you cannot
compare a character value to a number value without first converting one of the
two. When creating a link, make sure the proper conversion is specified in the
child column in the query.

For example, if you have a SQL statement like:
SELECT ename FROM emp WHERE empno >= :ID_EMPNO

Where empno is a number field, make sure that :ID_EMPNO is also a number
field.

7.4 SQL Differences between Oracle and Sybase
7.4.1 Connecting to Different Databases

A Sybase server can control multiple databases. Each user has a default database,
to which they are connected at logon. A user can switch to other databases
controlled by the same server by executing a 'USE <dbname>' SQL statement.

In Forms Developer and Reports Developer , there are two ways to connect to a
database other than the user’s default. The database name can be specified at
connect time, as in:
ODBC:<DataSourceName>:<Dbname>

Alternatively, execute a 'USE <dbname>' SQL in a client-side trigger or program
unit. See the section "Connecting to different databases" in chapter 2.

7.4.2 SQL Constructs
Use of ANSI standard SQL constructs is recommended from applications when
using Sybase. Sybase-specific SQL will fail with syntax errors, unless used via

49

pass-through functions. In particular, the following Sybase-specific SQL
constructs are not supported:

SELECT… HOLDLOCK
SELECT… INTO
SELECT… FOR BROWSE
COMPUTE

When issuing an INSERT statement from within Forms Developer and Reports
Developer , always include the INTO clause, as in INSERT INTO <table>
VALUES…

7.4.3 SQL Functions and Operators
Only those SQL functions and operators common to Oracle SQL and Sybase
Transact-SQL can be used in SQL statements, except via pass-through functions.
These common functions include:

ABS RTRIM
ASCII SIGN
AVG SIN
COS SOUNDEX
COUNT SQRT
LOWER SUM
LTRIM SYSDATE
MAX TAN
MIN UPPER
ROUND USER

7.4.4 Comparison Operators
The following comparison operators are either not supported, or have an Oracle
or ANSI equivalent which should be used from within an application:

Operator Equivalent
!> <=

!< >=

LIKE ‘a[x-z]’ Not Supported

LIKE ‘a[^x-z]’ Not Supported

= NULL IS NULL

!= NULL IS NOT NULL

!> ANY <= ANY

!< ANY >= ANY

!> ALL <= ALL

!< ALL >= ALL

7.4.5 Arithmetic Operators
The modulo operator (%) can not be used in SQL statements within Forms
Developer and Reports Developer .

50

7.4.6 String Operators
Sybase uses “+” for string concatenation, whereas Oracle uses “||”. Reports and
Graphics allow the use of “+” for string concatenation in queries, but PL/SQL
does not permit its use. As a workaround, you can select the columns
individually, and concatenate them on the client side.

7.4.7 Bit Operators
The &, |, ^, and ~ operators can not be used in SQL statements within Forms
Developer and Reports Developer .

7.5 Sybase Transactions and Locking
Forms applications run with AUTO-COMMIT mode OFF. All SQL statements
are executed in the context of transactions, which run in unchained mode. A SQL
statement issued immediately after connecting to the database or issued after a
commit or rollback implicitly starts a transaction.

Sybase uses exclusive locks for data modifications and shared locks for non-
update or read operations. The granularity of locking is page-level. Page-level
locks are escalated to table level locks if more than a specified percentage of pages
are locked by a transaction.

SELECT statements obtain shared locks on pages. This prevents other statements
from obtaining an exclusive lock on those pages. Hence a SELECT statement
blocks other data modification operations as long as the transaction that includes
the SELECT statement does not commit or roll back. There is no lock time-out
feature in Sybase. This means that applications waiting for a lock on a resource
will block until the locks held on that resource are released. This might cause a
Windows 3.1 client system to appear to hang until the lock is attained.

7.6 Handling of DDL statements
Sybase only allows the execution of DDL statements (such as CREATE
TABLE…) when running with AUTO-COMMIT mode ON. If auto-commit
mode is OFF and the Open Client Adapter is requested to execute a DDL
command, it will temporarily set the mode to ON in order to process the
command without provoking an error. This is done to allow the execution of
DDL commands from tools, such as SQL Plus and Forms applications, where
AUTO-COMMIT mode is usually OFF. An important consequence is that DDL
statements cause an implicit COMMIT (as is the case against Oracle). The exact
processing of the execution of DDL statements (when AUTO-COMMIT mode is
OFF) is as follows:

1. If a transaction is pending, COMMIT

2. Set auto-commit mode ON

3. Execute the DDL

4. Set auto-commit mode back to OFF

51

7.7 Client-side PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. Forms Developer and
Reports Developer use PL/SQL as its programming language. Certain restrictions
and limitations will apply when using PL/SQL with Sybase via ODBC.

PL/SQL is case insensitive. To use PL/SQL effectively, either the database has to
be configured to use case-insensitive sort order, or object names have to be
created in upper case, or object (table and column) names used in PL/SQL must
be surrounded with double quotes (“ ”). The PL/SQL compiler will then preserve
the case. For example, if you have a column Ename in a table Emp in a case-
sensitive database, the following statement will work within PL/SQL :
Cursor C is SELECT "Ename" from "Emp";

Use of standard SQL constructs (as opposed to Oracle or Sybase-specific) is
recommended when using PL/SQL with Sybase databases.

If you need to pass non-Oracle specific SQL constructs, you need to use a pass-
through interface, such as the interface the EXEC_SQL package provides. The
EXEC_SQL package is documented in the Procedure Builder on-line help and
documentation.

7.7.1 PL/SQL and Sybase Data Types
The following PL/SQL data types can be used freely in client-side PL/SQL
program units:

• NUMBER and its subtypes DECIMAL (DEC), DOUBLE PRECISION,
FLOAT, INTEGER (INT), NUMERIC, REAL, and SMALLINT.

• CHAR and its subtypes CHARACTER and STRING. Note that a CHAR
value in client-side PL/SQL can have a maximum length of 32767, but a
CHAR column in the database has a maximum length of 255.

• VARCHAR and VARCHAR2. Note that a VARCHAR value in client-
side PL/SQL can have a maximum length of 32767, but a VARCHAR
column in the database has a maximum length of 2000.

• LONG. This is similar to VARCHAR, except that while it is limited to a
maximum size of 32767 on the client, a database value can be up to 2
Gigabytes in size.

• RAW. A RAW value in client-side PL/SQL can have a maximum length of
32767, but a RAW column in the database has a maximum length of 255.

• LONG RAW. Analogous to LONG, but for RAW data.

• BOOLEAN

• DATE

52

Sybase data types can be mapped to their equivalent PL/SQL data type, with the
following exceptions and caveats:

Sybase Data Type PL/SQL Data Type
TINYINT SMALLINT

BIT RAW(1)

TEXT LONG (Max length < 32768)

IMAGE RAW (Max length < 32768)

BINARY RAW

VARBINARY RAW

DATETIME DATE

SMALLDATETIME DATE

MONEY FLOAT

SMALLMONEY FLOAT

NCHAR, NVARCHAR, SENSITIVITY and SENSITIVITY_BOUNDARY data
types are not supported.

7.7.2 Supported PL/SQL Statements and Functions
The following PL/SQL statements and attributes are supported with Sybase:

COMMIT LOOP
CLOSE OPEN
CURSOR ROLLBACK
DECLARE ROLLBACK TO1

DELETE SAVEPOINT¹
FETCH SELECT INTO
GOTO UPDATE
INSERT

%FOUND %NOTFOUND
%ROWCOUNT %ISOPEN

as well as all exception, looping and conditional constructs

Only SQL functions common to both Sybase Transact-SQL and Oracle SQL (by
name, number and type of arguments) can be used in SQL statements within
procedures. All other PL/SQL functions can be used in the body of procedures
only.

7.7.3 Calling Stored Procedures from Client-side PL/SQL
Stored procedures can be called from client-side PL/SQL program units and
triggers. Stored Procedures with IN, OUT, IN/OUT parameters or return values

1 But only if the ODBC driver supports multiple active statements per connection.

53

are fully supported. . Result sets cannot be retrieved when calling a stored
procedure directly from PL/SQL, but you can use the EXEC_SQL package to
execute a stored procedure and get result sets back. See the chapter "Calling
Stored Procedures Using The EXEC_SQL Package" for an example.

For example, this Sybase stored procedure:
create proc testproc @arg1 int, @outarg2 float out
as
begin
 select @outarg2=sum(sal) from emp where deptno = @arg1
end

could be called from a client-side program unit as follows:
FUNCTION compute_deptsal (Param1 IN NUMBER) RETURN FLOAT IS
 Param2 FLOAT;
 retval INTEGER;
BEGIN
 retval := testproc (Param1, Param2);
 RETURN (Param2);
END;

Note: All Sybase stored procedures must be called as functions from PL/SQL, as
they can all return an integer value.

Note: Sybase stored procedure arguments are always of type IN or INOUT.
There are no OUTPUT-only arguments.

Note: Due to what appears to be a bug in the INTERSOLV driver for Sybase, the
return value returned by a Sybase stored procedure is always NULL. However,
you still must specify it when you call the stored procedure from PL/SQL.

7.8 Additional Restrictions
ORDER BY Within ORDER BY clauses, Sybase permits positional references
to columns only if the columns are explicitly listed.

For example,
SELECT * FROM TABLE_NAME ORDER BY <column_number>

will raise an error.

Suggestion: Replace the "*" with explicit column names, or substitute the
<column_number> with a <column_identifier>.

In addition, Sybase does not permit duplicate column references in the order by
clause, such as:
SELECT C1, C2, C3 from TABLE_NAME ORDER BY C2, 2

Global Variables Sybase global variables cannot be used with Forms Developer
and Reports Developer .

Transact SQL Statements Use of the following Transact SQL statements is
restricted:

• The PRINT statement cannot be used with PL/SQL, although I/O routines
can be called from within user exits.

54

• The WAIT FOR {DELAY 'time' | TIME 'time' | ERROREXIT |
PROCESSEXIT | MIRROR EXIT} statement cannot be used with
PL/SQL.

• The FOR UPDATE ... WHERE CURRENT OF statement does not work
with Sybase.

55

8. Using Oracle Forms Developer and Oracle Reports
Developer with Oracle Rdb
8.1 Installation, Setup and System Requirements

Using Forms Developer and Reports Developer to access an ODBC data source
requires the installation of components from Forms Developer and Reports
Developer , Oracle Rdb and the ODBC driver vendor on the client machine, and
proper configuration of the Oracle Rdb server.

8.1.1 Setup for Oracle Forms Developer and Oracle Reports Developer
Forms Developer, Reports Developer and the Open Client Adapter must be
installed on the client. In addition, Forms Developer and Reports Developer
include the Oracle ODBC driver for Rdb that allows access to Oracle Rdb
databases. If you choose to use this driver, you should run the Oracle Installer to
install it from the Forms Developer and Reports Developer CD-ROM. For more
information on this process, please refer to the Oracle Forms Developer and
Oracle Reports Developer Installation Guide.

8.1.2 Setup for Oracle Rdb
8.1.2.1 Client Requirements and Setup

When you install the Oracle ODBC driver for Rdb from the Forms Developer and
Reports Developer CD-ROM, all necessary client software is installed. No
additional system setup is required to use Rdb.

The Rdb server may be accessed via TCP/IP, SPX/IPX or DecNET networking.
Consult your Rdb documentation for supported networking software vendors.

If you will be using an ODBC driver other than that provided with Forms
Developer and Reports Developer , install it according to the instructions from the
supplier, and install any necessary database access software.

8.1.2.2 ODBC Driver Configuration
The generic steps required to configure an ODBC data source are detailed in the
ODBC Setup section of the Getting Started chapter. In the case of the Oracle
ODBC driver for Rdb you need to additionally edit the driver’s configuration
information in the RDBODBC.INI file that is found in the Windows directory
(usually C:\WINDOWS or C:\Win95.). Set or modify the following parameters:

NetworkBufferSize=5000 Use larger network packets for improved
performance.

RemoveControlChars=YES Permits blank spaces in SQL statements. Rdb does
not ordinarily accept control characters such as
additional spaces in SQL statement.

56

FetchAhead=NO Multiple SQL statements cannot be active when
fetch ahead is set to YES, and applications will
usually have multiple open cursors.

LockTimeOut=10 This will allow applications to time out instead of
hanging indefinitely in the case of a deadlock. If
your applications time out even in the absence of a
potential deadlock, increase this value.

An example RDBODBC.INI might look like this:

 [Oracle ODBC Driver for Rdb]

 Transport=2=tcp/ip,1=decnet

 Client Logging=0

 Driver Logging=0

 LockTimeOut=10

 FetchAhead=NO

 NetworkBufferSize=5000

 RemoveControlChars=YES

 Proxy Access=0

Note: Depending on the version of the Oracle ODBC driver for Rdb, this
information may also be recorded in the file WIN.INI, also found in the Windows
directory. You should check this file for an “Oracle ODBC driver for Rdb”
section, and if it is present, edit the parameters to match those of
RDBODBC.INI.

8.1.2.3 Server Requirements and Setup
Install Rdb on the server, or identify the Rdb server that you will be accessing.
The Rdb ODBC driver accesses Rdb via the SQL/Services API. Rdb and
SQL/Services must be installed and running on the server to access Rdb from
Forms Developer and Reports Developer .

8.2 Connecting to Different Databases
An Rdb server can control multiple data files. When users configure the Oracle
ODBC driver for Rdb, they indicate which data file is attached to at logon. You
can connect to a database other than the default. The data file name can be
specified at connect time, as in:
ODBC:<DataSourceName>:<FileSpec>

For example, if your ODBC data source name is Rdb61, and the default data file
is personnel.rdb, your normal connect string is:
ODBC:Rdb61

57

However, to attach data file qa.rdb at logon, you specify the following connect
string:
ODBC:Rdb61:qa.rdb

Alternatively, you can switch to other databases controlled by the same server by
executing the attach SQL statement in a client-side trigger or program unit. See
the section "Connecting to different databases" in chapter 2.

8.3 Using Oracle Forms Developer with Oracle Rdb
8.3.1 Form, Data Block and Item properties

Oracle Forms runtime automatically adjusts Form and Data block level properties
according to the data source. Against RDB, the block-level Key Mode is set to
Unique and rows are identified using the DBKEY values, so it is not usually
necessary to mark items based on primary key columns as Primary Key.

However, please note that due to a limitation in the current ODBC driver for
RDB, the use of DBKEY is not possible for data blocks containing large binary
items based on LIST OF BYTE VARYING columns. Typically these will be
image, sound or OLE Container items. Forms containing such items should attach
the OPENDB library and call the opendb.init_form procedure, which will
automatically set the Key Mode to Updateable Primary Key on those data blocks
which contain the large binary items. In addition, these data blocks must have
their primary key items marked.

8.3.1.1 How to use the OPENDB.init_form procedure
The INIT_FORM procedure is provided in the OPENDB PL/SQL library (which
is documented in chapter 3). This library should be attached to the form and the
INIT_FORM procedure should be called at the start of processing for the form
(either from the PRE-FORM or the WHEN-NEW-FORM-INSTANCE triggers).

Example PRE-FORM trigger (at Form level) :
opendb.init_form;

In addition to this call, INIT_FORM should also be called if the database
connection is changed at runtime (this is unusual, but can be done by calling the
Forms built-ins logout and logon).

8.3.1.2 Advanced usage of OPENDB.init_form
The full specification of the init_form procedure is as follows :
Procedure Init_Form(
 Strip_Double_Quotes IN BOOLEAN := FALSE,
 RDB7_Set_Oracle_Dialect IN BOOLEAN := TRUE);

The Strip_Double_Quotes parameter defaults to FALSE but if set to TRUE will
cause the Open Client Adapter to strip double quotes from SQL statements before
passing them to the database.

The RDB7_Set_Oracle_Dialect parameter defaults to TRUE meaning that, if
running against Rdb version 7.0 or higher, init_form will issue an Rdb-specific

58

SQL command to turn on Oracle dialect (by issuing the SQL command SET
DIALECT 'ORACLE LEVEL1'). Some Rdb applications may use SQL statements
incompatible with Oracle dialect, in which case init_form may be called as follows
to avoid the Oracle dialect being set :
opendb.init_form(FALSE, FALSE);

8.3.2 Data Types
When creating a data block based on a table or view, all other Oracle Rdb data
types are automatically mapped to Forms items of the equivalent Oracle data type.
This mapping is usual satisfactory but you may wish to override it for DATE
VMS, DATE ANSI, TIMESTAMP and TIME columns which are mapped to
Forms’ DATE items. The data displayed in this case is limited to days, months and
years. You may want to change the item’s data type depending on what portion
of the time information you wish to display and/or edit.

The DATE ANSI type contains YEAR TO DAY fields and is correctly mapped.

• The DATE VMS type is a time stamp containing YEAR TO SECOND
and fractional seconds up to hundredths of a second. Map this data type to
Forms’ DATETIME type.

• The TIMESTAMP type contains fields YEAR TO SECOND and
fractional seconds up to hundredths of a second. The fraction is specified as
TIMESTAMP(frac), where frac is a number between 0 and 2.
TIMESTAMP without an interval qualifier defaults to TIMESTAMP(2).
To handle YEAR TO SECOND fields, map TIMESTAMP to Forms’
DATETIME. To handle fractional seconds map TIMESTAMP to Forms’
CHAR type and set the corresponding item’s Max Length and Query
Length properties to 25.

• The TIME type contains HOUR TO SECOND fields and fractional
seconds up to hundredths of a second. The fraction is specified as
TIME(frac), where frac is between 0 and 2. TIME without an interval
qualifier defaults to TIME(0). Map TIME(0) to Forms’ CHAR type, and
set the corresponding item’s Max Length and Query Length properties to
9. Map TIME(2) to Forms’ CHAR type and set the corresponding item’s
Max Length and Query Length properties to 12. Although this mapping
for TIME does not display the fractional seconds, inserting and updating
fractional seconds is possible.

Text and image type columns of length greater than 64k cannot be updated from
within client-side PL/SQL in Forms applications.

To change the data type of an item, go to its property sheet, and choose the
desired value for its Data Type property.

59

8.4 SQL Differences between Oracle and Oracle Rdb
8.4.1 SQL Constructs

• Use of ANSI standard SQL constructs is recommended from applications
when using Rdb 6.1 and earlier. Most of the Oracle SQL dialect can be
used, however, with Rdb version 7.0 and above (if you are using Rdb
Version 7, you can set the database dialect to “ORACLE LEVEL 1”,
which will allow you to use Oracle7 SQL syntax). Rdb-specific SQL will
fail with syntax errors, unless used via pass-through functions. In
particular, the following Rdb-specific SQL constructs are not supported:

SELECT… LIMIT TO
SELECT… OPTIMIZE FOR
CASE, IF, LOOP
INNER JOIN
OUTER JOIN
FULL JOIN
LEFT JOIN
RIGHT JOIN
CALL <procedure>

• In Rdb 6.1 and earlier, use COUNT(DISTINCT <colname>), not
COUNT(<colname>). In Rdb 7.0 and later, both COUNT(<colname>)
and COUNT(DISTINCT <colname>) are supported. This Rdb problem
was also fixed in patches that are available for Rdb 6.0 and Rdb 6.1. You
can obtain Rdb patches by contacting Oracle Customer Support.

• User-supplied object names can be 31 characters long in Rdb. In Oracle the
maximum length of user-supplied names is 30.

• If you need to support delimited identifiers (in double quotes) set the SQL
dialect to SQL92 or Oracle using one of the following SQL statements via
a pass-through function:

SET DIALECT 'SQL92'
SET DIALECT 'ORACLE LEVEL1'

• Be aware that in Rdb, trailing spaces are ignored in quoted identifiers,
whereas in Oracle they are significant.

• Rdb versions 5.1 and below do not support column name aliases.

• The following Oracle-specific features cannot be used with Rdb:
sequences, synonyms, database links, security roles, set difference
operators MINUS and INTERSECT, and recursive queries.

• In versions of Rdb prior to 7.0, the ROWNUM pseudo-column could not
be used. In Rdb 7.0 and above, using the “ORACLE LEVEL 1” dialect,

60

rownum may be used in the where clause of a query (it may not be
selected).

8.4.2 SQL Functions and Operators
In Rdb 6.1 and earlier, only those SQL functions and operators common to Oracle
SQL and Rdb SQL can be used in SQL statements, except via pass-through
functions. These common functions include:

AVG
COUNT
LOWER
MAX
MIN
SUM
UPPER
USER

Rdb 6.0 and above supports user-defined functions, so you could implement a
user-defined function with the same name and semantics as an Oracle function,
and use it in SQL statements.

In Rdb 7.0, the following Oracle functions have been added:
ABS INSTR RAWTOHEX
ADD_MONTHS INSTRB REPLACE
ASCII LAST_DAY ROUND
CEIL LEAST RPAD
CHR LENGTH RTRIM
CONCAT LENGTHB SIGN
CONVERT LN SIN
COS LOG SINH
COSH LPAD SQRT
DECODE LTRIM SUBSTR
EXP MOD SUBSTRB
FLOOR MONTHS_BETWEEN SYSDATE
GREATEST NEW_TIME TAN
HEXTORAW NEXT_DAY TANH
INITCAP POWER TRUNC

8.5 Oracle Rdb Transactions and Locking
By default, the Open Client Adapter uses the READ COMMITTED isolation
mode with Rdb. If you need to use a different isolation level (REPEATABLE
READ or SERIALIZABLE, for example), you can override the default mode
issuing a DECLARE TRANSACTION or SET TRANSACTION statement, or in
Forms you can use the Isolation Mode property. Section 2.10 and its sub-sections
give more details about using different transaction isolation levels.

61

In Rdb 7.0, you can set the SQL dialect to Oracle in order to acquire row level
locks and to use Forms’ immediate locking mode. In Forms this is done
automatically by the "OPENDB.init_form" routine (as mentioned earlier in this
chapter). It can also be done more generally by using the "SET DIALECT" SQL
statement.

To execute SQL statements that are native to Rdb use one of the techniques
described in section 2.4. For example, your POST_LOGON trigger might include
this code:
begin
 forms_ddl ('COMMIT'); -- Make sure no transaction is in
progress
 forms_ddl ('SET DIALECT ''ORACLE LEVEL1''');
 forms_ddl ('DECLARE TRANSACTION READ WRITE WAIT 5
 ISOLATION LEVEL READ COMMITTED');
end;

Note: A DECLARE TRANSACTION statement does not start a transaction. It
specifies the default characteristics of a transaction. These apply to all transactions
(except those started by SET TRANSACTION) until another DECLARE
TRANSACTION is issued. SET TRANSACTION starts a transaction and
specifies its characteristics. A transaction should not be in progress when issuing a
DECLARE TRANSACTION statement, thus the COMMIT statement in the
example above. For more information on transaction control in Rdb, refer to the
Rdb SQL Reference Manual.

8.6 Client-side PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. Forms Developer and
Reports Developer use PL/SQL as its programming language. Certain restrictions
and limitations will apply when using PL/SQL with Oracle Rdb via ODBC.

Use of standard SQL constructs (as opposed to Oracle or Rdb-specific) is
recommended when using PL/SQL with Oracle Rdb databases.

If you need to use SQL constructs not conforming to Oracle SQL, you need to
use a one of the SQL pass-through techniques described in section 2.4

8.6.1 PL/SQL and Oracle Rdb Data Types
The following PL/SQL data types can be used freely in client-side PL/SQL
program units:

• NUMBER and its subtypes DECIMAL (DEC), DOUBLE PRECISION,
FLOAT, INTEGER (INT), NUMERIC, REAL, and SMALLINT.

• CHAR and its subtypes CHARACTER and STRING. Note that a CHAR
value in client-side PL/SQL can have a maximum length of 32767, but a
CHAR column in the database has a maximum length of 255.

62

• VARCHAR and VARCHAR2. Note that a VARCHAR value in client-
side PL/SQL can have a maximum length of 32767, but a VARCHAR
column in the database has a maximum length of 2000.

• LONG. This is similar to VARCHAR, except that while it is limited to a
maximum size of 32767 on the client, the equivalent Oracle Rdb data type,
LIST OF BYTE VARYING, can be up to 2 Gigabytes in size.

• RAW. A RAW value in client-side PL/SQL can have a maximum length of
32767, but a RAW column in the database has a maximum length of 255.

• LONG RAW. Analogous to LONG, but for RAW data.

• BOOLEAN

• DATE

Oracle Rdb data types can be mapped to their equivalent PL/SQL data type, with
the following exceptions and caveats:

Oracle Rdb Data Type PL/SQL Data Type
TINYINT NUMBER(3)

SMALLINT NUMBER(5)

INT NUMBER(10)

BIGINT FLOAT or
NUMBER(19)

LONG VARCHAR LONG

LIST OF BYTE VARYING RAW (Max length < 32768)
LONG
LONG RAW (PL/SQL V2)
depending on the data

DATE VMS
DATE ANSI
TIMESTAMP
TIME

DATE
(Mapping to CHAR with a
format mask is required to
handle fractional seconds)

NCHAR, NVARCHAR, SENSITIVITY and SENSITIVITY_BOUNDARY data
types are not supported.

8.6.2 Supported PL/SQL Statements and Functions
The following PL/SQL statements and attributes are supported with Oracle Rdb:

COMMIT INSERT
CLOSE LOOP
CURSOR OPEN
DECLARE ROLLBACK
DELETE SELECT INTO
FETCH UPDATE

63

GOTO

%FOUND %NOTFOUND
%ROWCOUNT %ISOPEN

as well as all exception, looping and conditional constructs

Only SQL functions common to both Rdb SQL and Oracle SQL (by name,
number and type of arguments) can be used in SQL statements within procedures.
Note that this set of functions will depend on the Rdb dialect in use, as well as Rdb
version - Rdb 7.0 supports most Oracle SQL functions. All other PL/SQL
functions can be used in the body of procedures only.

8.6.3 Calling Stored Procedures from Client-side PL/SQL
Stored procedures can be called from client-side PL/SQL program units and
triggers. Stored Procedures with IN, OUT, IN/OUT parameters or return values
are fully supported. Result sets can be retrieved from stored procedures using the
EXEC_SQL package. See the chapter "Calling Stored Procedures through the
Oracle Open Client Adapter" for an example.

For example, this Oracle Rdb stored procedure:
CREATE MODULE TESTMOD
 LANGUAGE SQL
 PROCEDURE TESTPROC
 (IN :DNUM INTEGER,
 OUT :TOT_SAL FLOAT);
 BEGIN
 SELECT SUM(SAL) INTO :TOT_SAL FROM EMP WHERE DEPTNO =
:DUM;
 END;
END MODULE;

could be called from a client-side program unit as follows:
FUNCTION compute_deptsal (Param1 IN NUMBER) RETURN FLOAT IS
 Param2 FLOAT;
BEGIN
 testproc (Param1, Param2);
 RETURN (Param2);
END;

64

9. Using Oracle Forms Developer and Oracle Reports
Developer with Informix
9.1 Installation, Setup and System Requirements

Using Forms Developer and Reports Developer to access an ODBC data source
requires the installation of components from Oracle, Informix and the ODBC
driver vendor on the client machine, and proper configuration of the Informix
server.

9.1.1 Setup for Oracle Forms Developer and Oracle Reports Developer
Forms Developer, Reports Developer and the Open Client Adapter must be
installed on the client. In addition, Forms Developer and Reports Developer
include ODBC drivers from INTERSOLV that allow access to Informix
databases. If you choose to use one of these drivers, you should run the Oracle
Installer to install it from the Forms Developer and Reports Developer CD-ROM.
For more information on this process, please refer to the Oracle Forms Developer
and Oracle Reports Developer Installation Guide.

9.1.2 Setup for Informix
9.1.2.1 Client Requirements and Setup

The INTERSOLV DataDirect drivers for Informix 5 and Informix 7 included with
Forms Developer and Reports Developer use version 5.x of the Informix-Net (or
Informix-Star) product to access Informix databases. You must install Informix-
Net before configuring a data source.

• The environment variable INFORMIXDIR must be set to the directory
where Informix-Net is installed. The message files RDS.IEM and
SQL.IEM must be located under $INFORMIXDIR\MSG.

• Add $INFORMIXDIR\BIN to your path, either in AUTOEXEC.BAT or
via the control panel.

• Use the SETNET.EXE program to set INFORMIX.INI entries -
hostname, username, servicename, protocolname, password options and
any environment variables required for your system. You may also need to
add a servicename entry to the DRIVERS\ETC\SERVICES file in the
Windows system directory. Consult your Informix documentation for
more information on configuring Informix-Net.

If you will be using an ODBC driver other than that provided with Forms
Developer and Reports Developer , install it according to the instructions from the
supplier, and install any necessary database access software.

65

9.1.2.2 ODBC Driver Configuration
The generic steps required to configure an ODBC data source are detailed in the
ODBC Setup section of the Getting Started chapter. In the case of the
INTERSOLV DataDirect drivers for Informix, if the required client libraries are
not installed or the $INFORMIXDIR\BIN is not in the path, the ODBC
Administrator program will display an error such as “The setup routines for the
INTERSOLV INFORMIX5 ODBC driver could not be loaded. You may be low
on memory and need to quit a few applications'. To correct this error, review the
regarding client-side setup. If the problem persists you may need to reinstall either
the database client and net libraries or the ODBC driver.

9.1.2.3 Server Requirements and Setup
If using Informix SE, the database must be started in transaction mode (use the
WITH LOG IN option). If using Informix Online, the database must be started in
Quiescent mode.

9.2 Using Oracle Forms Developer with Informix
9.2.1 Data Types

The Informix INTERVAL data type is not supported. All other Informix datatypes
are automatically mapped to their equivalent Oracle data types with the exception
of DATETIME which is mapped to Forms’ DATE type. The data displayed in
this case is limited to days, months and years (unless you explicitly specify a
format mask on the item including time information, such as 'DD-MON-YY
HH24:MI:SS').

If you need to display or update hours, minutes and seconds, use Forms’
DATETIME. To display and update fractional seconds, map these data types to
CHAR(25), which will use a standard format mask showing all components. To
change the data type of an item, go to its property sheet, and choose the desired
value for its Data Type property.

If your table includes an image column, or a long text column, you need to take a
special steps to ensure that it will be fetched and updated reliably by making sure
that it is the last column referenced in the SQL statement. To do this:

• Make the item the last item in the data block, by dragging and dropping it
after all other items.

9.2.2 Implications of Informix's Locking Model
By default, Informix locks are at the page level. Row-level locking can be enabled
(albeit at a performance premium) on a table-by-table basis with the “LOCK
MODE [PAGE | ROW]” clause to the CREATE TABLE and ALTER TABLE
statements.

66

In addition, Informix SQL does not support a lock time-out to escape a potential
deadlock -- a connection attempting to get a lock on a resource hangs until the
locks already held on that resource are released.

In light of this, you should structure your application to hold locks for as short a
period as possible, by using Forms’ Delayed locking mode, and bundling changes
made from client-side PL/SQL to occur just before a commit. Note that Delayed
locking mode is automatically used by Forms runtime against Informix if you leave
the data blocks' locking mode property set at the default value of "automatic".

9.3 SQL Differences between Oracle and Informix
9.3.1 Connecting to Different Databases

An Informix Online server can control multiple databases. Each user has a default
database, to which they are connected at logon. A user can switch to other
databases controlled by the same server by executing a 'database <dbname>' SQL
statement.

In Forms Developer and Reports Developer , there are two ways to connect to a
database other than the user’s default. The database name can be specified at
connect time, as in:
ODBC:<DataSourceName>:<Dbname>

Alternatively, execute a 'database <dbname>' SQL statement in a client-side
trigger or program unit. See the section "Connecting to different databases" in
chapter 2.

9.3.2 SQL Constructs
Use of ANSI standard SQL constructs is recommended from applications when
using Informix. Informix-specific SQL will fail with syntax errors, unless used via
pass-through functions.

9.3.3 Naming Rules
Informix limits names of database objects to 18 characters, as opposed to Oracle’s
30. If trying to create a portable application, restrict your Oracle object names to
18 characters.

Informix is case insensitive, but the data dictionary is maintained in lower case. If
using double quotes around table names, make sure that the name within is in
lower case.

You can only use double quotes around table names -- column names cannot be
quoted.

9.3.4 SQL Syntax Differences
• NULL cannot be used in the select list of a SELECT statement. For

example, "select null from emp" will fail to execute.

67

• UNIQUE cannot be used in a SELECT statement. Use DISTINCT
instead.

• Informix's outer join syntax is different from Oracle's and cannot be used in
SQL statements.

• Informix does not support the INTERSECT and MINUS set operators.

• You cannot use the “EXECUTE PROCEDURE” construct in INSERT
statements.

• Informix doesn’t allow expressions in the INSERT values. Because of that
you cannot concatenate strings to insert long values.

9.3.5 SQL Functions and Operators
Only those SQL functions and operators common to Oracle and Informix SQL
can be used in SQL statements, except via pass-through functions. These
common functions include:

AVG SUM
COUNT TRUNC
MAX USER
MIN LENGTH
ROUND

9.3.6 Comparison Operators
The following comparison operators are either not supported, or have an Oracle
or ANSI equivalent which should be used from within a application:

Operator Equivalent
MATCHES “a%” LIKE ‘a%’

MATCHES “a?” LIKE ‘a_’

MATCHES “a[x-z]” Not Supported

LIKE “a[^x-z]” Not Supported

NOT MATCHES ... NOT LIKE ...

= NULL IS NULL

!= NULL IS NOT NULL

9.3.7 Arithmetic Operators
The modulo (%) and exponent (**) operators can not be used in SQL statements
within Forms Developer and Reports Developer .

9.4 Client-side PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. Forms Developer and
Reports Developer use PL/SQL as its programming language. Certain restrictions
and limitations will apply when using PL/SQL with Informix via ODBC.

68

Use of standard SQL constructs (as opposed to Oracle or Informix-specific) is
recommended when using PL/SQL with Informix databases.

If you need to use SQL constructs not conforming to Oracle SQL, you need to
use a pass-through interface, such as the interface the EXEC_SQL package
provides. The EXEC_SQL package is documented in the Procedure Builder on-
line help and documentation.

9.4.1 PL/SQL and Informix Data Types
The following PL/SQL data types can be used freely in client-side PL/SQL
program units:

• NUMBER and its subtypes DECIMAL (DEC), DOUBLE PRECISION,
FLOAT, INTEGER (INT), NUMERIC, REAL, and SMALLINT.

• CHAR and its subtypes CHARACTER and STRING. Note that a CHAR
value in both client-side PL/SQL and the database can have a maximum
length of 32767.

• VARCHAR and VARCHAR2. Note that a VARCHAR value in client-
side PL/SQL can have a maximum length of 32767, but a VARCHAR
column in the database has a maximum length of 255.

• LONG. This is similar to VARCHAR, except that while it is limited to a
maximum size of 32767 on the client, the equivalent Informix data type,
TEXT, can be up to 2 Gigabytes in size.

• LONG RAW. Analogous to LONG, but for RAW data.. The equivalent
Informix data type, BYTE, can be up to 2 Gigabytes in size.

• BOOLEAN

• DATE

Informix data types can be mapped to their equivalent PL/SQL data type, with the
following exceptions and caveats:

Informix Data Type PL/SQL Data Type
BYTE RAW

INTERVAL Not Supported

MONEY FLOAT

TEXT LONG

Columns of length greater than 64K cannot be updated from client-side PL/SQL.

9.4.2 Supported PL/SQL Statements and Functions
The following PL/SQL statements and attributes are supported with Informix:

COMMIT INSERT
CLOSE LOOP
CURSOR OPEN

69

DECLARE ROLLBACK
DELETE SELECT INTO
FETCH UPDATE
GOTO

%FOUND %NOTFOUND
%ROWCOUNT %ISOPEN

as well as all exception, looping and conditional constructs

Only SQL functions common to both Informix and Oracle SQL (by name, number
and type of arguments) can be used in SQL statements within procedures. All
other PL/SQL functions can be used in the body of procedures only.

9.4.3 Calling Stored Procedures from Client-side PL/SQL
Informix stored procedures can be called from client-side PL/SQL program units
and triggers. These procedures must either be parameterless or take only input
parameters (which is consistent with Informix stored procedures handling).
Output values can be retrieved from stored procedures in the same way as result
sets using the EXEC_SQL package. See the chapter "Calling Stored Procedures
through the Oracle Open Client Adapter" for an example.

70

10. Using Oracle Forms Developer and Oracle Reports
Developer with Microsoft Access
10.1 Installation, Setup and System Requirements

Using Forms Developer and Reports Developer to access an ODBC data source
requires installation of components from one or more software providers on the
client and in most cases, the server. In the case of Microsoft Access, the client and
server are on the same machine, although the database files may reside on a
networked or shared volume or drive.

10.1.1 Setup for Oracle Forms Developer and Oracle Reports
Developer

Forms Developer, Reports Developer and the Open Client Adapter must be
installed on the client.

10.1.2 Setup for Microsoft Access
10.1.2.1 Client Requirements and Setup

The Microsoft Access ODBC driver is part of the ODBC Desktop Database
Driver pack, available from Microsoft. It is included as part of Microsoft Office
and several other application programs. Alternatively, you can install the Access
ODBC driver that is bundled with the Microsoft Access database product.

10.1.2.2 Server Requirements and Setup
Microsoft Access is a single-user, single-machine system. As such, there is no
notion of a database server and database client, and no special setup is required.
You do, however, need to use Microsoft Access to create the database file, which
defines the schema - tables and columns - of the database. Once the database file
has been created, the MS Access ODBC driver manipulates the database file
directly.

10.2 Data dictionary views
SQL support in Access is limited compared to that of Oracle. Forms Developer’s
and Reports Developer’s design-time components use certain views in the
database to access user and schema information. These views cannot be created in
Access due to inadequate exposure of Access' catalog information via SQL.
Therefore it is not possible to browse available schema and tables in the Forms
Developer and Reports Developer Builders. For example, when using the Data
Block wizard in Forms to create a new data block, it is necessary to type in the
name of the table manually because the list of tables will not work.

71

10.3 Using Oracle Forms Developer with Microsoft Access
10.3.1 Data Types

Text and image type columns of length greater than 64k will be truncated to 64k if
using the 16-bit MS Access driver. There is no truncation when using the 32-bit
MS Access driver, however.

10.4 SQL Differences between Oracle and Microsoft Access
10.4.1 SQL Constructs

SQL support in Access is limited, and there are also syntactical differences
between Access SQL and Oracle SQL. Use of ANSI standard SQL constructs is
recommended from Forms Developer and Reports Developer applications when
using Microsoft Access . Microsoft Access-specific SQL will fail with syntax
errors, unless used via pass-through functions. In particular, the following Access-
specific SQL statements are not supported:

DISTINCTROW IN (specifying table location)
INNER JOIN LEFT JOIN
RIGHT JOIN PARAMETERS
TRANSFORM WITH OWNER ACCESS OPTION
PROCEDURE

Only those SQL functions and operators common to Oracle SQL and Access
SQL can be used in SQL statements, except via pass-through functions. These
common functions include:

ABS MIN
ASCII ROUND
AVG RTRIM
COUNT SIGN
FLOOR SOUNDEX
LOWER SQRT
LTRIM SUM
MAX UPPER

10.5 Microsoft Access Transactions and Locking
Access has limited locking control, and it does not support control of locking
mechanisms through SQL. Access’ two locking modes, Read Only and
Exclusive, are specified when the database is opened in the Open Database
dialog box, or in the ODBC Access Setup dialog box. Multi-user locking modes
such as No Locks, All Records, or Edited Record are specified on a per-table
basis, and there is no mechanism to change these attributes through SQL at
runtime.

As a result, your application cannot depend upon runtime control of locking
behavior. If you are porting an application from a data source where this control

72

is possible, you will need to disable this functionality, or implement a runtime
check for the data source.

10.6 Client-side PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. Forms Developer and
Reports Developer use PL/SQL as its programming language. Certain restrictions
and limitations will apply when using PL/SQL with Microsoft Access via ODBC.

Use of standard SQL constructs (as opposed to Oracle or Access-specific) is
recommended when using PL/SQL with Microsoft Access databases.

If you need to use SQL constructs not conforming to Oracle SQL, you need to
use a pass-through interface, such as the interface the EXEC_SQL package
provides. The EXEC_SQL package is documented in the Procedure Builder on-
line help and documentation.

10.6.1 PL/SQL and Microsoft Access Data Types
The following PL/SQL data types can be used freely in client-side PL/SQL
program units:

• NUMBER and its subtypes DECIMAL (DEC), DOUBLE PRECISION,
FLOAT, INTEGER (INT), NUMERIC, REAL, and SMALLINT.

• CHAR and its subtypes CHARACTER and STRING. Note that a CHAR
value in both client-side PL/SQL and the database can have a maximum
length of 255.

• VARCHAR and VARCHAR2. Note that a VARCHAR value in client-
side PL/SQL can have a maximum length of 32767, but a VARCHAR
column in the database has a maximum length of 2000.

• LONG. This is similar to VARCHAR, except that while it is limited to a
maximum size of 32767 on the client, a database value can be up to 2
Gigabytes in size.

• RAW. A RAW value in client-side PL/SQL can have a maximum length of
32767, but a RAW column in the database has a maximum length of 255.

• LONG RAW. Analogous to LONG, but for RAW data..

• BOOLEAN

• DATE

Microsoft Access data types can be mapped to their equivalent PL/SQL data
types, with the following exceptions and caveats:

Microsoft Access Data Type PL/SQL Data Type
Memo CHAR

OLE RAW

73

10.6.2 Supported PL/SQL Statements and Functions
The following PL/SQL statements and attributes are supported with Microsoft
Access:

COMMIT INSERT
CLOSE LOOP
CURSOR OPEN
DECLARE ROLLBACK
DELETE SELECT INTO
FETCH UPDATE
GOTO

%FOUND %NOTFOUND
%ROWCOUNT %ISOPEN

as well as all exception, looping and conditional constructs

Only SQL functions common to both Access and Oracle SQL (by name, number
and type of arguments) can be used in SQL statements within procedures. All
other PL/SQL functions can be used in the body of procedures only.

74

11. Using Oracle Forms Developer and Oracle Reports
Developer with Ingres
11.1 Installation, Setup and System Requirements

Using Forms Developer and Reports Developer to access an Ingres data source
requires installation of components from Oracle, Ingres and the ODBC driver
vendor on the client machine, and proper configuration of the Ingres server.

11.1.1 Setup for Oracle Forms Developer and Oracle Reports
Developer

Forms Developer and Reports Developer and the Open Client Adapter must be
installed on the client. In addition, Forms Developer and Reports Developer
include ODBC drivers from INTERSOLV that allow access to Ingres databases.
Use the Oracle Installer to install them from the Forms Developer and Reports
Developer CD-ROM to the client. For more information on this process, refer to
the Oracle Forms Developer and Oracle Reports Developer Installation Guide.

11.1.2 Setup for Ingres
11.1.2.1 Client Requirements and Setup

The INTERSOLV DataDirect driver for Ingres requires you to setup Ingres's
client side networking. See the driver documentation for details.

If you will be using an ODBC driver other than that provided with Forms
Developer and Reports Developer , install it according to the instructions from the
supplier, and install any necessary database access software.

11.2 Using Oracle Forms Developer with Ingres
11.2.1 Data Types

The object_key and table_key data types are not supported.

All other Ingres data types are automatically mapped to their equivalent Oracle
data types with the exception of DATE which is mapped to Forms’ DATE type.
The data displayed in this case is limited to days, months and years. You may
want to change the mapping depending on what portion of the time types you
want to edit.

• To display and update only days, months and years, the mapping to DATE
is sufficient. The default format mask in this case is dd-mon-yy.

• To display and update the hours, minutes and seconds, use Forms’
DATETIME data type. Specify a format mask to display the fields of
interest.

75

• If you need to display and update fractional seconds, map these data types
to CHAR(26). This will display the data in a canonical date format, which
should be respected if the user wishes to edit the data.

To change the data type of an item, go to its property sheet, and choose the
desired value for its Data Type property.

11.3 Using Oracle Reports Developer with Ingres
Ingres does not support duplicate column references in the ORDER BY clause
(see the "Additional Restrictions" section in this chapter). This can sometimes
cause problems for Reports. To avoid this problem, there should be no ORDER
BY on a column which is also a break column or a target of a link in a child query.

11.4 SQL Differences between Oracle and Ingres
11.4.1 SQL Constructs

Use of ANSI standard SQL constructs is recommended from Forms Developer
and Reports Developer applications when using Ingres. Ingres-specific SQL will
fail with syntax errors, unless used via pass-through functions.

When issuing an INSERT statement from within Forms Developer and Reports
Developer , always include the INTO clause, as in INSERT INTO <table>
VALUES…

11.4.2 SQL Functions and Operators
Only those SQL functions and operators common to Oracle SQL and Ingres SQL
can be used in SQL statements, except via pass-through functions. These
common functions include:

ABS SIN
AVG SQRT
COS SUM
COUNT SYSDATE
MAX USER
MIN

11.4.3 Comparison Operators
The following comparison operators are either not supported, or have an Oracle
or ANSI equivalent which should be used from within an application:

Operator Equivalent
!> <=

!< >=

LIKE ‘a[x-z]’ Not Supported

LIKE ‘a[^x-z]’ Not Supported

= NULL IS NULL

!= NULL IS NOT NULL

76

!> ANY <= ANY

!< ANY >= ANY

!> ALL <= ALL

!< ALL >= ALL

11.4.4 Arithmetic Operators
The modulo operator (%) can not be used in SQL statements within Forms
Developer and Reports Developer .

11.4.5 String Operators
Ingres uses “+” for string concatenation, whereas Oracle uses “||”. Reports and
Graphics allow the use of “+” for string concatenation in queries, but PL/SQL
does not permit its use. As a workaround, you can select the columns
individually, and concatenate them on the client side.

11.4.6 Bit Operators
The &, |, ^, and ~ operators can not be used in SQL statements within Forms
Developer and Reports Developer .

11.5 Ingres Transactions and Locking
Forms applications run with AUTO-COMMIT mode OFF. All SQL statements
are executed in the context of transactions, which run in unchained mode. A SQL
statement issued immediately after connecting to the database or issued after a
commit or rollback implicitly starts a transaction.

Ingres uses exclusive locks for data modifications and shared locks for non-update
or read operations. The granularity of locking is page-level. Page-level locks are
escalated to table level locks if more than a specified percentage of pages are
locked by a transaction.

SELECT statements obtain shared locks on pages. This prevents other statements
from obtaining an exclusive lock on those pages. Hence a SELECT statement
blocks other data modification operations as long as the transaction that includes
the SELECT statement does not commit or roll back. By default Ingres does not
time-out waiting for locks. This can be changed by executing:
SET LOCKMODE session N

where N is the number of seconds you want the application to wait before timing
out. Use one of the pass-through SQL techniques described in section 2.4 since
this is not standard Oracle syntax.

11.6 Client-side PL/SQL
Forms Developer and Reports Developer use PL/SQL as its programming
language. Certain restrictions and limitations will apply when using PL/SQL with
Ingres via ODBC.

77

Use of standard SQL constructs (as opposed to Oracle or Ingres-specific) is
recommended when using PL/SQL with Ingres databases.

If you need to pass Ingres specific SQL constructs, you need to use a pass-
through interface, such as the interface the EXEC_SQL package provides. The
EXEC_SQL package is documented in the Procedure Builder on-line help and
documentation.

11.6.1 PL/SQL and Ingres Data Types
The following PL/SQL data types can be used freely in client-side PL/SQL
program units:

• NUMBER and its subtypes DECIMAL (DEC), DOUBLE PRECISION,
FLOAT, INTEGER (INT), NUMERIC, REAL, and SMALLINT.

• CHAR and its subtypes CHARACTER and STRING. Note that a CHAR
value in client-side PL/SQL can have a maximum length of 32767, but a
CHAR column in the database has a maximum length of 2000.

• VARCHAR and VARCHAR2. Note that a VARCHAR value in client-
side PL/SQL can have a maximum length of 32767, but a VARCHAR
column in the database has a maximum length of 2000.

• LONG. This is similar to VARCHAR, except that while it is limited to a
maximum size of 32767 on the client, and cannot be inserted into an Ingres
database.

• RAW. A RAW value in client-side PL/SQL can have a maximum length of
32767, but cannot be inserted into an Ingres database.

• LONG RAW. Analogous to LONG, but for RAW data.

• BOOLEAN

• DATE

Ingres data types can be mapped to their equivalent PL/SQL data type, with the
following exceptions and caveats:

Ingres Data Type PL/SQL Data Type
integer1 SMALLINT

TEXT VARCHAR2

DATE DATE

MONEY FLOAT

object_key and table_key data types are not supported.

11.6.2 Supported PL/SQL Statements and Functions
The following PL/SQL statements and attributes are supported with Ingres:

COMMIT INSERT

78

CLOSE LOOP
CURSOR OPEN
DECLARE ROLLBACK
DELETE SELECT INTO
FETCH UPDATE
GOTO

%FOUND %NOTFOUND
%ROWCOUNT %ISOPEN

as well as all exception, looping and conditional constructs

Only SQL functions common to both Ingres SQL and Oracle SQL (by name,
number and type of arguments) can be used in SQL statements within procedures.
All other PL/SQL functions can be used in the body of procedures only.

11.6.3 Calling Stored Procedures from Client-side PL/SQL
Stored procedures can be called from client-side PL/SQL program units and
triggers. Stored Procedures with IN, OUT, IN/OUT parameters or return values
are fully supported.

For example, this Ingres stored procedure:
create procedure move_emp (id integer not null) as
begin
 insert into emptrans
 select *
 from employee
 where id = :id;
 delete from employee
 where id = :id;
end;

could be called from a client-side program unit as follows:
PROCEDURE example_prog (Param1 in number) IS
BEGIN
 MOVE_EMP(Param1);
END;

11.7 Additional Restrictions
11.7.1 ORDER BY

Within ORDER BY clauses, Ingres permits positional references to columns only
if the columns are explicitly listed.

For example,
SELECT * FROM TABLE_NAME ORDER BY <column_number>

will raise an error.

Suggestion: Replace the "*" with explicit column names, or substitute the
<column_number> with a <column_identifier>.

79

In addition, Ingres does not permit duplicate column references in the order by
clause, such as:
SELECT C1, C2, C3 from TABLE_NAME ORDER BY C2, 2

11.7.2 DATATYPE OVERFLOW
Ingres does not detect overflow of integers or char fields by default, but you can
create rules that try to detect when this will occur.

11.7.3 SAVEPOINT/ROLLBACK TO SUPPORT
Although Ingres supports SAVEPOINTs and ROLLBACKs, it can only do so if
there are no currently open cursors. Forms Developer and Reports Developer re-
use cursors frequently to help improve performance, and therefore keeps many
cursors open at any given time. Therefore, we cannot support SAVEPOINTs and
ROLLBACK TO statements for Ingres.

80

12. Using Oracle Forms Developer and Oracle Reports
Developer with DB2/400
12.1 Installation, Setup and System Requirements

Using Forms Developer and Reports Developer to access an ODBC data source
requires the installation of components from Forms Developer and Reports
Developer , DB2/400 and the ODBC driver vendor on the client machine, and
proper configuration of the DB2/400 server.

12.1.1 Setup for Oracle Forms Developer and Oracle Reports
Developer

Forms Developer, Reports Developer and the Open Client Adapter must be
installed on the client. In addition, Forms Developer and Reports Developer
include the Oracle ODBC driver for DB2/400 that allows access to DB2/400
databases. If you choose to use this driver, you should run the Oracle Installer to
install it from the Forms Developer and Reports Developer CD-ROM. For more
information on this process, please refer to the Oracle Forms Developer and
Oracle Reports Developer Installation Guide.

12.1.2 Setup for DB2/400
12.1.2.1 Client Requirements and Setup

Forms Developer and Reports Developer have been certified against the IBM
Client Access/400 ODBC driver. This is a component of Client Access/400 for
Windows 3.1. When you run Client Access/400 Setup, the required driver DLL’s
are installed into the Client Access/400 product directory.

You must establish a connection between the PC client and the AS/400 server
before starting the ODBC driver. To do this, start the QCMN and QSERVER
subsystems on the OS/400 server, and then start the Client Access/400 for
Windows 3.1 router on the PC.

Client side software requirements:

• Microsoft Windows version 3.1, Microsoft Windows for Workgroups
3.11, Microsoft Windows95, Microsoft WindowsNT 3.5 or Microsoft
WindowsNT 4.0

• Client Access/400 for Microsoft Windows

• IBM’s LAN Support Program (for Token-Ring and Ethernet connections
only)

• Microsoft ODBC Driver Manager version 2.0 or above

Communications (one of the following):

81

• Token-ring (direct and 5494 Remote Controller)

• Twinaxial (local, 5394 and 5494 Remote Controller)

• SDLC

• Ethernet

If you will be using any other ODBC driver, install it according to the instructions
from the supplier, and install any necessary database access software.

12.1.2.2 Server Requirements and Setup
Install DB2/400 on the server, or identify the DB2/400 server that you will be
accessing. The DB2/400 ODBC driver accesses DB2/400 via the Client
Access/400. DB2/400 and Client Access/400 must be installed and running on the
server to access DB2/400 from Forms Developer and Reports Developer .

Server side software requirements:

• OS/400 Version 3 Release 1

• DB2/400 Version 3.1 or higher

• Client Access/400 Family

• Client Access/400 for Windows 3.1

12.2 Using Oracle Forms Developer with DB2/400
12.2.1 Data Types

When creating a data block based on a table or view, DB2/400 data types are
automatically mapped to Forms items of the equivalent Oracle data type. This
mapping is usually satisfactory but you may wish to override it for DATE,
TIMESTAMP and TIME columns which are mapped to Forms’ DATE items.
The data displayed in this case is limited to days, months and years. You may
want to change the item’s data type depending on what portion of the time
information you wish to display and/or edit.

• To display and update only days, months and years, the mapping to DATE
is sufficient. The default format mask in this case is dd-mon-yy.

• To display and update the hours, minutes and seconds of DB2/400’s TIME
and TIMESTAMP, use Forms’ DATETIME data type. Specify a format
mask to display the fields of interest.

• If you need to display and update microseconds of DB2/400’s
TIMESTAMP type, map these data types to CHAR(26). The DB2/400
character-string representation of the TIMESTAMP data type has a length
of 26, and a display format of yyyy-mm-dd-hh.mm.ss.zzzzzz, where yyyy,

82

mm, dd, hh, mm, ss and zzzzzz represent, respectively, the years, months,
days, hours, minutes, seconds, and microseconds.

To change the data type of an item, go to its property sheet, and choose the
desired value for its Data Type property.

DB2/400’s types CHAR() FOR BIT DATA and VARCHAR() FOR BIT DATA
are mapped to Forms’ CHAR type. However, unless the columns actually contain
character data, you will not be able to edit them in a meaningful way from within
Forms.

12.3 SQL Differences between Oracle and DB2/400
12.3.1 SQL Constructs

• Use of ANSI standard SQL constructs is recommended from Forms
Developer and Reports Developer applications when using DB2/400.
DB2/400-specific SQL will fail with syntax errors, unless used via pass-
through functions.

• NULL cannot be used in the select list of a SELECT statement.

• Object names can be up to 255 characters long in DB2/400 (10 characters
for collection names). In Oracle and in PL/SQL the maximum length of
object names is 30. Therefore, when designing the DB2/400 data
dictionary, shorter names are preferred.

• The ORDER BY clause can reference only a column which is specified in
the SELECT list.

• DB2/400 supports neither synonyms nor aliases.

• The following Oracle-specific features cannot be used with DB2/400:
sequences, synonyms, database links, security roles, set difference
operators MINUS and INTERSECT, and recursive queries.

12.3.2 SQL Functions and Operators
Only those SQL functions and operators common to Oracle SQL and DB2/400
SQL can be used in SQL statements, except via pass-through functions. These
common functions include:

AVG MOD
COS SIN
COSH SINH
COUNT SQRT
EXP STDDEV
LENGTH SUBSTR
LN SUM
LOG TAN
MAX TANH

83

MIN TRANSLATE

12.3.3 The Comparison Operators
The following comparison operators are either not supported, or have an Oracle
or ANSI equivalent which should be used from within an application:

Operator Equivalent
CONCAT() ||

!= <>

12.4 Client-side PL/SQL
PL/SQL is Oracle’s procedural language extension to SQL. Forms Developer and
Reports Developer use PL/SQL as its programming language. Certain restrictions
and limitations will apply when using PL/SQL with DB2/400 via ODBC.

Use of standard SQL constructs (as opposed to Oracle or DB2/400-specific) is
recommended when using PL/SQL with DB2/400 databases.

If you need to use SQL constructs not conforming to Oracle SQL, you need to
use a pass-through interface, such as the interface the EXEC_SQL package
provides. The EXEC_SQL package is documented in the Procedure Builder on-
line help and documentation.

12.4.1 PL/SQL and DB2/400 Data Types
The following PL/SQL data types can be used freely in client-side PL/SQL
program units:

• NUMBER and its subtypes DECIMAL (DEC), DOUBLE PRECISION,
FLOAT, INTEGER (INT), NUMERIC, REAL, and SMALLINT.

• CHAR and its subtypes CHARACTER and STRING. Note that a CHAR
value in client-side PL/SQL can have a maximum length of 32767, but a
CHAR column in the database has a maximum length of 255.

• VARCHAR and VARCHAR2. Note that a VARCHAR value in client-
side PL/SQL can have a maximum length of 32767, but a VARCHAR
column in the database has a maximum length of 2000.

• LONG. This is similar to VARCHAR, except that while it is limited to a
maximum size of 32767 on the client, the equivalent DB2/400 data type,
LIST OF BYTE VARYING, can be up to 2 Gigabytes in size.

• RAW. A RAW value in client-side PL/SQL can have a maximum length of
32767, but a RAW column in the database has a maximum length of 255.

• LONG RAW. Analogous to LONG, but for RAW data.

• BOOLEAN

• DATE

84

DB2/400 data types can be mapped to their equivalent PL/SQL data type, with
the following exceptions and caveats:

DB2/400 Data Type PL/SQL Data Type
TIME, TIMESTAMP DATE

CHAR() FOR BIT DATA CHAR

VARCHAR() FOR BIT DATA VARCHAR

12.4.2 Supported PL/SQL Statements and Functions
The following PL/SQL statements and attributes are supported with DB2/400:

COMMIT INSERT
CLOSE LOOP
CURSOR OPEN
DECLARE ROLLBACK
DELETE SELECT INTO
FETCH UPDATE
GOTO

%FOUND %NOTFOUND
%ROWCOUNT %ISOPEN

as well as all exception, looping and conditional constructs

Only SQL functions common to both DB2/400 SQL and Oracle SQL (by name,
number and type of arguments) can be used in SQL statements within procedures.
All other PL/SQL functions can be used in the body of procedures only.

85

13. Universal Back-end Tester (UBT)
13.1 Overview

UBT is an interactive command driver for testing and exercising the Oracle Open
Client Adapter for ODBC. UBT enables you to manipulate UBT-specific and
regular SQL commands, within the interpreter, or through command files. Data
migration can be performed through a database table-to-table COPY command.

UBT is provided for backwards compatibity. Almost all of the functionality of
UBT can be achieved with SQL*Plus, which should be used in preference to UBT
1.

UBT is a line-mode command interpreter similar to SQL*Plus. Commands may
be SQL statements or native UBT commands (such as COPY).

13.2 SQL Command Syntax
You may divide your SQL commands into separate lines at any points, as long as
individual words are not split between lines. You may terminate commands in the
following ways:

• with a semicolon (;) : This indicates you wish to run the command. Type
the semicolon at the end of the last line of the command.

• with a blank line: The command is ignored, and the prompt appears.

13.3 UBT Command Syntax
You may continue a long UBT command by typing a hyphen at the end of the line
and pressing [Return]. If you wish, you may type a space before typing the
hyphen. The line number is displayed for the next line.

You should not end a UBT command with a semicolon. When you finish entering
the command, just press [Return].

Note: Any command not mentioned in the following UBT Commands section is
interpreted as a regular SQL command and will be passed to the underlying
database. For example:
DECLARE
@MYVAR int
BEGIN
 SELECT @MYVAR=8000
END;

will be passed to the underlying database with no change, except for the semicolon
(a SQL command terminator) which will be stripped off.

1 The one exception is the COPY command, which only works through UBT for OCA connections.

86

13.4 UBT Commands
13.4.1 CONNECT

Connects to a given username and database.

13.4.1.1 Syntax
CONNECT username[/password]@db_specification

username[/password]: User name and password you use to log in to the
database.

db_specification: Consists of a SQL*Net or ODBC connection string. The
exact syntax for SQL*Net depends on the
communications protocol your Oracle installation uses.
The syntax for an ODBC connection is
"ODBC:datasource[:dbname]". Note that both
datasource and dbname are preceded by a colon (:).

datasource: Specifies the name of the ODBC datasource you defined
using the Microsoft ODBC Administrator.

dbname: Specifies the name of the initial database or data file to
connect to. If not supplied the default database defined by
DBMS for the user is used. Note that for some databases
(MS Access, for example) it may not be possible.

13.4.1.2 Examples

Example 1

The following command connects user SCOTT (password TIGER) to the
SYBSYS10 ODBC datasource. Note that SCOTT is automatically connected to
the default database defined for the SYBSYS10 datasource during configuration
(with the use of the Microsoft ODBC Administrator).
CONNECT SCOTT/TIGER@ODBC:SYBSYS10

Example 2

The following command connects user JACK (password SMITH) to the SQL60
ODBC datasource. Note that JACK is connected to database SQWQA that may
differ from that defined for SQL60 during configuration.
CONNECT JACK/SMITH@ODBC:SQL42:SRWQA

13.4.2 COPY
Copies the data from a query to a table in a local or remote database.

13.4.2.1 Syntax
COPY {FROM username[/password]@db_specification TO
username[/password]@db_specification/
 FROM username[/password]@db_specification/
 TO username[/password]@db_specification}
 {APPEND/CREATE/INSERT/REPLACE} destination_table

87

 [(column, column, column ...)]
 USING query

username[/password]: User name and password you use to log in to the
database. In the FROM clause, it identifies the user name
and password to log in to the source of the data; in the TO
clause it identifies the user name and password to log in to
the destination.

db_specification: Consists of a SQL*Net or ODBC connection string. In the
FROM clause db_specification represents the database at
the source; in the TO clause it represents the database at
the destination. The exact syntax for SQL*Net depends on
the communications protocol your Oracle installation uses.
The syntax for an ODBC connection is
"ODBC:datasource[:dbname]". Note that both
datasource and dbname are preceded by a colon (:).

datasource: Specifies the name of the ODBC datasource you defined
using the Microsoft ODBC Administrator.

dbname: Specifies the name of the initial database or data file to
connect to. If not supplied the default database defined by
DBMS for the user is used. Note that for some databases
(MS Access, for example) it may not be possible.

destination_table: Represents the table you wish to create or to which you
wish to add data.

(column, column, …): Specifies the names of the columns in
destination_table. If you specify columns, the number of
columns must equal the number of columns selected by
query. If you do not specify any columns, the copied
columns will have the same names in the destination_table
as they had in the source (if COPY creates
destination_table).

query: Specifies a SQL query (SELECT command) determining
which rows and columns COPY copies.

FROM: If you omit the FROM clause, the source defaults to the
database UBT is connected to. You must include the
FROM clause to specify a source database other than the
default.

TO: If you omit the TO clause, the destination defaults to the
database UBT is connected to. You must include the TO
clause to specify a destination database other than the
default.

88

APPEND: Inserts the rows from query into destination_table if the
table exists. If destination_table does not exist, COPY
creates it.

CREATE: Inserts the rows from query into destination_table after
creating the table first. If destination_table already exists,
COPY returns an error.

INSERT: Inserts the rows from query into destination_table (if the
table exists).

REPLACE: Replaces destination_table and its contents with the rows
from query. If destination_table does not exist, COPY
creates it. If destination_table does already exist, COPY
drops the existing table and replaces it with a table
containing the copied data.

13.4.2.2 Examples

Example 1

The following command copies the entire EMP table to a table named
WESTEMP. Note that the tables are located in two different databases. If
WESTEMP already exists, both the table and its contents are replaced. The
columns in WESTEMP have the same names as the columns in the source table,
EMP.
COPY FROM SCOTT/TIGER@ODBC:INFO TO JACK/SMITH@ODBC:HQ -
REPLACE WESTEMP -
USING SELECT * FROM EMP

Example 2

The following command copies selected records from EMP to the database to
which UBT is connected. Table SALESMEN is created during the copy. UBT
copes only the columns EMPNO and ENAME and at the destination names them
EMPNO and SALESMAN.
COPY FROM SCOTT/TIGER@ODBC:INFO -
CREATE SALESMEN (EMPNO,SALESMAN) -
USING SELECT EMPNO, ENAME FROM EMP -
WHERE JOB='SALESMAN'

13.4.3 SPOOL
Stores query results in an operating system file.

13.4.3.1 Syntax
SPOOL [filename | OFF]

filename: Represents the name for the file to which you wish to
spool.

OFF: Stops spooling.

89

13.4.3.2 Examples

Example 1

To record your displayed output in a file named DIARY.OUT, enter:
SPOOL DIARY.OUT

Example 2

To stop spooling, type:
SPOOL OFF

13.4.4 @ ("at" sign)
Runs the specified command file.

13.4.4.1 Syntax
@filename

filename: Represents the name for the file to which you wish to
spool.

13.4.5 SET AUTOCOMMIT
Toggles autocommit on and off.

13.4.5.1 Syntax
SET AUTOCOMMIT {ON | OFF}

ON: Autocommit mode is ON.

OFF: Autocommit mode is OFF.

13.4.6 DISCONNECT
Commits pending changes to the database and logs the user off the database, but
does not exit UBT.

13.4.6.1 Syntax
DISCONNECT

13.4.7 QUIT / EXIT
Commits all pending database changes, terminates UBT, and returns control to the
operating system.

13.4.7.1 Syntax
QUIT | EXIT

90

Appendices

91

Appendix A: Case Sensitivity Issues
Table and column names used in PL/SQL (either in SQL statements or in variable
declarations such as v_ename emp.ename%type) are treated as upper case by the
PL/SQL compiler. That is, they will only be found to exist in the database if either
(a) the database is case insensitive (most are) or (b) the database is case sensitive
but the table and column names are defined in upper case. If it is required to use
lower or mixed case names in a case sensitive database, you must enclose the
names in double quotes. The PL/SQL compiler will then preserve the case.

For example, if you have a column Ename in a table Emp in a case-sensitive
database, the following statement will not work within PL/SQL :
CURSOR C IS SELECT Ename FROM Emp;

PL/SQL will fail to find the table Emp in the database, because it converts all
column and table names to uppercase. On the other hand, the following statement
will work:
Cursor C IS SELECT "Ename" FROM "Emp"

PL/SQL will compile this correctly, and will run the select statement correctly.

The OCA automatically replaces the double quotes, the standard delimiter in
Oracle, with the delimiter used by the data source for quoted identifiers. For
example, against Microsoft Access the select statement above would be converted
to:
SELECT `Ename` from `Emp`;

Therefore, you should always use double quotes when you want to quote
identifiers (such as table and column names).

92

Appendix B: Advanced OCA Connect Strings
The normal format for an OCA connect string is:
ODBC:<data source name>

However, there are several modifications to this syntax that you can use.

If you specify "*" (asterisk) for the <data source name> (example:
'scott/tiger@odbc:*'), you will be presented with a dialog box listing your defined
ODBC data sources from which to choose, similar to this one:

You can also specify an optional database name using the following syntax:
ODBC:<data source name>:<database name>

The optional <DataBaseName> allows you to indicate which database or data file
to connect to. ODBC does not have a standard way of connecting to different
databases, but the OCA knows how to connect to different databases for certain
data source types (For example, if connected to Microsoft SQL Server, OCA will
generate a "USE" statement).

If you specify "*" for the database name (Example: /@odbc:sql65:*) you will be
presented with the previous dialog box (with the data source you specified
highlighted, or if you specified "*" for the data source name, with no data source
highlighted). Once you choose your data source, you will be prompted with the
driver-specific connection dialog for that data source.

In this second dialog, you can choose your username, password, database (if the
driver allows you to), and configure whatever else the Driver lets you, on a per
connection basis.

Example: Connection to any ODBC data source as any user. Specify the
following full connection string:
/@odbc:*:*

This will allow the user to choose a data source, and then to choose a username
and password in the data source log-on box. OCA will automatically return the
correct username back to Forms Developer and Reports Developer when
requested.

93

Appendix C: Oracle Data Type Matching
The OCA automatically maps Oracle data types to the corresponding native data
types and vice versa. This affects in particular how columns are described (for
example, how column types appear when listed by the SQL*Plus “desc”
command), because the OCA always returns the corresponding Oracle data types.
Please refer to the chapter about your specific data source for more information.

If we have not provided a chapter for your data source, you may still determine
how data types are mapped by using the following table. This shows how the
OCA maps between Oracle data types and ODBC types. Your ODBC driver's
documentation should tell you how the relevant ODBC data types are mapped to
the data source’s native types.

Oracle Data Type ODBC Data Type
VARCHAR2 SQL_VARCHAR

CHAR SQL_CHAR

NUMBER SQL_NUMERIC

SQL_DECIMAL

SQL_INTEGER

SQL_TINYINT

SQL_SMALLINT

SQL_BIGINT

SQL_FLOAT

SQL_REAL

SQL_DOUBLE

DATE SQL_TIMESTAMP

SQL_DATE

SQL_TIME

RAW SQL_BINARY

SQL_VARBINARY

LONG SQL_LONGVARCHAR

LONG RAW SQL_LONGVARBINARY

ROWID SQL_VARCHAR1

1 Most ODBC data sources have no concept of ROWIDs, but those that do will convert CHAR columns into
ROWID automatically.

94

Appendix D: Notes on DATETIME types with fractional seconds.
Some ODBC data sources support DATETIME (sometimes known as
TIMESTAMP) values that allow more granularity than Oracle’s DATE type. For
example, SQL Server's DATETIME type stores dates up to millisecond
granularity, whereas Oracle’s DATE type only goes down to seconds.

Should you wish to display or update a datetime column including fractional
seconds, you should display it as a VARCHAR or CHAR field in your form, of
sufficient length to show all figures.

Please note that when you save the data in this field to the database, you may need
to change the format into the format your data source expects. This is because the
ODBC specification requires dates retrieved as character strings to be in the
format 'yyyy-mm-dd hh:mm:ss[.f...], but drivers are not required to accept this as
valid character input, and often they only accept the format which is native to the
data source. Hence, you sometimes need to change the format of datetime values
by hand (or by program code) before updating or inserting the value into the
database.

95

Appendix E: Automatic Adjustments in Forms Behavior for OCA
Data Sources

Oracle Forms runtime automatically adjusts its behavior, dependent upon what
type of data source it is connected to. The adjustments are documented here for
your reference.

Changes to Form (i.e. Module) Properties

Savepoint Mode Oracle uses savepoints to identify a point in a transaction
to which the application can later roll back. Savepoints
are used in conjunction with the ROLLBACK TO
command to rollback portions of the current transactions.

ODBC has no concept of named transactions, or partial
rollbacks, but the OCA has added savepoint support for
many popular databases . If the OCA knows the syntax
for using named savepoints against a certain data source,
then it will translate all ROLLBACK TO and
SAVEPOINT Oracle-style statements to the appropriate
native SQL statements.

The OCA translates for the following data sources,
according to the table below:

Data Source Syntax Used Comment
Oracle ROLLBACK TO

<name>
SAVEPOINT <name>

SQL Server 6.X
Sybase 10
Sybase 11

ROLL TRAN <name>
SAVE TRAN <name>

Savepoints are only
supported for ODBC
drivers which support
multiple active statements
per connection. See the
SQL Server and Sybase
chapters for more
information

Tandem
NonStop SQL

ROLLBACK TRAN
<name>
SAVE TRAN <name>

For data sources for which the OCA does not support
savepoints, Forms will default to not using savepoints at
all.

Cursor Mode This property is now obsolete, and is left unchanged (i.e.
at the default setting of Open), since the OCA now

96

handles cursor behavior automatically1. It should never be
set to Close. Please note however that application
behavior can still be affected by the cursor characteristics
of the data source because, whilst certain databases such
as Oracle can keep a cursor open, even after a user
commits a transaction, a lot of databases cannot do this. If
the data source does not maintain cursors across commits,
fetches from cursors after a commit will fail if the cursor is
not re-executed beforehand. In practice this mainly affects
cursors associated with queries in data blocks based on
tables: the user (or application code) must re-query after a
commit (i.e. after saving changes) before scrolling down to
the next set of records.

Changes to base table Data Block Properties

Certain data blocks, called base table data blocks, are associated with a database
table or view, and most items in a base table data block correspond directly to
database columns. Certain properties of base table data blocks that affect database
interaction are changed when building an application against OCA connections.
For more on data blocks, please refer to your Forms documentation.

Key Mode The Automatic value tells Forms to choose whichever Key
Mode bests suits the data source it is connected to. This is
the default for new forms. For a native (non-ODBC)
connection to Oracle, this will be interpreted as Unique
mode, which will make the application use Oracle's
ROWID feature to lock, update and delete rows. For
ODBC (OCA) connections, the key mode will be
interpreted as whatever works best for the data source,
according to the table below.

Data source Key Mode
Oracle (not via ODBC) Unique

Rdb Unique (uses DBKEY)

All others Updateable Primary Key

You can find out what Key Mode has been chosen by
using the GET_BLOCK_PROPERTY function at
runtime, but only after making the following call :
Set_application_property(

 db_design_properties, PROPERTY_FALSE);

1 Some ODBC data sources (for example, Ingres) actually delete cursors after a commit, meaning that they close
the cursor, and the user must re-open and re-parse that cursor to use it again. The OCA handles this
transparently by detecting when the cursor is deleted, and automatically re-opening and re-parsing it if an
attempt is made to re-execute that cursor.

97

Otherwise, a call to get_block_property(theBlock,
KEY_MODE) will return the value ‘AUTOMATIC’.

Updateable primary key means that rows will be identified
by those items marked as PRIMARY KEY. Unique
means that a system-specific internal key is used to identify
rows (such as Oracle’s rowid or Rdb’s dbkey). Unique
key mode is only supported against Rdb and native (i.e.
non-ODBC) connections to Oracle.

If the Key Mode property is explicitly set to Updateable
or Non-Updateable primary key, or if it is set to
automatic but will be interpreted as updateable primary
key against at least one of the data sources to be used,
then one or more of the items in the data block must be
identified as the primary key, by setting the Item's Primary
Key property to True.

Locking Mode Defines when rows are locked in the database as they are
updated by the user.

The Automatic value specifies that Forms should use the
locking mode that is optimal for the data source it is
connected to. When connected to Oracle, it will use
Immediate mode. When connected to an OCA data
source, it will use the mode as defined by the following
table:

Data source Locking Mode
Oracle Immediate

All Others Delayed

You can find out what Locking Mode has been chosen by
using the GET_BLOCK_PROPERTY function at
runtime, but only after making the following call :
Set_application_property(

 db_design_properties,
PROPERTY_FALSE);

Otherwise, a call to get_block_property(theBlock,
KEY_MODE) will return the value ‘AUTOMATIC’.

The Immediate value specifies that Forms should attempt
to lock a row as soon as the user modifies an item in the
row, or attempts to delete the row.

The Delayed value specifies that Forms should lock rows
immediately prior to issuing the updates and committing
the transaction. With this setting, the record is locked only
when the transaction is posted to the database, and not

98

while the operator is editing the record. As a result,
deadlocks or lengthy waits for locks are much less likely.

In order to lock a row, Forms issues a “SELECT… FOR
UPDATE” statement selecting the row. Against data
sources not supporting the “FOR UPDATE” clause, the
OCA will remove this clause. This means the row will not
actually be locked by the database, but still allows Forms
to ensure that no other user has updated the row since it
was queried. This reduces the risk of lost updates.

99

Appendix F: Notes on drivers supporting only one active
statement per connection

While most ODBC data sources allow any number of active statements (or
cursors) per connection, some, like certain configurations of Microsoft SQL
Server1, do not. If this is the case for your datasource you should read this
appendix.

Lock Outs

If only one active statement is allowed on a connection, you can only ever have
one SELECT statement with results waiting on your connection at a time.

All Forms Developer and Reports Developer tools assume they can have multiple
active statements on a connection, just by opening new cursors, so the OCA
simulates multiple active statements by silently opening a new connection for each
opened cursor.

However, a separate connection for each cursor increases an application's chance
of locking itself out. For example, if two or more different SQL statements in a
PL/SQL block update, insert or delete rows in a table in the same database page
(when running against a page-locking database¹), the application will deadlock as
each connection waits for the other one to finish with the page lock.

As a workaround for this problem, you can commit between statements, or
execute the same statement several times in a PL/SQL loop rather than using
separate statements, or put the statements in a stored procedure and pass the
values as arguments to the procedure.

Commit/Rollback Issues

Some databases allow only one cursor per connection. As a result, as mentioned
above, the OCA opens additional cursors through separate connections.

Oracle Forms controls master-detail relations through multiple cursors. If a
database only allows one cursor per connection, another connection must be
established for each detail table. Because each cursor has an individual
connection, committing a master-detail application requires coordinating the
various cursors. Consequently, a problem could arise if only a subset of the
multiple required connections succede in committing their work - a form could be
inconsistently updated if a remaining subset of the connections fail to commit or
rollback.

If your driver can coordinate two-phase commits between connections, you will
not experience this problem.

1 See the chapter on Microsoft SQL Server for more information.

100

Appendix G: Error Messages
The following table contains OCA error message numbers, the corresponding
error message text, and (if there is one) the corresponding Oracle error code
which is returned. As described in section "2.11 OCA Error Handling", in the
absence of an Oracle error code, the OCA error code is returned..

OCA Error
Code

OCA Error Message Text Oracle Error
Code

30000 general OCA error
30001 invalid session context
30002 function not supported 1010
30003 NULL username in connect string 1017
30004 NULL hostname in connect string
30005 all cursors are in use
30006 error creating parse tree
30007 NULL SQL statement
30008 memory allocation failed 1019
30009 error processing bind variables
30010 Oracle to ODBC datatype conversion error
30011 ODBC to Oracle datatype conversion error
30012 error binding reference value
30013 no parameters to bind
30014 hostname too long
30015 stored procedures not supported for this datasource
30016 sequences not supported by this database
30017 error logging on to non-Oracle database 1017
30018 username or password too long 1017
30019 error handling non-Oracle stored procedures
30020 stored procedure name is missing
30021 error preparing/executing SQL statement
30022 error retrieving column
30023 error fetching result set
30024 error retrieving column descriptors 1007
30025 error getting number of columns in result set
30026 error retrieving procedure descriptors
30027 error setting ODBC connection/statement option
30028 error at commit/rollback
30029 error binding column
30030 error binding parameter
30031 error retrieving information about driver/database

101

30032 error freeing memory
30033 row status error 1444
30034 table not found 942
30035 column not found 904
30036 invalid authorization specification
30037 datasource not available 1034
30038 invalid column number 1007
30039 illegal bundled operation combination 2035
30040 invalid cursor context 1023
30041 bind variable does not exist 1006
30042 no data found 1403
30043 fetched column value is NULL 1405
30044 fetched column value was truncated 1406
30045 error returning result data
30046 no datasource name specified 12153
30047 unsupported transaction isolation level 2248
30048 binding arrays not supported 1484
30049 not logged on 1012
30050 error freeing SQL statement
30051 error fetching data. You must re-execute after a

commit for this data source
30052 parameter value was truncated at execution 6502
30053 unsupported network call 3115

If an error occurs and the application is unable to read the message from the
message file, verify that the following entry is set in the registry on Windows NT
and Windows 95 or in the ORACLE.INI file on Windows 3.1:
UB=$(ORACLE_HOME)\OCA60

Where $(ORACLE_HOME) is replaced with your ORACLE_HOME.

