
Using Oracle Developer with the
Tuxedo TP Monitor

An Oracle White Paper
January 1999

TABLE OF CONTENTS

1. Introduction ... 1

1.1 Client/Server Architectures ... 1

1.2 Oracle Developer .. 3

1.3 Tuxedo.. 3

1.4 Why Use a TP Monitor? .. 4

1.5 Why Use a TP Monitor with Oracle Developer? 5

2. The Interface.. 7

2.1 ATMI Interface ... 7
2.1.1 ATMI Constants and Structures ... 7

2.1.1.1 Flags to Service Routines ... 7
2.1.1.2 Flags to tpreturn() .. 8
2.1.1.3 Flags to tpscmt() .. 8
2.1.1.4 Flags to tpinit() .. 8
2.1.1.5 Flags to tpconvert() .. 8
2.1.1.6 Return Values from tpchkauth() 8
2.1.1.7 Maximum Length of a Tuxedo/T Identifier 9
2.1.1.8 tpinit() Interface Structure .. 9
2.1.1.9 Error Codes .. 9
2.1.1.10 Conversational and Event Flags 10
2.1.1.11 Queued Messages Add-on .. 10
2.1.1.12 Structure Elements that are Valid - Set in Flags 10

2.1.2 ATMI Functions .. 10

2.2 FML16 Interface ... 14
2.2.1 FML16 Constants and Structures 14

2.2.1.1 Constants ... 14
2.2.1.2 Operations for Fmodidx() ... 14
2.2.1.3 Flags for Fvstof() ... 14
2.2.1.4 Operations for Fstof ... 15
2.2.1.5 Field Types .. 15
2.2.1.6 Field Id Constants .. 15
2.2.1.7 Field Error Codes ... 15

2.2.2 FML16 Functions .. 16
2.2.2.1 Function Variants ... 16
2.2.2.2 Length Argument ... 16
2.2.2.3 Field Identifier Mapping Functions 17
2.2.2.4 Buffer Allocation and Initialization 17
2.2.2.5 Functions for Moving Fielded Buffers 18
2.2.2.6 Field Access and Modification 18
2.2.2.7 Buffer Update Functions .. 20
2.2.2.8 VIEWS Functions .. 20
2.2.2.9 Conversion Functions ... 21
2.2.2.10 Indexing Functions ... 23

2.2.2.11 Input/Output Functions ... 23
2.2.2.12 VIEW Conversion .. 24
2.2.2.13 Utility Functions .. 24

2.3 Additional Functions ... 24
2.3.1 File I/O Functions .. 24
2.3.2 String Manipulation Functions ... 24
2.3.3 Shutdown Function .. 25

3. A Demonstration.. 26

3.1 Tuxedo bankapp .. 26

3.2 Oracle Developer bankapp .. 27
3.2.1 Preparing the bankapp Client ... 27
3.2.2 Running the bankapp Client ... 28

3.3 Client Development Tips .. 29
3.3.1 Elements of the bankapp Client .. 29

3.3.1.1 bankapp Client PL/SQL Library 29
3.3.1.2 bankapp Client PL/SQL Form 33

4. Appendix .. 36

4.1 What’s New in this Release?... 36
4.1.1 Bug Fixes .. 36
4.1.2 Current Limitations... 36

4.2 Frequently Asked Questions.. 36
4.2.1 General ... 36
4.2.2 Marketing .. 37

4.3 Additional Resources.. 37
4.3.1 Oracle Developer ... 37

4.3.1.1 On-line Documentation.. 37
4.3.1.2 White Papers.. 38
4.3.1.3 Books... 38

4.3.2 Tuxedo and TP Monitors... 38
4.3.2.1 Documentation Set... 38
4.3.2.2 White Papers.. 39
4.3.2.3 Books... 39
4.3.2.4 Web Pages... 39

Using Oracle Developer with the Tuxedo TP Monitor 1

Using Oracle Developer with the Tuxedo TP Monitor

1. Introduction
This document discusses the use of Oracle’s Developer as a front-end development tool to the
Tuxedo transaction processing (TP) monitor. It provides a brief introduction to client/server
architectures and TP monitors, and describes in detail the programmatic interface between
Oracle Developer and Tuxedo, commonly referred to as D2TX, including an example .

The following table summarizes which releases of Oracle Developer can interface with which
releases of Tuxedo.

Oracle Developer Release Tuxedo Release
Developer/2000 1.3.2 for Windows 3.11 Tuxedo 6.1

Part Numbers: 701-001002-001 (CD)
705-001010-001 (diskette)

Developer/2000 1.3.2 for Windows 95/NT 3.51
Developer/2000 1.5.x for Windows 95/NT 3.51
Developer/2000 1.6 for Windows 95/NT 3.51
Developer/2000 2.x for Windows 95/NT 3.51

Tuxedo 6.1 volume 2
Part Number: 701-001004-001 (CD)

Developer/2000 1.3.3 for Windows 3.11
Developer Release 6 for Windows 95/NT 4.0
Developer Release 6 for Solaris 2.5.1

Tuxedo 6.4
Part Number: 701-001002-005 (CD)

Table 1 - Developer / Tuxedo Release Compatibility Matrix

1.1 Client/Server Architectures
In a two-tiered client/server system architecture, a client makes service requests of a server. An
example of this architecture would be an Oracle Developer client communicating to an Oracle7
database server using SQL*Net as a networking protocol. In this scenario, the communication
vocabulary is SQL. The client sends SELECT, INSERT, UPDATE and DELETE statements,
and calls stored procedures. The server returns result sets, status codes, and return values from
stored procedures. Figure 1 below illustrates the concept.

Using Oracle Developer with the Tuxedo TP Monitor 2

®

Architecture: Traditional “2-tier”

Oracle7

Developer/2000

Data S tore
Some Business Logic

User Interface
Some Business Logic

SQL*Net

Select
Update
Insert

Call S.P.

Rows
Return Values

Figure 1 - Traditional Two-Tier Architecture

In the “classic” three-tiered client/server system architecture, the client communicates with an
application server, typically a program written in a 3GL such as C, C++, or even COBOL. The
client (first tier) makes service requests of an application server (second tier), which in turn
communicates with a resource server (third tier), usually a database. The client usually
communicates with the application server using a remote procedure call (RPC) interface. This
may be via a proprietary RPC mechanism, or a public standard such as the Distributed
Computing Environment (DCE). This is illustrated in Figure 2 below.

The application server communicates with the database using the X/Open XA interface, which
allows the application server to process multiple transactions on behalf of multiple clients
through a single database connection. There is often the notion of a console, or a set of
monitoring applications. These can check the status of the various clients and servers, and alert
operators or administrators to abnormal conditions.

With this second scenario, there are two communication vocabularies. The application server
sends SQL to the database, but the client uses a vocabulary closer to that of the business. In a
banking example, the client would feature business functionality such as “Open Account”,
“Withdraw” or “Deposit”. Depending on the (TP monitor) product, the calls from the client to
the application server might be of the form “Call_Service (withdraw)” or simply “Withdraw”.

Using Oracle Developer with the Tuxedo TP Monitor 3

®

Architecture: TP Monitor “3-tier”

Oracle7

Developer/2000

Data
Store

User
Interface

SQL*Net
Select
Update
Insert

Rows

RPC

3GL - C, COBOL (!)

Service
Requests

Return
Values

Business
Logic

“XA” interface

Figure 2 - Three-Tier Architecture

1.2 Oracle Developer
Developer is Oracle’s application development suite for building sophisticated systems which
scale from the workgroup to the enterprise, and contains the Forms, Reports, Graphics, and
Procedure Builder tools. These tools allow a developer to quickly create objects that correspond
to the graphical objects that an end user would manipulate (e.g., buttons, text fields). PL/SQL
procedural code can be associated with these objects to extend the application’s functionality.

Forms is the primary target of this interface. Forms consists of the Form Builder, Form Compiler
and Forms Runtime components. Form Builder includes a set of visual tools to create objects,
set their properties, and write application code.

Procedure Builder is useful for editing and debugging PL/SQL code. Reports is a tool for
developing, displaying, and printing production-quality reports. It is designed for application
developers who are familiar with the SQL and PL/SQL languages. Graphics enables the
creation of multimedia graphical displays that can be dynamically linked to data sources. All of
these tools are optimized to take complete advantage of the powerful features in the Oracle8
Server, Oracle’s industry-leading database management product.

An interface to the Reports component of Oracle Developer may become available in a future
release.

1.3 Tuxedo
A TP monitor is an example of a class of software known as middleware, so named because it is
used to manage the interaction between clients and servers, or layers of servers. TP monitors are
a particularly complex and powerful kind of middleware, and provide a framework for many
clients to simultaneously process transactions in a large, distributed system. TP monitors also
provide transaction logging, security and routing capabilities for such systems.

Using Oracle Developer with the Tuxedo TP Monitor 4

Tuxedo is a TP monitor developed and sold by BEA Systems, Inc. It is available for the Unix,
Netware and Windows NT operating systems on over thirty-five server hardware platforms, and
also supports the Macintosh, OS/2 and Windows operating systems as client platforms.

1.4 Why Use a TP Monitor?
The original TP monitors, such as CICS, served almost entirely to allow a large number of users
to access a single mainframe system. As networks of distributed computers replace mainframes,
TP monitor technology has also evolved to provide solutions to the many problems faced in that
environment:

• Scalability

The currently accepted upper bound for a two-tiered application is approximately 1,000
users per database node running on a “high-end” server. For many enterprise level
applications, there are more users than this, or the database server can handle the
transaction load but not the connection load. A TP monitor can allow greater scalability
by multiplexing many clients through a smaller number of database connections.

• OLTP and high throughput

TP monitors permit on-line transaction processing (OLTP) applications with a higher
throughput. By multiplexing connections as described above, the load on the database
server is reduced. In addition, it is possible to have the application servers buffer or log
transactions during peak periods, and post them to the database at another time when the
load is lower.

• Load balancing

With a TP monitor, the client need not know to which application server it is connecting.
Application servers can route requests to other application servers, and in some cases,
suspended transactions. This allows the application load to be dynamically distributed
and balanced across multiple application and data servers, making the most efficient use
of the system’s overall resources.

• Facilitate the separation of presentation, business logic, and data management

Many application designs call for the separation of presentation, business rules, and data
management. The three-tiered architecture that includes a TP monitor fits this
requirement well, with the presentation being handled by the client, the business logic by
the application servers, and the data management by the resource servers.

Even when the application is partitioned in this way, there is still a large role for stored
procedures in a programmable server. Stored procedures and database triggers should be
used for final data validation, data manipulation, and those business rules that are so
closely tied to the data that they need no external input.

• Access non-RDBMS data and services in a transaction

Because the application server is a separate, remote process, it’s easier to integrate non-
database services, such as live feeds, into a transaction. Attempting to implement this
within a two-tiered client/server architecture poses problems. If the integration is with
the client, then every client must access the remote, non-database service. If the
integration is with the database server, the remote service must be integrated via database

Using Oracle Developer with the Tuxedo TP Monitor 5

pipes or other fairly esoteric means. Clearly, a shared application service written in a
3GL is a more straightforward place to integrate a remote service.

• Fail-over, redundancy, and flexibility of administration

TP monitors’ load-balancing and transaction routing capabilities improve system
management and maintenance. In the case of server downtime, either planned or
unplanned, transactions can be routed to other servers with minimal impact on the clients.
If there are multiple versions of an application, client requests can again be routed to
servers that will handle the request properly. This allows a system with thousands of
users to be upgraded in phased stages, rather than en masse.

• Interruptible transactions

TP monitors permit transactions to be interrupted and later resumed. This supports cases
where the client is unexpectedly disconnected, as well as cases where one client might
start a transaction, and another needs to finish it.

• Data-dependent routing

TP monitors allow transactions to be routed to different servers based on data within the
transaction. For example, account requests can be routed to the database server for the
city where an account is located.

1.5 Why Use a TP Monitor with Oracle Developer?
Oracle Developer has long been viewed as a tool for building only two-tiered client/server
applications. With new interfaces to TP monitors such as Tuxedo, there are now compelling
reasons why Oracle Developer is the right choice as the application development solution for
both two- and three-tiered distributed system architectures:

• Leverage developer training

An organization that has experience using Oracle Developer can continue to use this
powerful tool set to create TP monitor-enabled applications. Since all of the TP monitor
client functions are exposed in Oracle Developer, they can be incorporated in
applications just like the functions in any other built-in PL/SQL package.

• Reusable components, classes, and code for multiple clients

Just as an organization can develop reusable components, classes, and code with Oracle
Developer to increase the productivity of their developers, the same can be done for TP
monitor-enabled components, classes, and code, allowing organizations to quickly create
more reliable TP monitor clients.

• Build combination two- and three- tiered applications

Developers now have the flexibility to design their distributed applications with a
combination of two- and three- tiered architectures, allowing the most efficient
architecture to be used for any given part of the system.

• Full GUI and navigation events, and built in data validation

The same built-in, internal events that Oracle Developer provides for building complex,
distributed systems are also available to tailor TP monitor-enabled applications. The
Forms processing model enforces the integrity of data at the item, record, block, and

Using Oracle Developer with the Tuxedo TP Monitor 6

form level, and the rich assortment of GUI and navigational events that can be responded
to with trigger code, gives the developer complete control over every aspect of the
application.

Forms has a built-in validation model that makes it easy to validate data in records that
have been entered or updated by the operator. Many of the most common validation
requirements can be handled by setting item-level properties.

• Take advantage of transactional triggers

Forms includes a set of transactional triggers that can be used to map services to sets of
rows, which is generally what a user wants to manipulate.

However, the main benefit of this interface is the ability to write applications with Oracle
Developer that will accommodate much larger numbers of clients accessing Oracle databases
than would otherwise be feasible.

Using Oracle Developer with the Tuxedo TP Monitor 7

2. The Interface
Oracle’s Developer allows customers to easily develop client/server applications against
relational databases. Tuxedo provides a public application programming interface (API) that
allows customers to write client/server applications based on their transaction processing (TP)
monitor software.

The idea behind this interface is to present the Tuxedo client API as PL/SQL functions and
procedures, so that developers using Developer create Tuxedo clients using PL/SQL. The
PL/SQL library that contains the PL/SQL equivalents of the Tuxedo API is called D2TX for the
32-bit Windows platform. This libraries registers the Tuxedo client API as PL/SQL foreign
functions, which allows the API to be accessed directly from within PL/SQL code.

While Tuxedo’s public API is quite extensive, this version of the interface focuses only on those
functions that a client program would utilize. Specifically, this interface is an encapsulation of
Tuxedo’s Application-to-Transaction Manager Interface (ATMI) API, and the 16-bit version of
the Forms Manipulation Language (FML) API (FML16, or just FML). The details of exactly
which constants, procedures, and functions have been exposed in Developer are presented
below.

2.1 ATMI Interface
The following tables show those elements of the Tuxedo ATMI interface which are exposed in
Developer.

2.1.1 ATMI Constants and Structures

The following tables indicate the mapping of C programming constructs in the Tuxedo header
file atmi.h to their equivalent definitions in the PL/SQL package “TUXDEF”.

2.1.1.1 Flags to Service Routines

“C” Constant PL/SQL Equivalent
#define TPNOBLOCK 0x00000001 tuxdef.TPNOBLOCK integer := 1

#define TPSIGSTRT 0x00000002 tuxdef.TPSIGSTRT integer := 2

#define TPNOREPLY 0x00000004 tuxdef.TPNOREPLY integer := 4

#define TPNOTRAN 0x00000008 tuxdef.TPNOTRAN integer := 8

#define TPTRAN 0x00000010 tuxdef.TPTRAN integer := 16

#define TPNOTIME 0x00000020 tuxdef.TPNOTIME integer := 32

#define TPABSOLUTE 0x00000040 tuxdef.TPABSOLUTE integer := 64

#define TPGETANY 0x00000080 tuxdef.TPGETANY integer := 128

#define TPNOCHANGE 0x00000100 tuxdef.TPNOCHANGE integer := 256

#define TPCONV 0x00000400 tuxdef.TPCONV integer := 1024

#define TPSENDONLY 0x00000800 tuxdef.TPSENDONLY integer := 2048

#define TPRECVONLY 0x00001000 tuxdef.TPRECVONLY integer := 4096

#define TPACK 0x00002000 tuxdef.TPACK integer := 8192

Using Oracle Developer with the Tuxedo TP Monitor 8

2.1.1.2 Flags to tpreturn()

“C” Constant PL/SQL Equivalent
#define TPFAIL 0x00000001 tuxdef.TPFAIL integer := 1

#define TPSUCCESS 0x00000002 tuxdef.TPSUCCESS integer := 2

#define TPEXIT 0x08000000 tuxdef.TPEXIT integer := 134217728

2.1.1.3 Flags to tpscmt()

“C” Constant PL/SQL Equivalent
#define TP_CMT_LOGGED 0x01 tuxdef.TP_CMT_LOGGED integer := 1

#define TP_COMT_COMPLETE 0x02 tuxdef.TP_CMT_COMPLETE integer := 2

2.1.1.4 Flags to tpinit()

“C” Constant PL/SQL Equivalent
#define TPU_MASK 0x00000007 tuxdef.TPU_MASK integer := 7

#define TPU_SIG 0x00000001 tuxdef.TPU_SIG integer := 1

#define TPU_DIP 0x00000002 tuxdef.TPU_DIP integer := 2

#define TPU_IGN 0x00000004 tuxdef.TPU_IGN integer := 4

#define TPSA_FASTPATH 0x00000008 tuxdef.TPSA_FASTPATH integer := 8

#define TPSA_PROTECTED 0x00000010 tuxdef.TPSA_PROTECTED integer := 16

2.1.1.5 Flags to tpconvert()

“C” Constant PL/SQL Equivalent
#define TPTOSTRING 0x40000000 tuxdef.TPTOSTRING integer := 1073741824

#define TPCONVCLTID 0x00000001 tuxdef.TPCONVCLTID integer := 1

#define TPCONVTRANID 0x00000002 tuxdef.TPCONVTRANID integer := 2

#define TPCONVXID 0x00000004 tuxdef.TPCONVXID integer := 4

#define TPCONVMAXSTR 256 tuxdef.TPCONVMAXSTR integer := 256

2.1.1.6 Return Values from tpchkauth()

“C” Constant PL/SQL Equivalent
#define TPNOAUTH 0 tuxdef.TPNOAUTH integer := 0

#define TPSYSAUTH 1 tuxdef.TPSYSAUTH integer := 1

#define TPAPPAUTH 2 tuxdef.TPAPPAUTH integer := 2

Using Oracle Developer with the Tuxedo TP Monitor 9

2.1.1.7 Maximum Length of a Tuxedo/T Identifier

“C” Constant PL/SQL Equivalent
#define MAXTIDENT 30 tuxdef.MAXTIDENT integer := 30

2.1.1.8 tpinit() Interface Structure

“C” Structure PL/SQL Equivalent
struct tpinfo_t {
 char usrname[MAXTIDENT+2];
 char cltname[MAXTIDENT+2];
 char passwd [MAXTIDENT+2];
 char grpname[MAXTIDENT+2];
 long flags;
 long datalen;
 long data;
};
typedef struct tpinfo_t TPINIT;

type tuxdef.TPINIT is record (
 usrname VARCHAR2(30),
 cltname VARCHAR2(30),
 passwd VARCHAR2(30),
 grpname VARCHAR2(30),
 flags PLS_INTEGER,
 datalen PLS_INTEGER,
 data PLS_INTEGER
);

2.1.1.9 Error Codes

“C” Constant PL/SQL Equivalent
#define TPMINVAL 0 tuxdef.TPMINVAL integer := 0

#define TPEABORT 1 tuxdef.TPEABORT integer := 1

#define TPEBADDESC 2 tuxdef.TPEBADDESC integer := 2

#define TPEBLOCK 3 tuxdef.TPEBLOCK integer := 3

#define TPEINVAL 4 tuxdef.TPEINVAL integer := 4

#define TPELIMIT 5 tuxdef.TPELIMIT integer := 5

#define TPENOENT 6 tuxdef.TPENOENT integer := 6

#define TPEOS 7 tuxdef.TPEOS integer := 7

#define TPEPERM 8 tuxdef.TPEPERM integer := 8

#define TPEPROTO 9 tuxdef.TPEPROTO integer := 9

#define TPESVCERR 10 tuxdef.TPESVCERR integer := 10

#define TPESVCFAIL 11 tuxdef.TPESVCFAIL integer := 11

#define TPESYSTEM 12 tuxdef.TPESYSTEM integer := 12

#define TPETIME 13 tuxdef.TPETIME integer := 13

#define TPETRAN 14 tuxdef.TPETRAN integer := 14

#define TPGOTSIG 15 tuxdef.TPGOTSIG integer := 15

#define TPERMERR 16 tuxdef.TPERMERR integer := 16

#define TPEITYPE 17 tuxdef.TPEITYPE integer := 17

#define TPEOTYPE 18 tuxdef.TPEOTYPE integer := 18

#define TPERELEASE 19 tuxdef.TPERELEASE integer := 19

#define TPEHAZARD 20 tuxdef.TPEHAZARD integer := 20

#define TPEHEURISTIC 21 tuxdef.TPEHEURISTIC integer := 21

#define TPEEVENT 22 tuxdef.TPEEVENT integer := 22

#define TPEMATCH 23 tuxdef.TPEMATCH integer := 23

#define TPEDIAGNOSTIC 24 tuxdef.TPEDIAGNOSTIC integer := 24

#define TPEMIB 25 tuxdef.TPEMIB integer := 25

#define TPMAXVAL 26 tuxdef.TPMAXVAL integer := 26

Using Oracle Developer with the Tuxedo TP Monitor 10

2.1.1.10 Conversational and Event Flags

“C” Constant PL/SQL Equivalent
#define TPEV_DISCONIM 0x0001 tuxdef.TPEV_DISCONIM integer := 1

#define TPEV_SVCERR 0x0002 tuxdef.TPEV_SVCERR integer := 2

#define TPEV_SVCFAIL 0x0004 tuxdef.TPEV_SVCFAIL integer := 4

#define TPEV_SVCSUCC 0x0008 tuxdef.TPEV_SVCSUCC integer := 8

#define TPEV_SENDONLY 0x0020 tuxdef.TPSA_SENDONLY integer := 32

2.1.1.11 Queued Messages Add-on

“C” Constant PL/SQL Equivalent
#define TMQNAMELEN 15 tuxdef.TMQNAMELEN integer := 15

#define TMMSGIDLEN 32 tuxdef.TMMSGIDLEN integer := 32

#define TMCORRIDLEN 32 tuxdef.TMCORRIDLEN integer := 32

2.1.1.12 Structure Elements that are Valid - Set in Flags

“C” Constant PL/SQL Equivalent
#define TPNOFLAGS 0x00000 tuxdef.TPNOFLAGS integer := 0

#define TPQCORRID 0x00001 tuxdef.TPQCORRID integer := 1

#define TPQFAILUREQ 0x00002 tuxdef.TPQFAILUREQ integer := 2

#define TPQBEFOREMSGID 0x00004 tuxdef.TPQBEFOREMSGID integer := 4

#define TPQGETBYMSGID 0x00008 tuxdef.TPQGETBYMSGID integer := 8

#define TPQMSGID 0x00010 tuxdef.TPQMSGID integer := 16

#define TPQPRIORITY 0x00020 tuxdef.TPQPRIORITY integer := 32

#define TPQTOP 0x00040 tuxdef.TPQTOP integer := 64

#define TPQWAIT 0x00080 tuxdef.TPQWAIT integer := 128

#define TPQREPLYQ 0x00100 tuxdef.TPQREPLYQ integer := 256

#define TPQTIME_ABS 0x00200 tuxdef.TPQTIME_ABS integer := 512

#define TPQTIME_REL 0x00400 tuxdef.TPQTIME_REL integer := 1024

#define TPQGETBYCORRID 0x00800 tuxdef.TPQGETBYCORRID integer := 2048

#define TPQPEEK 0x01000 tuxdef.TPQPEEK integer := 4096

2.1.2 ATMI Functions

The following tables indicate the mapping of C function prototypes in the Tuxedo header file
atmi.h to the equivalent functions and procedures in the PL/SQL package “ATMI”.

These are the ATMI functions proper. They are presented here in alphabetical order.

“C” Function Prototype PL/SQL Equivalent
int tpabort (
 long flags
);

function ATMI.tpabort (
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpacall (
 char *svc,
 char *data,
 long len,
 long flags
);

function ATMI.tpacall (
 svc in out VARCHAR2,
 data in ORA_FFI.POINTERTYPE,
 len in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpadvertise (
 char *svcname,
 void (*func)(TPSVCINFO *)
);

Not a Tuxedo client function.

Using Oracle Developer with the Tuxedo TP Monitor 11

“C” Function Prototype PL/SQL Equivalent
char *tpalloc (
 char *type,
 char *subtype,
 long size
);

function ATMI.tpalloc (
 type in out VARCHAR2,
 subtype in out VARCHAR2,
 size in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int tpbegin (
 unsigned long timeout,
 long flags
);

function ATMI.tpbegin (
 timeout in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpbroadcast (
 char *lmid,
 char *usrname,
 char *cltname,
 char *data,
 long len,
 long flags
);

function ATMI.tpbroadcast (
 lmid in out VARCHAR2,
 usrname in out VARCHAR2,
 cltname in out VARCHAR2,
 data in ORA_FFI.POINTERTYPE,
 len in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpcall (
 char *svc,
 char *idata,
 long ilen,
 char **odata,
 long *olen,
 long flags
);

function ATMI.tpcall (
 svc in out VARCHAR2,
 idata in ORA_FFI.POINTERTYPE,
 ilen in PLS_INTEGER,
 odata in out ORA_FFI.POINTERTYPE,
 olen in out PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpcancel (
 int cd
);

function ATMI.tpcancel (
 cd in PLS_INTEGER
) return PLS_INTEGER;

int tpchkauth (
 void
);

function ATMI.tpchkauth
return PLS_INTEGER;

int tpchkunsol (
 void
);

function ATMI.tpchkunsol
return PLS_INTEGER;

int tpclose (
 void
);

Not a Tuxedo client function.

int tpcommit (
 long flags
);

function ATMI.tpcommit (
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpconnect (
 char *svc,
 char *data,
 long len,
 long flags
);

function ATMI.tpconnect (
 svc in out VARCHAR2,
 data in ORA_FFI.POINTERTYPE,
 len in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpconvert (
 char *arg1,
 char *arg2,
 long arg3
);

Planned for a future release.

int tpdequeue (
 char *qspace,
 char *qname,
 TPQCTL *ctl,
 char **data,
 long *len,
 long flags
);

Planned for a future release.

int tpdiscon (
 int cd
);

function ATMI.tpdiscon (
 cd in PLS_INTEGER
) return PLS_INTEGER;

int tpenqueue (
 char *qspace,
 char *qname,
 TPQCTL *ctl,
 char *data,
 long len,
 long flags
);

Planned for a future release.

void tpforward (
 char *svc,
 char *data,
 long len,
 long flags
);

Not a Tuxedo client function.

Using Oracle Developer with the Tuxedo TP Monitor 12

“C” Function Prototype PL/SQL Equivalent
void tpfree (
 char *ptr
);

procedure ATMI.tpfree (
 ptr in ORA_FFI.POINTERTYPE
);

int tpgetlev (
 void
);

function ATMI.tpgetlev
return PLS_INTEGER;

int tpgetrply (
 int *cd,
 char **data,
 long *len,
 long flags
);

function ATMI.tpgetrply (
 cd in out PLS_INTEGER,
 data in out ORA_FFI.POINTERTYPE,
 len in out PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

int tpgprio (
 void
);

function ATMI.tpgprio
return PLS_INTEGER;

int tpinit (
 TPINIT *tpinfo
);

Use the first variant if there is variable length string
data that needs to be forwarded to an application-
specific authentication service. Note that the length of
the variable length string data is calculated internally,
and that if an error is encountered, the error code is
returned in the argument tperrno.

function ATMI.tpinit (
 usrname in VARCHAR2,
 cltname in VARCHAR2,
 passwd in VARCHAR2,
 grpname in VARCHAR2,
 flags in PLS_INTEGER,
 data in out VARCHAR2,
 tperrno out PLS_INTEGER
) RETURN PLS_INTEGER;

function ATMI.tpinit (
 tpinfo in TUXDEF.TPINIT
) return PLS_INTEGER;

int tpnotify (
 CLIENTID *clientid,
 char *data,
 long len
 long flags
);

Not a Tuxedo client function.

int tpopen (
 void
);

Not a Tuxedo client function.

int tppost (
 char *eventname,
 char *data,
 long len,
 long flags
);

Planned for a future release.

char *tprealloc (
 char *ptr,
 long size
);

function ATMI.tprealloc (
 ptr in ORA_FFI.POINTERTYPE,
 size in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int tprecv (
 int cd,
 char **data,
 long *len,
 long flags,
 long *revent
);

function ATMI.tprecv (
 cd in PLS_INTEGER,
 data in out ORA_FFI.POINTERTYPE,
 len in out PLS_INTEGER,
 flags in PLS_INTEGER,
 revent in out PLS_INTEGER
) return PLS_INTEGER;

int tpresume (
 TPTRANID *tranid,
 long flags
);

Planned for a future release.

Using Oracle Developer with the Tuxedo TP Monitor 13

“C” Function Prototype PL/SQL Equivalent
void tpreturn (
 int rval,
 long rcode,
 char *data,
 long len,
 long flags
);

Not a Tuxedo client function.

int tpscmt (
 long flags
);

Planned for a future release.

int tpsend (
 int cd,
 char *data,
 long len,
 long flags,
 long *revent
);

function ATMI.tpsend (
 cd in PLS_INTEGER,
 data in ORA_FFI.POINTERTYPE,
 len in PLS_INTEGER,
 flags in PLS_INTEGER,
 revent in out PLS_INTEGER
) return PLS_INTEGER;

void tpservice (
 TPSVCINFO *svcinfo
);

Not a Tuxedo client function.

void (*tpsetunsol (void (*disp)
(char *data,
 long len,
 long flags))) (

 char *data,
 long len,
 long flags
);

Planned for a future release.

int tpsprio (
 int prio,
 long flags
);

function ATMI.tpsprio (
 prio in PLS_INTEGER,
 flags in PLS_INTEGER
) return PLS_INTEGER;

char *tpstrerror (
 int err
);

function ATMI.tpstrerror (
 err in PLS_INTEGER
) return VARCHAR2;

int tpsubscribe (
 char *eventexpr,
 char *filter,
 TPEVCTL *ctl,
 long flags
);

Planned for a future release.

int tpsuspend (
 TPTRANID *tranid,
 long flags
);

Planned for a future release.

void tpsvrdone (
 void
);

Not a Tuxedo client function.

int tpsvrinit (
 int argc,
 char **argv
);

Not a Tuxedo client function.

int tpterm (
 void
);

function ATMI.tpterm
return PLS_INTEGER;

long tptypes (
 char *ptr,
 char *type,
 char *subtype
);

function ATMI.tptypes (
 ptr in ORA_FFI.POINTERTYPE,
 type in out VARCHAR2,
 subtype in out VARCHAR2
) return PLS_INTEGER;

int tpunadvertise (
 char *svcname
);

Not a Tuxedo client function.

int tpunsubscribe (
 long subscription,
 long flags
);

Planned for a future release.

Using Oracle Developer with the Tuxedo TP Monitor 14

While the following functions are not technically ATMI functions, their prototypes are in the
Tuxedo header file atmi.h.

“C” Function Prototype PL/SQL Equivalent
int gettperrno (
 void
);

function ATMI.gettperrno
return PLS_INTEGER;

long gettpurcode (
 void
);

function ATMI.gettpurcode
return PLS_INTEGER;

char *tuxgetenv (
 char *name
);

function D2TX.tuxgetenv (
 name in VARCHAR2
return VARCHAR2;

int tuxputenv (
 char *string
);

function D2TX.tuxputenv
 string in VARCHAR2
return PLS_INTEGER;

int tuxreadenv (
 char *file,
 char *label
);

function D2TX.tuxreadenv
 file in out VARCHAR2,
 label in out VARCHAR2
return PLS_INTEGER;

2.2 FML16 Interface
The following tables show those elements of the Tuxedo FML16 interface which are exposed in
Oracle Developer.

2.2.1 FML16 Constants and Structures

The following tables indicate the mapping of C programming constructs in the Tuxedo header
file fml.h to their equivalent definitions in the PL/SQL package “TUXDEF”.

2.2.1.1 Constants

“C” Constant PL/SQL Equivalent
#define MAXFBLEN 0xfffc tuxdef.MAXFBLEN integer := 65532

#define FSTDXINT 16 tuxdef.FSTDXINT integer := 16

#define FMAXNULLSIZE 2660 tuxdef.FMAXNULLSIZE integer := 2660

#define FVIEWCACHESIZE 10 tuxdef.MAXFBLEN integer := 10

#define FVIEWNAMESIZE 33 tuxdef.MAXFBLEN integer := 33

2.2.1.2 Operations for Fmodidx()

“C” Constant PL/SQL Equivalent
#define FADD 1 tuxdef.FADD integer := 1

#define FMLMOD 2 tuxdef.FMLMOD integer := 2

#define FDEL 3 tuxdef.FDEL integer := 3

2.2.1.3 Flags for Fvstof()

“C” Constant PL/SQL Equivalent
#define F_OFF 0 tuxdef.F_OFF integer := 0

#define F_OFFSET 1 tuxdef.F_OFFSET integer := 1

#define F_SIZE 2 tuxdef.F_SIZE integer := 2

Using Oracle Developer with the Tuxedo TP Monitor 15

“C” Constant PL/SQL Equivalent
#define F_PROP 4 tuxdef.F_PROP integer := 4

#define F_FTOS 8 tuxdef.F_FTOS integer := 8

#define F_STOF 16 tuxdef.F_STOF integer := 16

#define F_BOTH (F_STOF | F_FTOS) tuxdef.F_BOTH integer := 24

#define F_LENGTH 32 tuxdef.F_LENGTH integer := 32

#define F_COUNT 64 tuxdef.F_COUNT integer := 64

#define F_NONE 128 tuxdef.F_NONE integer := 128

2.2.1.4 Operations for Fstof

“C” Constant PL/SQL Equivalent
#define FUPDATE 1 tuxdef.FUPDATE integer := 1

#define FCONCAT 2 tuxdef.FCONCAT integer := 2

#define FJOIN 3 tuxdef.FJOIN integer := 3

#define FOJOIN 4 tuxdef.FOJOIN integer := 4

2.2.1.5 Field Types

“C” Constant PL/SQL Equivalent
#define FLD_SHORT 0 tuxdef.FLD_SHORT integer := 0

#define FLD_LONG 1 tuxdef.FLD_LONG integer := 1

#define FLD_CHAR 2 tuxdef.FLD_CHAR integer := 2

#define FLD_FLOAT 3 tuxdef.FLD_FLOAT integer := 3

#define FLD_DOUBLE 4 tuxdef.FLD_DOUBLE integer := 4

#define FLD_STRING 5 tuxdef.FLD_STRING integer := 5

#define FLD_CARRAY 6 tuxdef.FLD_CARRAY integer := 6

2.2.1.6 Field Id Constants

“C” Constant PL/SQL Equivalent
#define BADFLDID (FLDID)0 tuxdef.BADFLDID integer := 0

#define FIRSTFLDID (FLDID)0 tuxdef.FIRSTFLDID integer := 0

2.2.1.7 Field Error Codes

“C” Constant PL/SQL Equivalent
#define FMINVAL 0 tuxdef.FMINVAL integer := 0

#define FALIGNERR 1 tuxdef.FALIGNERR integer := 1

#define FNOTFLD 2 tuxdef.FNOTFLD integer := 2

#define FNOSPACE 3 tuxdef.FNOSPACE integer := 3

#define FNOTPRES 4 tuxdef.FNOTPRES integer := 4

#define FBADFLD 5 tuxdef.FBADFLD integer := 5

#define FTYPERR 6 tuxdef.FTYPERR integer := 6

#define FEUNIX 7 tuxdef.FEUNIX integer := 7

#define FBADNAME 8 tuxdef.FBADNAME integer := 8

#define FMALLOC 9 tuxdef.FMALLOC integer := 9

Using Oracle Developer with the Tuxedo TP Monitor 16

“C” Constant PL/SQL Equivalent
#define FSYNTAX 10 tuxdef.FSYNTAX integer := 10

#define FFTOPEN 11 tuxdef.FFTOPEN integer := 11

#define FFTSYNTAX 12 tuxdef.FFTSYNTAX integer := 12

#define FEINVAL 13 tuxdef.FEINVAL integer := 13

#define FBADTBL 14 tuxdef.FBADTBL integer := 14

#define FBADVIEW 15 tuxdef.FBADVIEW integer := 15

#define FVFSYNTAX 16 tuxdef.FVFSYNTAX integer := 16

#define FVFOPEN 17 tuxdef.FVFOPEN integer := 17

#define FBADACM 18 tuxdef.FBADACM integer := 18

#define FNOCNAME 19 tuxdef.FNOCNAME integer := 19

#define FMAXVAL 20 tuxdef.FMAXVAL integer := 20

2.2.2 FML16 Functions

The following tables indicate the mapping of C function prototypes in the Tuxedo header file
fml.h to the equivalent functions and procedures in the various FML PL/SQL packages. They
are presented in the order in which they appear in Chapter 5, “Field Manipulation Functions”, of
the Tuxedo FML Guide.

2.2.2.1 Function Variants

Some of these functions, for example fml.fchg(), are overloaded to support more than one
variable type for the argument which corresponds to the value of the field. The following table
indicates the appropriate use of PL/SQL variable types and overloaded functions based on the
field’s type, as specified in the Tuxedo field table file.

PL/SQL Variable Types Tuxedo FML Field Types
NUMBER short, long, float, double

VARCHAR2 char, string, carray

In short, if the FML field type is short, long, float or double, then use the PL/SQL variable type
NUMBER and the corresponding variant of an overloaded FML function. If the FML field type is
char, string, or carray, then use the PL/SQL variable type VARCHAR2 and the corresponding
variant of an overloaded FML function.

2.2.2.2 Length Argument

Some of these functions, for example fml.fget(), have an argument in which the length of
the receiving buffer is specified. There are two cases to consider.

1. If the field value will be returned as the FML field type short, long, float or double, then the
input value of the length argument will be ignored. The actual length of the field value that
was written to the receiving buffer (PL/SQL variable) is still returned after the function has
executed.

2. If the field value will be returned as the FML field type string, char or carray, then two
options are available to the PL/SQL programmer.

• For the fastest response time, the input value of the length argument should be equal to
the maximum length of the VARCHAR2 variable which will receive the field value.
For example, if the variable which will receive the field value is declared as
VARCHAR2(100), then “100” should be used as the input value to the length argument.

Using Oracle Developer with the Tuxedo TP Monitor 17

 The actual length of the field value that was written to the receiving buffer (PL/SQL
variable) is still returned after the function has executed.

• If the input value of the length argument is specified to be (PL/SQL) NULL, then the
maximum length of the receiving buffer (PL/SQL variable) will be calculated, and
therefore the function will take longer to execute. The algorithm to determine the
maximum length of the receiving buffer (PL/SQL variable) has been optimized and
choosing this option may not have an adverse impact on performance, but it will always
be slower than specifying the length explicitly.

 The actual length of the field value that was written to the receiving buffer (PL/SQL
variable) is still returned after the function has executed.

2.2.2.3 Field Identifier Mapping Functions

“C” Function Prototype PL/SQL Equivalent
FLDID Fldid (
 char *name
);

function FML.fldid (
 name in out VARCHAR2
) return PLS_INTEGER;

FLDOCC Fldno (
 FLDID fieldid
);

function FML.fldno (
 fieldid in PLS_INTEGER
) return PLS_INTEGER;

int Fldtype (
 FLDID fieldid
);

function FML.fldtype (
 fieldid in PLS_INTEGER
) return PLS_INTEGER;

FLDID Fmkfldid (
 int type,
 FLDID num
);

function FML.fmkfldid (
 type in PLS_INTEGER,
 num in PLS_INTEGER
) return PLS_INTEGER;

char *Fname (
 FLDID fieldid
);

function FML.fname (
 fieldid in PLS_INTEGER
) return VARCHAR2;

char *Ftype (
 FLDID fieldid
);

function FML.ftype (
 fieldid in PLS_INTEGER
) return VARCHAR2;

2.2.2.4 Buffer Allocation and Initialization

“C” Function Prototype PL/SQL Equivalent
FBFR *Falloc (
 FLDOCC F,
 FLDLEN V
);

function FML.falloc (
 f in PLS_INTEGER,
 v in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int Ffree (
 FBFR *fbfr
);

function FML.ffree (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Finit (
 FBFR *fbfr,
 FLDLEN buflen
);

function FML.finit (
 fbfr in ORA_FFI.POINTERTYPE,
 buflen in PLS_INTEGER)
) return PLS_INTEGER;

long Fneeded (
 FLDOCC F,
 FLDLEN V
);

function FML.fneeded (
 f in PLS_INTEGER,
 v in PLS_INTEGER
) return PLS_INTEGER;

FBFR *Frealloc (
 FBFR *fbfr,
 FLDOCC nf,
 FLDLEN nv
);

function FML.frealloc (
 fbfr in ORA_FFI.POINTERTYPE,
 nf in PLS_INTEGER,
 nv in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

Using Oracle Developer with the Tuxedo TP Monitor 18

“C” Function Prototype PL/SQL Equivalent
long Fsizeof (
 FBFR *fbfr
);

function FML.fsizeof (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

long Funused (
 FBFR *fbfr
);

function FML.funused (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

long Fused (
 FBFR *fbfr
);

function FML.fused (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

2.2.2.5 Functions for Moving Fielded Buffers

“C” Function Prototype PL/SQL Equivalent
int Fcpy (
 FBFR *dest,
 FBFR *src
);

function FML.fcpy (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fmove (
 char *dest,
 FBFR *src
);

function FML.fmove (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

2.2.2.6 Field Access and Modification

“C” Function Prototype PL/SQL Equivalent
int Fadd (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len
);

function FML.fadd (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER
) return PLS_INTEGER;

function FML.fadd (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER
) return PLS_INTEGER;

int Fappend (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len
);

Planned for a future release.

int Fchg (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *value,
 FLDLEN len
);

function FML.fchg (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER
) return PLS_INTEGER;

function FML.fchg (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER
) return PLS_INTEGER;

int Fcmp (
 FBFR *fbfr1,
 FBFR *fbfr2
);

function FML.fcmp (
 fbfr1 in ORA_FFI.POINTERTYPE,
 fbfr2 in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

Using Oracle Developer with the Tuxedo TP Monitor 19

“C” Function Prototype PL/SQL Equivalent
int Fdel (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
):

function FML.fdel (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return PLS_INTEGER;

int Fdelall (
 FBFR *fbfr,
 FLDID fieldid
):

function FML.fdelall (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER
) return PLS_INTEGER;

int Fdelete (
 FBFR *fbfr,
 FLDID *fieldid
);

function FML.fdelete (
 fbfr in out ORA_FFI.POINTERTYPE,
 fieldid in out PLS_INTEGER
) return PLS_INTEGER;

char *Ffind (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 FLDLEN *len
);

function FML.ffind (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 len in out PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

char *Ffindlast (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC *oc,
 FLDLEN *len
);

function FML.ffindlast (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in out PLS_INTEGER,
 len in out PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

FLDOCC Ffindocc (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len
);

function FML.ffindocc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER
) return PLS_INTEGER;

function FML.ffindocc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER
) return PLS_INTEGER;

int Fget (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *value,
 FLDLEN *maxlen
);

function FML.fget (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out VARCHAR2,
 maxlen in out PLS_INTEGER
) return PLS_INTEGER;

function FML.fget (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out NUMBER,
 maxlen in out PLS_INTEGER
) return PLS_INTEGER;

char *Fgetalloc (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 FLDLEN *extralen
);

function FML.fgetalloc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 extralen in out PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int Fgetlast (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC *oc,
 char *value,
 FLDLEN *maxlen
);

function FML.fgetlast (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in out PLS_INTEGER,
 value in out VARCHAR2,
 maxlen in out PLS_INTEGER
) return PLS_INTEGER;

function FML.fgetlast (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in out PLS_INTEGER,
 value in NUMBER,
 maxlen in out PLS_INTEGER
) return PLS_INTEGER;

Using Oracle Developer with the Tuxedo TP Monitor 20

“C” Function Prototype PL/SQL Equivalent
int Fnext (
 FBFR *fbfr,
 FLDID *fieldid,
 FLDOCC *oc,
 char *value,
 FLDLEN *len
);

function FML.fnext (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in out PLS_INTEGER,
 oc in out PLS_INTEGER,
 value in ORA_FFI.POINTERTYPE,
 len in out PLS_INTEGER
) return PLS_INTEGER;

FLDOCC Fnum (
 FBFR *fbfr
);

function FML.fnum (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

FLDOCC Foccur (
 FBFR *fbfr,
 FLDID *fieldid
);

function FML.foccur (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER
) return PLS_INTEGER;

int Fpres (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
);

function FML.fpres (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return PLS_INTEGER;

long Fvall (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
);

function FML.fvall
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return PLS_INTEGER;

char *Fvals (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
);

function FML.fvals (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return VARCHAR2;

2.2.2.7 Buffer Update Functions

“C” Function Prototype PL/SQL Equivalent
int Fconcat (
 FBFR *dest,
 FBFR *src
);

function FML.fconcat (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fjoin (
 FBFR *dest,
 FBFR *src
);

function FML.fjoin (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fojoin (
 FBFR *dest,
 FBFR *src
);

function FML.fojoin (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fproj (
 FBFR *fbfr,
 FLDID *fieldid
);

function FML.fproj (
 fbfr in out ORA_FFI.POINTERTYPE,
 fieldid in out PLS_INTEGER
) return PLS_INTEGER;

int Fprojcpy (
 FBFR *dest,
 FBFR *src,
 FLDID *fieldid
);

function FML.fprojcpy (
 dest in out ORA_FFI.POINTERTYPE,
 src in out ORA_FFI.POINTERTYPE,
 fieldid in out PLS_INTEGER
) return PLS_INTEGER;

int Fupdate (
 FBFR *dest,
 FBFR *src
);

function FML.fupdate (
 dest in ORA_FFI.POINTERTYPE,
 src in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

2.2.2.8 VIEWS Functions

“C” Function Prototype PL/SQL Equivalent
int Fvftos (
 FBFR *fbfr,
 char *cstruct,
 char *view
);

function FML_VIEWS.fvftos (
 fbfr in ORA_FFI.POINTERTYPE,
 cstruct in ORA_FFI.POINTERTYPE,
 view in out VARCHAR2
) return PLS_INTEGER;

Using Oracle Developer with the Tuxedo TP Monitor 21

“C” Function Prototype PL/SQL Equivalent
int Fvnull (
 char *cstruct,
 char *cname,
 FLDOCC oc,
 char *view
);

function FML_VIEWS.fvnull (
 cstruct in ORA_FFI.POINTERTYPE,
 cname in out VARCHAR2,
 oc in PLS_INTEGER,
 view in out VARCHAR2
) return PLS_INTEGER;

int Fvopt (
 char *cname,
 int option,
 char *view
);

function FML_VIEWS.fvopt (
 cname in out VARCHAR2,
 option in PLS_INTEGER,
 view in out VARCHAR2
) return PLS_INTEGER;

int Fvselinit (
 char *cstruct,
 char *cname,
 char *view
);

function FML_VIEWS.fvselinit (
 cstruct in ORA_FFI.POINTERTYPE,
 cname in out VARCHAR2,
 view in out VARCHAR2
) return PLS_INTEGER;

int Fvsinit (
 char *cstruct,
 char *view
);

function FML_VIEWS.fvsinit (
 cstruct in ORA_FFI.POINTERTYPE,
 view in out VARCHAR2
) return PLS_INTEGER;

int Fvstof (
 FBFR *fbfr,
 char *cstruct,
 int mode,
 char *view
);

function FML_VIEWS.fvstof (
 fbfr in ORA_FFI.POINTERTYPE,
 cstruct in ORA_FFI.POINTERTYPE,
 mode in PLS_INTEGER,
 view in out VARCHAR2
) return PLS_INTEGER;

2.2.2.9 Conversion Functions

“C” Function Prototype PL/SQL Equivalent
int CFadd (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len,
 int type
);

function FML_CONV1.cfadd (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

function FML_CONV1.cfadd (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

int CFchg (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *value,
 FLDLEN len,
 int type
);

function FML_CONV1.cfchg (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

function FML_CONV1.cfchg (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

char *CFfind (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 FLDLEN *len,
 int type
);

function FML_CONV1.cffind (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 len in out PLS_INTEGER,
 type in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

Using Oracle Developer with the Tuxedo TP Monitor 22

“C” Function Prototype PL/SQL Equivalent
FLDOCC CFfindocc (
 FBFR *fbfr,
 FLDID fieldid,
 char *value,
 FLDLEN len
 int type
);

function FML_CONV2.cffindocc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

function FML_CONV2.cffindocc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in NUMBER,
 len in PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

int CFget (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *buf,
 FLDLEN *len,
 int type
);

function FML_CONV2.cfget (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 buf in out VARCHAR2,
 len in out PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

function FML_CONV2.cfget (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 buf in out NUMBER,
 len in out PLS_INTEGER,
 type in PLS_INTEGER
) return PLS_INTEGER;

char *CFgetalloc (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 int type,
 FLDLEN *extralen
);

function FML_CONV2.cfgetalloc (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 int in PLS_INTEGER,
 extralen in out PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

int Fadds (
 FBFR *fbfr,
 FLDID fieldid,
 char *value
);

function FML_CONVSTR.fadds (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 value in out VARCHAR2
) return PLS_INTEGER;

int Fchgs (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *value
);

function FML_CONVSTR.fchgs (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 value in out VARCHAR2
) return PLS_INTEGER;

char *Ffinds (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc
);

function FML_CONVSTR.ffinds (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER
) return VARCHAR2;

int Fgets (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 char *buf
);

function FML_CONVSTR.fgets (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 buf in out VARCHAR2
) return PLS_INTEGER;

char *Fgetsa (
 FBFR *fbfr,
 FLDID fieldid,
 FLDOCC oc,
 FLDLEN *extra
);

function FML_CONVSTR.fgetsa (
 fbfr in ORA_FFI.POINTERTYPE,
 fieldid in PLS_INTEGER,
 oc in PLS_INTEGER,
 extra in out PLS_INTEGER
) return VARCHAR2;

Using Oracle Developer with the Tuxedo TP Monitor 23

“C” Function Prototype PL/SQL Equivalent
char *Ftypcvt (
 FLDLEN *tolen,
 int totype,
 char *fromval,
 int fromtype,
 FLDLEN fromlen
);

function FML_UTIL.ftypcvt (
 tolen in out PLS_INTEGER,
 totype in PLS_INTEGER,
 fromval in ORA_FFI.POINTERTYPE,
 fromtype in PLS_INTEGER,
 fromlen in PLS_INTEGER
) return ORA_FFI.POINTERTYPE;

2.2.2.10 Indexing Functions

“C” Function Prototype PL/SQL Equivalent
long Fidxused (
 FBFR *fbfr
);

function FML_INDEX.fidxused (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Findex (
 FBFR *fbfr,
 FLDOCC intvl
);

function FML_INDEX.findex (
 fbfr in ORA_FFI.POINTERTYPE,
 intvl in PLS_INTEGER
) return PLS_INTEGER;

int Frstrindex (
 FBFR *fbfr,
 FLDOCC numidx
);

function FML_INDEX.frstrindex (
 fbfr in ORA_FFI.POINTERTYPE,
 numidx in PLS_INTEGER
) return PLS_INTEGER;

FLDOCC Funindex (
 FBFR *fbfr
);

function FML_INDEX.funindex (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

2.2.2.11 Input/Output Functions

“C” Function Prototype PL/SQL Equivalent
long Fchksum (
 FBFR *fbfr
);

function FML_IO.fchksum (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fextread (
 FBFR *fbfr,
 FILE *iop
);

function FML_IO.fextread (
 fbfr in ORA_FFI.POINTERTYPE,
 iop in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Ffprint (
 FBFR *fbfr,
 FILE *iop
);

function FML_IO.ffprint (
 fbfr in ORA_FFI.POINTERTYPE,
 iop in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fprint (
 FBFR *fbfr
);

function FML_IO.fprint (
 fbfr in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fread (
 FBFR *fbfr,
 FILE *iop
);

function FML_IO.fread (
 fbfr in ORA_FFI.POINTERTYPE,
 iop in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

int Fwrite (
 FBFR *fbfr,
 FILE *iop
);

function FML_IO.fwrite (
 fbfr in ORA_FFI.POINTERTYPE,
 iop in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

Using Oracle Developer with the Tuxedo TP Monitor 24

2.2.2.12 VIEW Conversion

“C” Function Prototype PL/SQL Equivalent
int Fcodeset (
 char *translation_table
);

Planned for a future release.

long Fvstot (
 char *cstruct,
 char *trecord,
 long treclen,
 char *viewname
);

Planned for a future release.

long Fvttos (
 char *cstruct,
 char *trecord,
 char *viewname
);

Planned for a future release.

2.2.2.13 Utility Functions

While the following two functions are not technically FML functions, their prototypes are in the
Tuxedo header file fml.h.

“C” Function Prototype PL/SQL Equivalent
int getFerror (
 void
);

function FML_UTIL.getFerror
return PLS_INTEGER;

char *Fstrerror (
 int err
);

function FML_UTIL.fstrerror (
 err in PLS_INTEGER
) return VARCHAR2;

2.3 Additional Functions
Several other functions were provided by Oracle that may prove useful when developing
applications with this interface.

2.3.1 File I/O Functions

“C” Function Prototype PL/SQL Equivalent
int fclose (
 FILE *stream
);

function FML_IO.fclose (
 stream in ORA_FFI.POINTERTYPE
) return PLS_INTEGER;

FILE *fopen (
 char *filename,
 char *mode
);

function FML_IO.fopen (
 filename in out VARCHAR2,
 mode in out VARCHAR2
) return ORA_FFI.POINTERTYPE;

2.3.2 String Manipulation Functions

These functions may prove particularly useful when the Tuxedo application uses string buffers
rather than the other buffer types. They can also be used whenever PL/SQL variables of type
ORA_FFI.POINTERTYPE and VARCHAR2 need to be converted from one type to the other.

Using Oracle Developer with the Tuxedo TP Monitor 25

“C” Function Prototype PL/SQL Equivalent
None. function D2TX.getstr (

 ptr in ORA_FFI.POINTERTYPE
) return VARCHAR2;

char *strcpy (
 char *dest,
 const char *src
);

function D2TX.strcpy (
 dest in out VARCHAR2,
 src in ORA_FFI.POINTERTYPE
) return VARCHAR2;

function D2TX.strcpy (
 dest in ORA_FFI.POINTERTYPE,
 src in out VARCHAR2
) return VARCHAR2;

2.3.3 Shutdown Function

This function unloads the interface dynamic-link library (d2txnn.dll) or shared object
(d2txnn.so). The recommended place to use it is in the form’s POST-FORM trigger (see Section
3.3.1.2, “bankapp Client PL/SQL Form”, below).

“C” Function Prototype PL/SQL Equivalent
None. procedure D2TX.shutdown;

Using Oracle Developer with the Tuxedo TP Monitor 26

3. A Demonstration
The Tuxedo product is shipped with an example bank application (bankapp) to act as a working
example of a Tuxedo-based client/server system. To demonstrate the interface software, the
bankapp client was re-written in PL/SQL using Oracle Developer. Prior to running the Oracle
Developer bankapp client, it is necessary to install, configure, and run the Tuxedo product and
bankapp application.

This section briefly describes how to prepare and run the native Tuxedo bankapp application,
prepare and run the Oracle Developer bankapp client, and offers some guidelines for developing
Tuxedo clients with Oracle Developer.

3.1 Tuxedo bankapp
While it is beyond the scope of this white paper to act as the definitive guide to the installation,
configuration, and execution of the Tuxedo bankapp, the steps to do so are presented below to
act as a guide for those who are new to Tuxedo. The detailed information necessary to
successfully complete this process will be found in Tuxedo’s documentation, and perhaps with
some help from Tuxedo’s technical support organization.

Briefly, the steps to install, configure, and execute the Tuxedo bankapp are:

1. Install the Tuxedo product software on the server hardware.

 For more information, refer to the BEA Tuxedo System 6 Installation Guide, paying
particular attention to the section titled “Operating System Configuration”.

2. Optionally, create a Tuxedo administration account on the server hardware, although just
about any existing account will do in practice. This account is the one that will be executing
Tuxedo bankapp server software.

3. Build and run the simple application (simpapp) that Tuxedo provides to minimally verify the
installation. In this case, a software client requests a simple service, and the service returns
the result. Note that both of these programs execute on the server hardware.

 Again, this is described in the BEA Tuxedo System 6 Installation Guide, as well as Chapter 1
of the TUXEDO Application Development Guide.

4. Build and run the bank application (bankapp) that Tuxedo provides as a more sophisticated
example of an application layered on top of Tuxedo. Again, both the client and server
programs execute on the server hardware.

 It is very likely that the operating system tunable parameters will have to be adjusted which
means that the server machine will have to be rebooted. Refer to the Tuxedo System 6
Installation Guide for help with the tunable parameters.

 Additional information about bankapp can be found in the TUXEDO Application
Development Guide. There is another useful document, Exploring TUXEDO Using the
bankapp Demo Program, written by C. Cash Perkins, and dated 12/7/95. The latter takes
some of the mystery out of getting the bankapp programs to work.

 Once bankapp is up and running, it’s a good idea to create a new bank account, and make
some deposits and withdrawals. This account can be used later to verify that the Oracle

Using Oracle Developer with the Tuxedo TP Monitor 27

Developer bankapp client works as well as the Tuxedo bankapp client. An example account
number that could be used is “20020”.

5. Install the Tuxedo software on the client machine.

 This is fairly straightforward. See the BEA Tuxedo System 6 Installation Guide for more
information. It is important that the Tuxedo libraries are accessible from the system path.
To accomplish this on Windows95, add the following two lines in the file
AUTOEXEC.BAT. The value of TUXDIR should reflect the path where Tuxedo was
installed on the client machine.

 SET TUXDIR=C:\tuxedo\6.4\ws\win32
 SET PATH=%PATH%;%TUXDIR%\bin\

 Use the Environment tab in the System Properties dialog box that is available from the
Control Panel to set these environment variables on Windows NT 4.0

 On a Unix operating system, this can be done with something like the following two lines of
C shell code. Again, the value of TUXDIR should reflect the path where Tuxedo was
installed on the client machine.

 setenv TUXDIR /tuxedo\6.4
 setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${TUXDIR}/lib

• Failure to ensure that the Tuxedo dynamic-link libraries or shared objects are on the
system path will result in the inability to open the D2TX dynamic-link library or shared
object when running a form that uses D2TX.

6. Build and run the bankapp client software on the client hardware. Now, the bankapp client
and bankapp server programs run on different machines. This exercise verifies that there is
connectivity between machines, and that the Tuxedo software has been installed correctly on
both machines. Use the new bank account that was created earlier.

 In a sense, this last step is the crux of the process. The document Exploring TUXEDO Using
the bankapp Demo Program is very useful here, as are the log files should the bankapp
client not work correctly. A call to Tuxedo technical support might also be necessary.

3.2 Oracle Developer bankapp
Once the native Tuxedo bankapp is up and running correctly over the network, on separate client
and server machines, the interface software (D2TX) can be demonstrated by running the Oracle
Developer bankapp client.

3.2.1 Preparing the bankapp Client

The following table shows the names of the files that are appropriate for this version of the
interface.

File Name Description
bankapp.fmb bankapp form module binary file - This is the Oracle Developer bankapp client.
bankapp.pll bankapp PL/SQL library module binary file - This contains the bankapp

utilities, and the abstraction of the bankapp client services, written in PL/SQL.

Using Oracle Developer with the Tuxedo TP Monitor 28

File Name Description
d2tx.pll Oracle Developer - Tuxedo PL/SQL library module binary file - This contains

the PL/SQL versions of the Tuxedo program elements (ATMI and FML16
APIs) that are exposed in Oracle Developer.

d2txnn.dll Oracle Developer - Tuxedo dynamic-link library - This contains those Tuxedo
program elements that could not be encapsulated directly in PL/SQL. This file
is automatically installed in the %ORACLE_HOME%\bin directory for the 32-
bit Windows OS platforms.

d2txnn.so Oracle Developer - Tuxedo shared object - This contains those Tuxedo
program elements that could not be encapsulated directly in PL/SQL. This file
is automatically installed in the ${ORACLE_HOME}\bin directory for the Unix
OS platforms.

Table 2 - Descriptions of Product Files

To prepare the Oracle Developer bankapp client, install the interface software (Oracle
Developer Open Interfaces È Tuxedo Interface) using the Oracle Installer.

3.2.2 Running the bankapp Client

Assuming that Oracle Developer and D2TX have been successfully installed on the client
machine, perform the following steps to run the Oracle Developer bankapp client on the client
machine:

1. Make sure that the correct version of Tuxedo/Workstation (/WS) is installed on the client
machine. This is specified in the table in Section 1, “Introduction”, on page 1.

2. Verify that the Tuxedo libraries (DLLs or shared objects) are accessible from the system
path. Please refer to Step 5 of Section 3.1, “Tuxedo bankapp”, on page 26 for more details.

3. Ensure that the Tuxedo bankapp servers are running on the server machine. Ideally, they
haven’t been shut down since Tuxedo bankapp client was last run. Please refer to Step 4 of
Section 3.1, “Tuxedo bankapp”, on page 26 for more details.

4. On the 32-bit Windows OS platforms, run the Form Builder and open, then run, the bankapp
Form module binary file (BANKAPP.FMB).

 On a Unix OS platform, run the C shell script “fbankapp”. This will automatically run the
Oracle Developer bankapp client.

5. When the form (Oracle Developer bankapp client) comes up, press the button labeled
“Connect”.

 If there are going to be any problems encountered while running the demo, this is the most
likely time for them to occur. These could include the inability to find the D2TX DLL or
shared object that needs to be loaded, or the inability to communicate with the Tuxedo
bankapp servers. These problems will be displayed in the Forms message line, and logged
in the file D2TX_ERR.LOG in the Form Builder or Forms Runtime working directory. To
minimize the problems encountered at this point, make sure that the native Tuxedo bankapp
client has already been run successfully on the client hardware.

6. Once the connection has been made, it is possible to process one of the six transactions
shown in the right-hand pane as radio buttons. This should behave just as the native Tuxedo
bankapp client did, except that now, it’s implemented as an Oracle form. This is a good
time to use the new account number that may have been created earlier.

Using Oracle Developer with the Tuxedo TP Monitor 29

7. Press the button labeled “Exit” to leave the Oracle Developer bankapp client. This ends the
demonstration of a Tuxedo client written using Oracle Forms, and the Oracle Developer -
Tuxedo interface.

3.3 Client Development Tips
This section offers some tips for developing Tuxedo clients with Oracle Developer. The
guidelines are presented in the context of developing a Tuxedo client with Oracle Developer,
using the Oracle Developer bankapp client as an example.

3.3.1 Elements of the bankapp Client

Before delving into the specific tips, it is helpful to become familiar with some of the elements
of the Oracle Developer bankapp client so that they can be referred to throughout the remainder
of this section. The easiest way to become familiar with the Oracle Developer bankapp client is
to load it into the Form Builder, keeping in mind that there are two sets of source that will be
reviewed here: that associated with the Oracle Developer bankapp client form, and that which
resides in the Oracle Developer bankapp client PL/SQL library.

3.3.1.1 bankapp Client PL/SQL Library

To take a look at the source code in the bankapp client PL/SQL library, start Form Builder and
open the PL/SQL library, BANKAPP.PLL. Expand the Program Units to find the following
PL/SQL program units:

PL/SQL Program Unit Description
BANKDEF (Package Spec) Defines exceptions and variables for global use.
BANKSVCS (Package Spec) Specifies the interface for the BANKSVCS PL/SQL package,

which comprises eight application-level services.
BANKSVCS (Package Body) Implements the previous specification. These bank services

are built on top of the bank utilities that are provided in the
PL/SQL package BANKUTL.

BANKUTL (Package Spec) Specifies the interface for the BANKUTL PL/SQL package,
which comprises ten bank utility procedures and functions.

BANKUTL (Package Body) Implements the previous specification. These bank utilities are
built on top of the ATMI and FML PL/SQL packages that
compose the Oracle Developer - Tuxedo PL/SQL library
(D2TX.PLL).

Table 3 - Descriptions of bankapp PL/SQL Library Program Units

Note that the bankapp client is implemented in layers. The bankapp client (form) is built on top
of the bank services, the bank services are built on top of the bank utilities, and the bank utilities
are finally built on top of the PL/SQL versions of the Tuxedo client program elements (ATMI
and FML16 APIs). Figure 3 below attempts to convey a sense of the layers that are involved

Using Oracle Developer with the Tuxedo TP Monitor 30

®

Oracle Developer - Tuxedo Architecture
…from the client-side perspective

Form

Application-specific PL/SQL Library

Oracle Developer - Tuxedo Interface

Tuxedo Cient-side

Screens & Alerts
Navigation & Data format validation

PL/SQL abstractions of services…
connect_teller, deposit, withdraw...

tpBegin, tpCall (PL/SQL)

tpBegin, tpCall (C)

Application Services
connect_teller, deposit, withdraw...

User Interface
(Client Tier)

Client-side Abstraction for
Application Services

Provided By Oracle

Provided by BEA Systems

Middle Tier (and beyond)

Figure 3 - Oracle Developer - Tuxedo Client Architecture

Alternatively, the Bank Services can be appreciated in their programmatic form. Below is the
corresponding PL/SQL package specification. Note that the functions reflect some of the bank’s
business activities.

package BANKSVCS is

-- Copyright (C) Oracle Corporation 1996, 1998.
-- All Rights Reserved, Worldwide.

 procedure CONNECT_TELLER (errmsg in out varchar2);

 procedure DISCONNECT (errmsg in out varchar2);

 procedure INQUIRY (account_id in out pls_integer,
 balance in out number,
 errmsg in out varchar2);

 procedure DEPOSIT (account_id in out pls_integer,
 amount in out number,
 balance in out number,
 errmsg in out varchar2);

 procedure WITHDRAW (account_id in out pls_integer,
 amount in out number,
 balance in out number,
 errmsg in out varchar2);

 procedure TRANSFER (from_acct in out pls_integer,
 to_acct in out pls_integer,
 amount in out number,
 from_bal in out number,
 to_bal in out number,
 errmsg in out varchar2);

 procedure OPEN (lastname in out varchar2,
 firstname in out varchar2,
 midinitial in out varchar2,
 address in out varchar2,
 ssn in out varchar2,
 phone in out varchar2,
 initbalance in out number,
 accttype in out varchar2,
 branchid in out pls_integer,
 account_id in out pls_integer,
 openbalance in out number,
 errmsg in out varchar2);

Using Oracle Developer with the Tuxedo TP Monitor 31

 procedure CLOSE (account_id in out pls_integer,
 balance in out number,
 errmsg in out varchar2);
end;

Similarly, the Bank Utilities are presented below in their PL/SQL package specification form.

package BANKUTL is

-- Copyright (C) Oracle Corporation 1996, 1998.
-- All Rights Reserved, Worldwide.

 procedure COMPOSE_ERROR (fbfr in out ora_ffi.pointertype,
 errmsg in out varchar2);

 function ALLOC_MEM (memtyp in varchar2,
 memsize in pls_integer) return ora_ffi.pointertype;

 procedure FREE_MEM (pointer in out ora_ffi.pointertype);

 procedure SET_VALUE (fbfr in out ora_ffi.pointertype,
 fldname in out varchar2,
 instance in pls_integer,
 value in out pls_integer);

 procedure SET_VALUE (fbfr in out ora_ffi.pointertype,
 fldname in out varchar2,
 instance in pls_integer,
 value in out varchar2);

 function GET_DOLLAR (fbfr in out ora_ffi.pointertype,
 fname in out varchar2,
 instance in pls_integer) return number;

 function GET_NUMBER (fbfr in out ora_ffi.pointertype,
 fname in out varchar2,
 instance in pls_integer) return number;

 function CALL_SERVICE (svcname in out varchar2,
 fbfr in out ora_ffi.pointertype,
 buflen in out pls_integer) return pls_integer;

 procedure BEGIN_TRAN;

 procedure COMMIT_TRAN;

end;

• Tip #1 - Abstract the services into PL/SQL packages

Although the Oracle Developer - Tuxedo interface makes PL/SQL versions of the
Tuxedo client program elements available, they are generally too low level for building
Tuxedo clients (forms) directly. Abstract the higher level services, and implement them
in a PL/SQL package. Consider including a layer of “utility functions”. The PL/SQL
packages can reside in one or more libraries.

Another benefit of this approach is that the utility functions can be reused by other bank
applications, enabling quicker development times as well as supporting customer-specific
processing standards.

• Tip #2 - Special considerations for tpcall()

One of the bank utility functions is called CALL_SERVICE(), and can be found in the
BANKUTL Package Body. Note that CALL_SERVICE() calls tpcall(). The
comment is helpful, but the situation merits a closer look. The function is reproduced
below and should be referred to during this discussion.

-- Note for CALL_SERVICE:
--
-- To be sure that we can catch a reallocation of fbfr by tpcall, we
-- don’t use the passed-in fbfr. Another problem is that we’d like
-- to raise an exception on failure, however we’d lose the pointer to

Using Oracle Developer with the Tuxedo TP Monitor 32

-- the reallocated fbfr, since the OUT var won’t go back to the caller...
-- So instead, we return an error, and the simplest thing for the
-- caller to do is wrap CALL_SERVICE in a begin/end block, and raise the
-- TPM_FAILURE exception themselves. This is gross, but typical of some
-- of the trickiness inherent in keeping two very different languages
-- (C and PL/SQL) in sync with each other.
--
function CALL_SERVICE (svcname in out varchar2,
 fbfr in out ora_ffi.pointertype,
 buflen in out pls_integer)
return pls_integer is
 fbfr1 ora_ffi.pointertype := fbfr;
 fbfr2 ora_ffi.pointertype := fbfr;
 flags pls_integer := tuxdef.TPSIGRSTRT;
 retlen pls_integer := 0;
begin

 ret := atmi.tpcall (svcname, fbfr1, buflen, fbfr2, retlen, flags);

 --
 -- If the return length is non-zero, it means that reallocation
 -- occurred, and we have to set the buffer and length to the
 -- new address and size.
 --
 if retlen != 0 then
 fbfr := fbfr2;
 buflen := retlen;
 end if;

 if ret = -1 then
 if atmi.gettperrno = TUXDEF.TPESVCFAIL then
 bankdef.errcat := ’SERVICE’;
 else
 bankdef.errcat := ’TP’;
 end if;
 bankdef.errtyp := ’TPCALL’;
 end if;

 return (ret);
end;

There are two issues here. The first is that atmi.tpcall() may reallocate the fielded buffer,
for example, to increase the size of the fielded buffer to be able to contain the data from the
reply. In case this occurs, distinct pointer variables (fbfr, fbfr1 and fbfr2) are used so as to
preclude any confusion.

The second issue is how to handle an error returned by atmi.tpcall() and not lose the
pointer to the fielded buffer (fbfr). This pointer is needed so that the calling program can free
the fielded buffer if an error is detected. The solution is apparent from the comment and the
code, nevertheless, it is instructive to see how the error is handled in by the calling routine. The
procedure, OPEN(), in the BANKSVCS PL/SQL package is just such a calling routine and is
reproduced below.

-- Globals useful for all services
--
fbfr ora_ffi.pointertype; -- Fielded Buffer Pointer
buflen pls_integer := 1024; -- Fielded buffer length
ret pls_integer; -- Tuxedo return code
numbuf varchar2(40); -- Buffer for numeric conversions

procedure OPEN (lastname in out varchar2,
 firstname in out varchar2,
 midinitial in out varchar2,
 address in out varchar2,
 ssn in out varchar2,
 phone in out varchar2,
 initbalance in out number,
 accttype in out varchar2,
 branchid in out pls_integer,
 account_id in out pls_integer,
 openbalance in out number,
 errmsg in out varchar2) is
begin
 errmsg := null;
 numbuf := TO_CHAR(initbalance);
 fbfr := bankutl.alloc_mem (FMLSTR, buflen);

Using Oracle Developer with the Tuxedo TP Monitor 33

 bankutl.set_value (fbfr, FNM_LAST_NAME, 0, lastname);
 bankutl.set_value (fbfr, FNM_FIRST_NAME, 0, firstname);
 bankutl.set_value (fbfr, FNM_MID_INIT, 0, midinitial);
 bankutl.set_value (fbfr, FNM_SSN, 0, ssn);
 bankutl.set_value (fbfr, FNM_ADDRESS, 0, address);
 bankutl.set_value (fbfr, FNM_PHONE, 0, phone);
 bankutl.set_value (fbfr, FNM_ACCT_TYPE, 0, accttype);
 bankutl.set_value (fbfr, FNM_BRANCH_ID, 0, branchid);
 bankutl.set_value (fbfr, FNM_SAMOUNT, 0, numbuf);
 bankutl.begin_tran;
 begin
 if bankutl.call_service (SVC_OPEN, fbfr, buflen) = -1 then
 raise bankdef.TPM_FAILURE;
 end if;
 end;
 bankutl.commit_tran;
 openbalance := bankutl.get_dollar (fbfr, FNM_SBALANCE, 0);
 account_id := bankutl.get_number (fbfr, FNM_ACCOUNT_ID, 0);
 bankutl.free_mem (fbfr);
exception
 when bankdef.ALLOCATION_FAILURE then
 bankutl.compose_error (fbfr, errmsg);
 when bankdef.TPM_FAILURE then
 bankutl.compose_error (fbfr, errmsg);
 bankutl.free_mem (fbfr);
 ret := atmi.tpabort(0);
end;

Note the begin/end block in the middle of the procedure to raise the exception. The exception
handler further below frees the fielded buffer, and aborts the transaction by directly using an
ATMI call, atmi.tpabort().

Although atmi.tpabort() was called directly, it could just as easily have been wrapped by a
bank utility function, similar to bankutl.begin_tran() or bankutl.commit_tran();
not doing so technically violates the layered approach that was recommended earlier.

3.3.1.2 bankapp Client PL/SQL Form

There is a non-trivial amount of code to support the bankapp client PL/SQL form that is not in
the bankapp client PL/SQL library, mostly to support the various triggers in the form. To
explore the source code in the bankapp client PL/SQL form, use the Object Navigator in Form
Builder to open the bankapp Form module binary file, BANKAPP.FMB, and expand the
BANKAPP icon to reveal the form’s object hierarchy. The first objects of interest are the
Triggers. Expand “Triggers” to view the three triggers that have been customized for the
bankapp client form. To see the PL/SQL code behind each trigger, double-click on the trigger
icon. The trigger’s code appears in the PL/SQL Editor.

Read the comments in each of the triggers. Note that the POST-FORM trigger calls an interface
layer function, d2tx.shutdown(), directly. The ON-LOGON trigger contains nothing more
that a null statement. This is to prevent Oracle Forms from executing its default logon
processing, which wouldn’t make any sense in the context of a TP monitor.

• Tip #3 - Consider the Forms built-in triggers

Oracle Forms’ built-in triggers must be taken in to account when building an application,
particularly when the form (client) will be not be interfacing directly with an Oracle data
source, as is the case with Tuxedo. In many cases, the default processing will have to be
suppressed, as was the case with the ON-LOGON transactional trigger above, but in
many instances these triggers also provide a convenient location to place code that will
interact appropriately with the TP monitor.

We’ll continue with the tour of the Oracle Developer bankapp client form. The next objects of
interest are the Data Blocks, the fourth down in the list. Expand “Data Blocks” to see the three

Using Oracle Developer with the Tuxedo TP Monitor 34

data blocks in this form. Data Blocks provide a mechanism for grouping related items into a
functional unit for storing, displaying, and manipulating records. These data blocks correspond
to the three screens that the Oracle Developer bankapp client form displays at one time or
another.

Of particular interest is the trigger code that is associated with each button. To illustrate the
point, the code for the WHEN-BUTTON-PRESSED trigger under the item called “VERB”,
under the data block called “ACTIONS”, is listed below. “VERB” is a generic reference for the
OK button that appears at the bottom of the “ACTIONS” screen. Depending on exactly what the
action is, the trigger code calls the appropriate bank service routine, for example,
banksvcs.inquiry(). This is another illustration of the form layer relying on routines from
the bankapp client PL/SQL library.

-- Copyright (C) Oracle Corporation 1996, 1998.
-- All Rights Reserved, Worldwide.

declare
 balance1 number;
 balance2 number;
 account1 pls_integer := :actions.account1;
 account2 pls_integer := :actions.account2;
 amount number := :actions.amount;
 action varchar2(20) := :bank_svcs.services;
 errmsg varchar2(250);
 discard number;
 item1 varchar2(30) := null;
 item2 varchar2(30) := null;

begin
 --
 -- Call the appropriate service for the current action
 -- (We also use this block to display initial balance after
 -- creation so if the action is OPEN then we just go back to
 -- the main block)
 --
 if (action = ’OPEN_ACCT’) then
 go_block (’bank_svcs’);
 return;
 elsif (action = ’INQUIRY’) then
 banksvcs.inquiry (account1, balance1, errmsg);
 :actions.balance1 := balance1;
 elsif (action = ’DEPOSIT’) then
 banksvcs.deposit (account1, amount, balance1, errmsg);
 :actions.balance1 := balance1;
 elsif (action = ’WITHDRAW’) then
 banksvcs.withdraw (account1, amount, balance1, errmsg);
 :actions.balance1 := balance1;
 elsif (action = ’CLOSE_ACCT’) then
 banksvcs.close (account1, balance1, errmsg);
 :actions.balance1 := balance1;
 elsif (action = ’TRANSFER’) then
 banksvcs.transfer (account1, account2, amount, balance1, balance2, errmsg);
 :actions.balance1 := balance1;
 :actions.balance2 := balance2;
 item1 := ’actions.bal2_label’;
 item2 := ’actions.balance2’;
 null;
 else
 errmsg := ’INTERNAL ERROR: Unknown transaction type’;
 end if;

 -- If the service returned an error, display it
 --
 if (errmsg is not null) then
 hideitem (’actions.bal1_label’);
 hideitem (’actions.balance1’);
 hideitem (item1);
 hideitem (item2);
 synchronize;
 set_alert_property (’ERRORMSG’, ALERT_MESSAGE_TEXT, errmsg);
 discard := show_alert (’ERRORMSG’);
 else
 showitem (’actions.bal1_label’);
 showitem (’actions.balance1’);
 showitem (item1);

Using Oracle Developer with the Tuxedo TP Monitor 35

 showitem (item2);
 end if;
end;

In the Object Navigator, move further down to the node called “Canvases”. Expand this node,
and then double-click on any of the canvas icons to see how the three different screens will
appear when the form is running.

Finally, move further down the list to the Program Units node, and expand it to see one PL/SQL
function and four PL/SQL procedures that are associated with this form. Since these routines are
really only specific to this particular form, they are found here rather than in the Oracle
Developer bankapp client PL/SQL library.

This concludes the survey of many of the elements of both the Oracle Developer bankapp client
PL/SQL library and the Oracle Developer bankapp client form. A few tips for developing
Tuxedo clients with Oracle Developer based on the Oracle Developer bankapp client were also
included.

Using Oracle Developer with the Tuxedo TP Monitor 36

4. Appendix

4.1 What’s New in this Release?

4.1.1 Bug Fixes

This release of the Oracle Developer - Tuxedo Interface is 6.0.5.2.0. This section highlights the
improvements that are featured in this release.

• Bugs #506223, #595581, #632181 and #670693
Minor improvements and updates were made to this white paper.

• Bug #524555
The Oracle Developer - Tuxedo Interface is now available for the Solaris OS platform .

• Bug #595608
The Oracle Developer - Tuxedo Interface is now available for BEA Tuxedo Release 6.4 .

• Bug #607295
The Oracle Developer - Tuxedo Interface is now available for Oracle Developer Release
6.

• Bugs #629114, #665132, #670688, #675137 and #784609.
Internal improvements were made to the product’s PL/SQL library.

• Bugs #632802, #665079, #670702, #681304, #681314, #784589, #785441 and #785651.
Internal improvements and updates were made to the product’s source code.

• Bug #672429
The product’s PL/SQL library is no longer dependent upon Forms built-in subprograms.

• Bug #740002 and #764850
Corrections were made to the internal installation map file.

• Bug #741738
The PL/SQL function atmi.tptypes() correctly returns the buffer type and subtype.

4.1.2 Current Limitations

• Asynchronous ATMI client functions are not supported in this release.

4.2 Frequently Asked Questions
This section answers some questions related to the Oracle Developer - Tuxedo Interface. The
questions are presented in three categories.

4.2.1 General

• Isn’t there some other interface between Oracle and Tuxedo?

Yes, there is, but it’s a little different than this one. That interface is between an Oracle
database and Tuxedo using the standard XA protocol. The Oracle database fulfills the
role of the data management service on the resource server (third tier), while the Oracle

Using Oracle Developer with the Tuxedo TP Monitor 37

Developer - Tuxedo Interface enables the development of Tuxedo clients for the desktop
(the first tier). Obviously, these interfaces are complementary.

There’s even a demo of this that also uses bankapp. It shows an Oracle database
(Oracle7) acting as the database for the bankapp, rather than using the internal data
structures that are shipped with bankapp. This demo uses the data dependent routing
feature of the Tuxedo system. For more information about this database interface or its
demo, see the draft white paper INTEGRATING THE TUXEDO SYSTEM WITH
ORACLE 7 RDBMS, dated 17 April 1995. It should be available from BEA Systems.

4.2.2 Marketing

• Are other interfaces available or planned for more recent releases of Tuxedo?

This interface is with Tuxedo System Release 6.4. Interfaces supporting more recent
releases of Tuxedo can be expected if the market demands them. Please feel free to
contact Oracle Developer Product Management if you have a need for such an interface.

• Will there be an interface of FML32 available at some point?

Yes, if there is enough demand from the marketplace to justify the effort.

• What TP monitor interfaces are available or planned for Oracle Developer?

A prototype of a similar interface with Digital Equipment Corporation’s ACMS Desktop
was developed by Oracle Corporation. NCR Corporation has developed an interface to
their TP monitor, TOP END, which is available from NCR. It was recently announced
(20 May 1998) that BEA Systems is in the process of purchasing the TOP END
enterprise middleware technology and product family from NCR, but the agreement is
subject to government approval. NCR Corporation’s URL is “http://www.ncr.com”.

4.3 Additional Resources
There are many other resources available to aid in the understanding of this interface, as well as
its constituent and enabling technologies.

4.3.1 Oracle Developer

The following additional resources are available for Oracle Developer:

4.3.1.1 On-line Documentation

• There is a wealth of knowledge in the Oracle Developer on-line documentation. Of
particular interest would be the sections which discuss the PL/SQL interface to foreign
functions and transactional triggers. These can both be found by using the Form Builder
on-line help index tab (Foreign functions, Transactional Triggers).

• The Procedure Builder on-line help has an entire node devoted to calling functions in
dynamic libraries under the heading “Building and Running a Program Unit”, as well as a
detailed description of the ORA_FFI (foreign function interface) built-in package in the
PL/SQL Reference.

Using Oracle Developer with the Tuxedo TP Monitor 38

4.3.1.2 White Papers

• The white paper Developer/2000 and Designer/2000 - 3-tier Strategy contains an
overview of the Oracle products and how they fit in various architecture alternatives .
Contact your Oracle Corporation Sales Representative for a copy.

• The white paper Using Developer/2000 with the ACMS TP Monitor discusses the use of
Oracle’s Developer as a front-end development tool to the ACMS transaction processing
monitor. It provides a brief introduction to client/server architectures and TP monitors,
and describes in detail the programmatic interface between Oracle Developer and ACMS,
including an example. This was developed as a prototype and is not available as a
product but if you’re interested, please contact your Oracle Corporation Sales
Representative for a copy.

• Additional white papers are available from Oracle Consulting Services' Enterprise
Scaleable Solutions Center of Excellence. Contact your Oracle Corporation Sales
Representative or Consultant for more information about these resources.

4.3.1.3 Books

• Feuerstein, Steven. ORACLE PL/SQL Programming. Sebastopol, CA: O’Reilly &
Associates, Inc., September 1995. ISBN: 1-56592-142-9. A very rich tome covering just
about everything anyone would want to know about PL/SQL.

4.3.2 Tuxedo and TP Monitors

The following additional resources are available for Tuxedo:

4.3.2.1 Documentation Set

• Of course, the BEA TUXEDO System 6 Installation Guide is essential to getting started.
Particular attention should be paid to the sections devoted to configuring the operating
system, and the data sheet for the operating system under which Tuxedo will run; it is
almost guaranteed that at least some of the kernal tunable parameters will have to be
adjusted to get the bankapp to work correctly.

The remainder of Tuxedo’s product documentation is available on-line as HTML documents and
is installed along with the product. The following Tuxedo documents are the most relevant to
this interface.

• Refer to the /Workstation Guide for information about how to bring up Tuxedo’s bankapp
client on client hardware, and for information on how to design and write Tuxedo clients.

• The Application Developer’s Guide contains information about how to develop a Tuxedo
application, using the bankapp as an example.

• Everything you wanted to know about Tuxedo’s Form Manipulation Language is in the
FML Programmer’s Guide.

• For more programming information, refer to the Programmer’s Guide, especially Chapter
2, “Writing Client Programs”.

• The TUXEDO Reference Manual: Section 3C contains detailed descriptions for the ATMI
C functions and the TUXEDO Reference Manual: Section 3FML contains detailed
descriptions for the FML C functions.

Using Oracle Developer with the Tuxedo TP Monitor 39

4.3.2.2 White Papers

• Programming a Distributed Application is a good description of the four communication
techniques available to programmers using Tuxedo to write distributed applications. This
is available from BEA Systems.

• Exploring TUXEDO Using the bankapp Demo Program, written by C. Cash Perkins, and
dated 12/7/95, is a good resource for understanding how to get bankapp to run. This is
also available from BEA Systems.

4.3.2.3 Books

• Grey, Jim and Reuter, Andreas. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1993. ISBN 1-55860-190-2. This book is widely
considered to be the authoritative reference book for TP systems.

• Hall, Carl L. Building Client/Server Applications using Tuxedo. John Wiley & Sons,
Inc., 1993. ISBN 0-471-12958-5.

• Primatesta, Fulvio. Tuxedo: An Open Approach to OLTP. Prentice Hall, 1995. ISBN 0-
13-101833-7

4.3.2.4 Web Pages

• The URL for Tuxedo information is “http://www.beasys.com”.

Using Oracle Developer with the Tuxedo TP Monitor

January 1999

Copyright © Oracle Corporation 1999

All Rights Reserved Printed in the U.S.A.

This document is provided for informational purposes

only and the information herein is subject to change

without notice. Please report any errors herein to

Oracle Corporation. Oracle Corporation does not

provide any warranties covering and specifically

disclaims any liability in connection with this document.

Oracle is a registered trademark and Enabling the

Information Age, Oracle7, Oracle8 and Oracle 8i are trademarks of

Oracle Corporation.

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

650.506.7000

Fax 650.506.7200

Copyright © Oracle Corporation 1999

All Rights Reserved

Printed in the U.S.A.

