Oracle Forms Developer and Oracle Reports Developer

Guidelines for Building Applications

Release 6/

January, 2000
Part No. A73073-02

ORACLE

Oracle Forms Developer and Oracle Reports Developer: Guidelines for Building Applications, Release 6i
Part No. A73073-02

Copyright © 1999, 2000 Oracle Corporation. All rights reserved.

Portions copyright © Blue Sky Software Corporation. All rights reserved.

Contributing Authors: Frederick Bethke, Marcie Caccamo, Ken Chu, Frank Rovitto

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on behalf
of the US Government, the following notice is applicable:

RESTRICTED RIGHTS NOTICE

Programs delivered subject to the DOD FAR Supplement are ‘commercial computer software' and use,
duplication and disclosure of the Programs including documentation, shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer
Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA
94065.

Oracle is a registered trademark, and Express, Oracle7, Oracle8, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used
for identification purposes only and may be trademarks of their respective owners.

Contents

SENA US YOUT COMMENTES ..ottt ettt e et ettt et et et et eeeeeet et et eeeee et et eeeaeeas Xiii

Preface......

1 Managing Your Applications

11
111
1.1.2
1121
1122
1.1.3
1131
1.1.3.2
1.1.33
1134
1.1.35
1.1.3.6
1.1.3.7
1.1.3.8
1.2
121
1211
122
1221
1.2.2.2
1.2.3
1231
1.2.3.2
1.2.4
1241

The Software Development Lifecycle: AN OVErVIEW..........ccccovvvveiiieneieense e 1-2
Using Project Builder to implement a management strategycc.ccocvvevverivernnnn, 1-3
W AN oTo 101l 2 o 1= =10 [(o -1 SRS 1-3

Understanding Project Builder terminology.........cccccoovveviicciiinnscne e 1-4
How Project Builder affects existing development rolescccccoovecvvvricrienenn 1-6
Exploring Project Builder benefitS.........cccocovviiiciiiic e 1-7
Associating modules with an applicationcccovevvvnivivncnec e 1-7
Automating actions based on file tyPes......cccvvveiiiciiin s 1-7
Creating dependencies between modules..........cccoceoveviieivieicici s, 1-8
Assigning default connection strings to modules.............ccoccovvieveicinsinie e, 1-9
Designating which modules are to be included in the final install set........... 1-9
Sharing and porting project and subproject registry files...........cccccocvvivrerienenn, 1-9
Accessing other product components and third party tools............c.ccccccenee. 1-9
UsiNg SOUrce CONLrol PACKAQES......ccveuiviiieee e sesiese e se ettt 1-10

Managing Project Documents During Design and Developmentccccoceeveiennne 1-10

INstalling ProjeCt BUIIAENcocviiie e 1-11
Installing the project and USEr regiStriesccoevvevviirevireeieie e seie e 1-11
Creating @ PrOJECT . ..ottt et r ettt e e ne s 1-12
Creating a project; Project ADMINIStrator.........ccccooveivevieiivsisiene e 1-12
Creating a project: Team MEeMDEIS........ccccevvieiieieicee e 1-16
Working with projects and project dOCUMENTS.........cccveverreieiesieee e 1-18
Working with projects: Project Aministratorcc.ccocvvovievieniveieseeeeseans 1-19
Working with project documents: Team mMembers.......cccocevvveienesiesesiernene 1-20
Managing projects and project documents across multiple platforms................ 1-21
Managing projects across multiple platforms: Project Administrator.......... 1-22

1.24.2
1.3
131
1311
1.3.2
1321
14
14.1
14.11
15
151
1511
15.1.2
1513
15.2
1521

Managing project documents across multiple platforms: Team members ..
Managing Project Documents During the Test Phaseccccccevvviveieivicvnninne s
On the deVelopmMENT SIAEccvie i
The test phase: Project AdMINIStrator.........cccoeveveeiesie s

ON the tEST SIAEveiee bttt st st anas
The teSt PhasSe: TESTEIS....ciiieiiveeeeeeee et
Managing Project Documents During the Release Phaseccccoovvvvivivncvncvcienns
On the deVelopmMENT SIAEcc.oiiii i e e
The release phase: Project ADmiNiStrator..........ccocooveieieieinceinine e
Deploying Completed APPLICALIONS.........coci i
BefOre YOU BOOINcuiiiiiiiei ettt e et sna
TEIMINOIOQY ...ttt bbb bt

The Oracle Installer files ...

The contents of the TEMPLATES direCtorycoccoeieiininene e
Making your application an installable productccccooo i,
Deploying your application on WindoWs............ccoooieiiineiine e

2 Designing Visually Effective Applications

21
211
212
2.13
2131
2.13.2
2.1.33
214
2.15
2.2
221
2211
2212
2213
222
2221
2222
2223
2224
2225
2.2.2.6
2227

UNderstanding the PrOCESScoiiiiiiiiciee et st

What @re the STAgES?oiiiiieeceeet ettt bbb s be et
Defining USer FEQUITEMENTSciiiiiieiie et
Planning the user INtErface ... e
Creating Your StaNards ... e
Considering POrtabilitycccoo i e
Creating @ PrOtOtYPE. . ..cciriicieeerrie ettt bbbttt e
Building the user interface elements ...
Gathering USer FEedDACK ...

Creating an EffeCtive FOIM ... e

UNderstanding fOrMS ...
What iS @ MOAUIE?........coiiiiiiic s
What are forms, blocks, items, regions, and frames?ccccocviiincicinnene
What are Windows and CANVASES?........ccccueiiiiiiiiiiiiiaiisie st

Guidelines for building fFOrMS ...
USING 0DJECt lIDFaries ..o
Understanding basic design prinCiples ...
AAAING COIOT ... s
Creating CANVASESccceuiueiirieieieeisteie ettt se sttt sttt b b
Creating WINGOOWS.........oiii et
Creating FBOIONSoiieiee ettt ettt ettt b e bt sbe e e e e reenas
Adding items t0 DIOCKSc.oouiiiiiiii s

2-11
2-12

2.2.2.8 DESIGNING MEBSSAQGES...evvvrirerrerteiestestesereestesteeeeeestesessesresseseeseessesseseesseseesessessens 2-27

2.2.2.9 Implementing onling helP ..o 2-29
2.2.2.10 Building effectiVe MENUSccccevvieecee e 2-30
2.3 Creating an EffeCtive REPOI ...t 2-30
2.3.1 UNderstanding REPOITScviiiiiiie sttt 2-31
2.3.2 Using Templates in RepOrt BUIAENcoooveviiiv i 2-32
2.3.3 Understanding Layout ODJECESccciiieieriiricieieceee et ena e 2-33
234 Controlling Layout Objects in Report BUuilder ... 2-33
234.1 USING BNCNOTS ...ttt bbb 2-34
2.34.2 Using the Print Object On and Base Printing On properties...........ccccccoenene. 2-35
2.3.4.3 Understanding Horizontal and Vertical ElastiCity..........ccocooiiiiiiiiiiininne 2-35
2.3.4.4 Using the Page Break Before and After property........cccoooiviinieicicienne 2-36
2.3.45 Using the Page Protect Property ... e 2-37
2.3.4.6 Using the Keep with Anchoring Object propertyccccoooevinienenciene 2-37
2.4 Creating an Effective DiSPIayco i 2-37
2.4.0.7 Choosing the Right Graphc..cooiiiii e 2-38

3 Performance Suggestions

3.1 SUIMIMIBIY ottt ettt ke bbbt he bt e bt e e be e Re e ee e e Re e ke et e b e ek e e s b e eb b e ebeen b e abe e e e eneennas 3-1
3.2 Introduction: What IS PerfOrmancCe?...........ccoeiiiiiinniincese s 3-5
3.21 Performance WHEN? ..o e 3-5
3.2.2 Performance Of WNAE? ... e 3-5
3.2.3 INEErrelatioNSNIPS ..o et 3-6
3.24 THAAE-OFTS ..ttt 3-6
3.3 Measuring PerfOrmMEaNCE ..ot sttt 3-7
3.3.1 Forms Developer- and Reports Developer-Specific Measurements............c.cc....... 3-7
3.3.11 FOrmMS MEASUIEMENTSccooviiiiiiiire s 3-7
3.3.1.2 REPOITS IMEASUIEIMENTS. ..ottt ettt sre e ne s 3-8
3.3.2 Server- and Network-Specific Measurements ... 3-9
3.4 General Guidelines for Performance Improvement.............coccciiiiininene e 3-9
34.1 Upgrades of Hardware and SOFtWAareccocooiiiiiiiie i 3-10
34.11 SOFtWAIE UPQGIaOESceiieeiieiteiesie ettt sttt 3-10
3.4.1.2 Hardware UPQrades...........ooiioiiiiiiieeeesieee ettt st 3-11
3.4.2 Suggestions fOr Data USAQEcouveiiiiriie ettt 3-11
3421 USE AFTAY PrOCESSING ...eoveiiiieieieiieiieeie ettt s 3-11
3.4.2.2 Eliminate Redundant QUETIES.........ccvcviiiiciiiie e 3-11
3.4.2.3 Improve Your Data MOdEL...........cocooiiiiiiiiece e 3-12
3424 Use SQL and PL/SQL Efficiently ... 3-12
3.4.25 USE GFOUP FIITEIS ..ottt s 3-14
3.4.2.6 Share Work Between COMPONENTScocovuiieiriiieinese e 3-14

3.4.2.7 Move Wait TImMe FOrWANcocov ittt 3-14

3.4.3 FOrms-SPecific SUGQESTIONSccviviiiecce e 3-15
3431 TUNE YOUF AFray PrOCESSING ...ccvcveeeeiisesereesiesie e e s st ns s 3-15
3.4.32 Base Data Blocks on Stored ProCeaUIES..........ccoviriiinnreienneeensneeenenas 3-15
3.4.3.3 Optimize SQL Processing in Transactionscccevervvveininsieseseseseseseesees 3-17
3.4.3.4 Optimize SQL Processing iN TrQQEIS.....cccuivviivrerenereeeisesese e see e es 3-18
3.4.35 Control Inter-Form Navigation...........ccocviviiiinere i 3-18
3.4.3.6 Raise the Record Group FetCh Size........cccoiiiiiiii e 3-18
3.4.3.7 Use LOBS instead Of LONGScccoiiiiiiinieieesee e 3-18
3.4.3.8 Erase Global Variables ... 3-19
3.4.3.9 Reduce Widget Creation on Microsoft Windowscccccevviiiiincccnenn 3-19
3.4.3.10 Examine the Necessity Of LOCKINGccccooiiiiiiiiiiice e 3-19
3.4.4 RepOorts-Specific SUGQESTIONS.ccu i e 3-19
34.4.1 ATEAS 10 FOCUS ON ...ttt 3-20
3.4.4.2 Reduce Layout OVEIrNEadccocooiieiiiiie e 3-20
3.4.43 Use Format Triggers Carefully ... 3-20
3.4.4.4 Consider LiNKiNg TabIESc.oooiiiiiiiie e 3-21
3.4.45 Control Your Runtime Parameter SEttingscccccooviriiinencieirecne e 3-22
3.4.4.6 Turn Off Debug MOdE ..o s 3-22
3.4.4.7 Use Transparent ODJECLScoiiiiiiieieieie ettt 3-22
3.4.48 Use Fixed Sizes for Non-Graphical Objectscccocviiiiiiiiniiiiicccnee 3-22
3.4.4.9 Use Variable Sizes for Graphical ObJectSccccooiiiiiiiiieiinececc e 3-23
3.4.4.10 Use Image Resolution RedUCHIONccoooiiiiiiiiiii e 3-23
3.4.4.11 ANV/oTo VAV o] g0 IAVAV A =T o] o 11 oo RSP TUT 3-23
3.4.4.12 Simplify Formatting AttribULes ... 3-23
3.4.4.13 Limit Your Use of Break GroUPSccooiiiiiieiiieiee e 3-24
3.4.4.14 Avoid Duplicate Work with Graphics Builder.............cccooooiiiiiinniincce 3-24
3.4.4.15 Choose Between PL/SQL and USer EXItSccccooeviinieniinciene e 3-24
3.4.4.16 Use PL/SQL instead of SRW.DO_SQL for DMLcccooeoviiiiiiiiceeee, 3-25
3.4.4.17 Evaluate the Use of Local PLZSQL......ccoooiiiiiiiii e 3-26
3.4.4.18 Use Multiple Attributes When Calling SRW.SET_ATTRcccocevninieiennene. 3-26
3.4.4.19 Adjust the ARRAYSIZE Parameter ..o 3-26
3.4.4.20 Adjust the LONGCHUNK Parameterccoocoeiniiniiiiseceescses 3-26
3.4.4.21 Adjust the COPIES Parameter ... 3-27
3.4.4.22 Avoid Fetch-Aheads in PreVIieWing ... 3-27
3.4.4.23 Choose Appropriate DOCUMENt STOFagEccccceveireinerineireiseeeeeereenes 3-28
3.4.4.24 Specify Path Variables for File Searchingc.ccccoooiiniiniiice, 3-28
3.4.4.25 Use the MUIti-TIiered SEIVEL ... e 3-28
3.4.5 Graphics-SPecific SUGQESTIONScviiiiiiiee e 3-29
3451 Pre-Load Your Graphics Files ... 3-29
3.4.5.2 Update Displays Only If NECESSAIYccceoiereeieienieeneeee et 3-29

Vi

3.453
3454
3.455
3.45.6
3.45.7
3.5
3.5.0.8
3.5.0.9
3.6
3.6.1
3.6.1.1
3.6.1.2
3.6.1.3
3.6.14
3.6.15
3.6.1.6
3.6.1.7
3.6.1.8
3.6.1.9
3.6.1.10
3.6.1.11
3.6.1.12
3.6.1.13
3.6.1.14
3.6.2
3.6.3
3.6.4

Move Display Updates Out 0Ff LOOPSccvevveveviiniene e 3-29
Use Common Elements Wherever Possible ... 3-29
Limit the DO_SQL Procedure to DDL Statementsccoccocvverereerieinsinnnnnnns 3-29
Use Handles to Reference ODJECESccocveivvviiiiisin e 3-30
Consider Not Using Shortcut BUilt-inNsc.ccccevvvviiiininvineeee e 3-30

IN & CHENT/SEIVEr SIFUCTUIE ..ot 3-30
Choose the Best Installation Configurationccccocvininiiieieiecnneseesenn, 3-30
Choose a Suitable Application ReSIAENCEcccocvveneiiiniiine e 3-31

IN @ THIEE-TIEN STFUCTUIE ..ottt b 3-31
Maximizing Tier 1 - Tier 2 Scalability ... 3-31
Increase Network Bandwidth ... 3-32
Minimize Changes to the Runtime User Interfaceccccooooiiiiniiinn 3-32
Adjust Stacked CanVASESccoiiiiiiiiire e 3-32
Perform Validation at a Higher Level ... 3-32
Avoid Enabling and Disabling Menu itemsccocooeieiiieinincnee e 3-32
Keep Display Size SMall ... 3-33
Identify Paths for Graphic URLS ..ot 3-33
Limit the Use of Multimediacocooiiiiiii e 3-33
Avoid Use of Animations Driven from the Application Server 3-33
Take Advantage of HYPerlinks ... 3-33
Put Code iNt0 LIDFAri€scocooiiiiiiiii e e 3-33
Reduce Start-up Overhead wWith JAR FileS ... 3-33
Reduce Start-up Overhead with Pre-Loadingccccocvoeiiiiiinencicinens 3-34
Use Just-in-Time COMPIliNg ..o 3-34
Maximizing Tier 2 - Tier 3 Scalability ... 3-34
Increase Tier 2 POWer — Hardware ..o 3-34
Increase Tier 2 POWeEr — SOftWANEccoiiiiiiiie et 3-35

4 Designing Multilingual Applications

4.1
41.1
41.1.1
41.1.2
4.1.2
4121
41.2.2
4.1.3
41.4
414.1
4.1.4.2

National Language SUPPOIT (NLS)couiiiiiiiiiiieie e 4-1
The language environment Variables ... 4-2
NLS_LANG ...ttt bbbt ettt 4-2
DEVELOPER_NLS_LANG and USER_NLS_LANG........ccccovnririirnriecenns 4-3
CAIACTET SEUS.... ittt bbbt ne et b bt er e er e n e re e anene s 4-4
Character set design coONSIAErations..........cccccueuriririnine s 4-4
Font aliasing on Windows platforms............ccooiiiiniiinnceee e 4-5
Language and TEITITOIYcoiiiiiiiirie ettt bbbt 4-5
BidireCtional SUPPOITc.ooiiiiiiiiie et 4-6
Bidirectional support in FOrm BUilder ..., 4-7
Bidirectional support in Report BUIIAEr ... 4-8

Vil

4.1.5
415.1
4152
4153
4.2
421
4211
42.1.2
4.2.1.3
4.2.2
4221
4222
4.2.3
4231
4.2.3.2
4.2.3.3
4.2.3.4
4.3
43.1
43.1.1
43.1.2
4.3.2
4321
43.2.2
4.3.3
4.3.4

L 0T o0 Lo [4-8

L0 L TTol0To [T U] o] 0 o] o SRS 4-9
[0 0 8] o 0L o PSS 4-10
Enabling Unicode SUPPOIt........ccccoviviiiiiiieie e 4-10
Using National Language Support During Development..........ccccoovinivnieciennnennene, 4-10
FOIMAL MASKS ... s 4-11
Format mask design considerations.........c.ccocovvveiincciesieee s 4-11
Default format Masks ... 4-11
Format mask Characters ... 4-12
SOrting CharaCter data...........ccoiiiiiiiiie e e 4-13
Comparing strings in @ WHERE ClauSe...........cccoooiiiiiininenece e 4-13
Controlling an ORDER BY ClAUSE........c..coeiriiieiseie e 4-13
INILS PAraMIETEIS ...ttt ettt b e sttt e e bt esbe e 4-14
USING ALTER SESSIONoiuiiiiiiiiiitnisieieees e 4-14
Using NLS parameters in SQL fUNCLIONSccoiiiiiiiiicicce e 4-16
Form Builder NLS parameters ..o 4-16
Report Builder report definition files...........ccooooiiiiii e, 4-17
Translating Your APPLICALIONSooiiiiiiiiie e 4-18
Translating your applications using Translation Builderc.ccccoooiiiiinnne. 4-18
YN0 V7T 0] 7 Vo =TSSR 4-19

(DT E= o A= g r=To [= USSP 4-19
Translating your applications using runtime language switching....................... 4-19
AAVANTAGES ..ottt ettt ettt et bbbt e e b e s e ee e e e re et eneenas 4-20

(DT E= o A= g1 r=To [= USSR 4-20
Using PL/SQL libraries for strings in COe..........ccoviiiiiiineiinisisee e, 4-20
Screen design CONSIAEIAtIONS.coviiiiiiie e 4-21

5 Designing Portable Applications

51
5.2
521
5211
52.1.2
5213
5214
5215
5.2.1.6
5217
5.2.1.8
5.2.1.9

BefOre YOU BOOIN ..ot bbb ettt st e 5-2
Designing Portable FOIMIS.........ooiiiii e e 5-2
ConSIAering the GUI ... 5-2
Choosing a coordinate SYSTEIMccoiiiiiiiiieeeeeee e e 5-3
COoNSIAEIING MONITOTS.......oiiiiiiiie et e 5-3

USING COIOT ...ttt ettt eb et sbe s 5-4
RESOIVING FONT ISSUESeiiiitiiieiie sttt 5-5

USING TCOMNS ...ttt ettt bbbt b e sb ettt e e b ene e 5-6

USING DULTONS. ... ettt bbbt n e 5-7
CreatiNg MEBNUS ..ottt ettt eb et bbbt b e et e e 5-7
Creating the CONSOIE ..o e 5-8
MISCRITANEOUS ...t 5-8

viii

522
5221
523
5231
52.3.2
5233
5234
524
5.3
53.1
53.1.1
5.4

Considering the operating SYStEMc.cccvoeiviiesesse e ene 5-9

INCIUAING USEI BXILS....c.vivieeicieeiceeses et er e ens 5-11
Strategies for developing cross-platform forms ..o 5-11
Creating @ SiNGIe SOUICEcvv v 5-12
Subclassing visual attribULes ... 5-13

Using the get_application_property built-in ..o, 5-13

[1T [T o 0] o] =Tt £ 5-14
Designing forms for character-mode ... 5-14
Designing Portable REPOITS ..o s 5-18
Designing a report for character-mode environmMentscc.ccocoveviieniininnennens 5-19
DeSign CONSIABTALIONScoiiiiiiiieiiee e e 5-19
Designing Portable DISPIaYS.........ccci it s 5-19

6 Taking Advantage of Open Architecture

6.1
6.1.1
6.1.1.1
6.1.1.2
6.1.1.3
6.1.1.4
6.1.1.5
6.1.1.6
6.1.1.7
6.1.1.8
6.1.1.9
6.1.1.10
6.1.1.11
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6.1.2.5
6.1.2.6
6.1.2.7
6.1.2.8
6.2
6.2.1
6.2.1.1
6.2.1.2

Working with OLE Objects and ActiveX CONtrols..........ccccoiiiiiniiiieneis e 6-2
WRAL IS OLE? ..o 6-2
When should 1 USE OLE? ... 6-2
About OLE servers and CONtAINETS..........ccvviiriinieieeise e 6-3
About embedded and linked ODJECEScoiiiieiiiiee e 6-3
About the registration database.............cccoivriiiiiiiiii 6-4
About OLE activation STYIES.........ccco it 6-4
ADOUL OLE QUEOMALIONcviviiiiiiiiieee e 6-5
(O] I =] o] o0 o AUUU T OO PR U U PR UPTPPPPTOT 6-6
OLE QUIAEIINES ...t s 6-13
Adding an OLE object to your applicationccccceoieiininienenene e, 6-14
Manipulating OLE ODJECTScooiiiiiiiieieiee e 6-14
OLE EXAMPIES ...ttt bbb bbb e e s 6-15
What are ACtIVEX CONTIOIS?ociiiiiiiiiciree e 6-17
When should | use ACtiveX CONTIolS?ccoviiiiiiiiiic e 6-18
Manipulating ActiveX CONtIOIS........c.co i 6-18
Responding t0 ACHIVEX BVENTScoiiiiiiie et e 6-19
Deploying your ActiveX CONTIOl..........cociiiiiii i 6-19
ACTIVEX SUPPOIT ..ottt bttt st 6-20
ACHIVEX QUIAEITNES ...t et 6-21
Adding an ActiveX control to your applicationc.cceeeoeveieneieneicinnn 6-24
ACTIVEX BXAMPIES. ... e e 6-24
Using Foreign Functions to Customize Your Applicationscccccoiiiiincicnnenn 6-26
What are foreign fuNCHIONS?........coo i 6-26
When should I use a foreign fuNCtion?...........cccoe i 6-26
FOreign fUNCLION tYPES ..ot e 6-27

6.2.2 The foreign fuNCtion INtErfaCecooovv i 6-27
6.2.2.1 The Oracle Foreign Function Interface (ORA_FFI) .ccooovveivv i 6-28
6.2.2.2 User exit interface to foreign functions.........c.ccoceciieiincicccccc s, 6-28
6.2.2.3 Comparing ORA_FFl and USEr €XitS.......cccoviveieviieisnre s e 6-28
6.2.3 Foreign fUNCLioN QUIAEIINES.......ccvieiieecece e e 6-29
6.2.4 Creating a foreign fuNCION ..o s 6-31
6.2.4.1 Creating an ORA_FFl interface to a foreign function............cccccceevevviviecinnnn, 6-31
6.2.4.2 Creating a user exit interface to a foreign function...........c.ccocoiiiiiiinine, 6-35
6.2.5 Foreign fuNCtion eXampPles...... ..o e 6-38
6.2.5.1 Using ORA_FFI to call Windows help........cociniie e 6-38
6.2.5.2 Using ORA_FFI to open the File Open dialog on Windowsccccc...... 6-41
6.2.5.3 Using ORA_FFI to call Unix(SUN) executables with a STDIN/STDOUT type in-
terface 6-43
6.3 Using the Open API to Build and Modify Form Builder Applications..............c........ 6-52
6.3.1 What iS the OPEN API? ... bbb 6-52
6.3.1.1 When should | use the Open API? ... 6-52
6.3.1.2 Open APL header fileS ... s 6-52
6.3.1.3 OPEN APL PrOPEITIES....ce ittt 6-54
6.3.1.4 Open AP fuNCtioNS and MACKOS.ccoiiiie et 6-54
6.3.2 Guidelines for using the OPen AP ... 6-55
6.3.3 USING the OPEN AP ...ttt 6-55
6.3.3.1 Creating and modifying modules using the Open APl ..o 6-55
6.3.4 OPEN APL EXAMPIES ...t 6-56
6.3.4.1 Modifying modules using the Open AP ... 6-56
6.3.4.2 Creating modules using the Open AP ... 6-59
6.4 Designing Applications to Run against ODBC Datasourcescccoeererereeicennenns 6-70
6.4.1 What is the Oracle Open Client Adapter (OCA)? ... 6-70
6.4.1.1 When should 1 USE OCA? ...t 6-70
6.4.1.2 OCA ArCHITECTUIE ...ttt 6-71
6.4.1.3 Establishing an ODBC CONNECTION..........coieiiiiiiiieeee et 6-71
6.4.1.4 ODBC AIVELS ..ottt bbbttt ettt be e 6-71
6.4.1.5 OPENDB.PLL ...ttt ettt bbbttt 6-71
6.4.2 Open datasource gUIdElINeS ..o 6-72
6.4.3 Configuring your application to run against an ODBC datasource..................... 6-74
GlOSSANY .o Glossary-1
INX .ttt ettt bbbt e bbbttt eters Index-1

Xi

Xii

Send Us Your Comments

Forms Developer and Reports Developer: Guidelines for Building Applications

Part No. A73073-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available), and email them to d2kdoc @is. or acl e. com

Xiii

Xiv

Preface

The guidelines in this book are intended to help you fully exploit some of the pow-
erful features available in both Forms Developer and Reports Developer. Whether
you’ve been using these applications for years or are brand new to these products,
the concepts and suggestions provided in this book should make it easier for you to
complete such tasks as deploying an existing Form or Report application on the
Web, designing an effective graphical user interface, or tracking and managing the
disparate modules that make up a single application.

How does this book fit in with the accompanying online help? While you can
always rely on the online help to explain how to accomplish a given task or which
options are available to you within a product, this book helps you determine why
you’d want to choose one option over another and to understand the consequences
of each decision. Use this book to help develop your strategy; use the online help
for instructions on implementing that strategy.

These guidelines represent the combined experience of our customers, marketing
representatives, sales consultants, and the Oracle Applications group. You may
want to use these guidelines as the basis for developing your own company stan-
dards, or use them simply to augment the standards you already have in place.

Intended Audience

This book is intended for anyone who uses either Forms Developer or Reports
Developer. The needs of both novice and advanced users are addressed.

XV

Structure

XVi

This book contains the following chapters:

Chapter

Description

Chapter 1, “Managing Your
Applications”

Explains how to use the tools currently avail-
able with Forms Developer and Reports Devel-
oper to set up and manage the development of
applications. Topics include:

. Setting up and administering projects

. Enabling team development under a vari-
ety of networking scenarios

= Source-controlling projects
. Exporting projects between platforms

Exporting projects to different environments
during the application lifecycle

Chapter 2, “Designing Visually
Effective Applications”

Presents visual considerations for developing
Forms Developer and Reports Developer
applications using Form Builder, Report
Builder, and Graphics Builder.

Chapter 3, “Performance Sugges-
tions”

Detailed suggestions for improving the perfor-
mance of the your applications.

Chapter 4, “Designing Multilin-
gual Applications”

Explains how to design multilingual applica-
tions.

Chapter 5, “Designing Portable
Applications”

Discusses how to develop an application that
can be easily ported across Windows 95, Mac-
intosh, and UNIX. Also discusses developing
for character mode terminals.

Chapter

Description

Chapter 6, “Taking Advantage of
Open Architecture”

Discusses how to use Forms Developer and
Reports Developer to:

. Create applications that include OLE
objects and ActiveX controls.

. Customize your applications with foreign
functions.

. Build and modify applications using the
Open APL.

Run applications against ODBC-compliant
data sources.

Notational Conventions

The following conventions are used in this book:

Convention

Meaning

boldface text

Used for emphasis. Also used for button names,
labels, and other user interface elements.

italicized text

Used to introduce new terms.

courier font

Used for path and file names.

COURI ER CAPS

Used for:

« File extensions (. PLL or . FIMX)
« Environment variables

« SQL commands

« Built-ins/package names

« Executable names

Xvii

XViii

1

Managing Your Applications

One of the most important aspects of application development is managing the
modules that make up an application. Large applications can consist of literally
thousands of modules, and millions of lines of code. In addition, modules which are
important to the project as a whole but which are not compiled into the application
itself (such as design specifications, test scripts, and documentation) must also be

tracked and maintained.

This chapter explains how to use Forms Developer and Reports Developer to help
you manage the application development process.

Section

Description

Section 1.1, "The Software
Development Lifecycle:
An Overview"

Briefly covers the major milestones of application development
and discusses Project Builder within that framework.

Section 1.2, "Managing
Project Documents During
Design and Development"

Discusses how to manage documents during development of
an application.

Section 1.3, "Managing
Project Documents During
the Test Phase"

Discusses how to ensure that your QA group tests the correct
configuration of project documents during the test phase.

Section 1.4, "Managing
Project Documents During
the Release Phase”

Discusses how to ensure that an installable version of your
application is delivered to your customers.

Section 1.5, "Deploying
Completed Applications"

Discusses how to turn your own application into one that is
installable by the Oracle Installer.

Managing Your Applications 1-1

The Software Development Lifecycle: An Overview

1.1 The Software Development Lifecycle: An Overview

Application development typically occurs in four phases:

Design. The initial specification for the application is developed. This
specification can be based on a variety of sources: customer feedback, input of
project management or development team members, requests for enhancement,
necessary bug fixes, or systems analysis.

Develop. Individual modules are created or modified, possibly incorporating a
wide variety of languages, tools, or platforms.

Test. The modules are tested. This generally occurs in two stages: unit test and
system test. Unit test is testing at a modular or functional level; for example,
testing Ul elements such as menus or buttons. System test tests the integration
of major portions of the code; the backend with the Ul, for example.

Deploy. The modules are packaged together in an installable form and
delivered to customers.

Design

Input - customer feedback,
enhancement requests

Deploy
Input - a tested, verified
application

Deliverable - an installable
application

Deliverable - design
specifications

Test

Input - modules, test
specifications, test scripts

Develop

Input - design specifications,
enhancement requests, bug lists

Deliverable - bug lists,
verified applications

Deliverable - testable modules

) R 4

Figure 1-1 The phases of the development lifecycle: input and deliverables

As the application grows in size and complexity, the four phases are repeated
iteratively, and the amount of information produced (actual code, bug reports,
enhancement requests, etc.) grows. Yet all input and deliverables for all phases must
be tracked and maintained to ensure the integrity of the final deliverable: the
application your customer installs.

1-2 Guidelines for Building Applications

The Software Development Lifecycle: An Overview

This chapter discusses how to use Forms Developer or Reports Developer to
manage your application’s code base and maintain version integrity.

1.1.1 Using Project Builder to implement a management strategy

In any development project, management tasks can be split roughly into two
categories:

« Project management, which includes allocating the necessary equipment,
budget, and person-hours of work necessary to complete the development of
the application.

« Software configuration management, which includes assigning modules to
developers, determining dependencies among modules, maintaining the code
under development, and version control.

Project Builder, a component of both Forms Developer and Reports Developer,
enables you to simplify your software configuration management tasks so you and
your team can focus on your primary objectives: designing, coding, and testing
applications.

1.1.2 About Project Builder

To help simplify your software management tasks, Project Builder provides the
means for you to:

« Associate modules with an application or component of an application.
« Automate actions based on file types.

« Create dependencies between modules and indicate how changes cascade; in
other words, show which modules need to be recompiled based on changes to
other modules.

« Assign default connection strings to modules.
« Designate which modules are to be included in the final install set.

= Share projects and subprojects among team members and port them to different
environments.

« Invoke other tools from the Project Builder user interface.

These features are described in detail in Section 1.1.3, "Exploring Project Builder
benefits". If you’re unfamiliar with Project Builder terminology, however, it’s a good
idea to read through Section 1.1.2.1, "Understanding Project Builder terminology"

Managing Your Applications 1-3

The Software Development Lifecycle: An Overview

before proceeding. This section defines some basic terms which provide the context
for a discussion of Project Builder’s features.

1.1.2.1 Understanding Project Builder terminology
Project Builder is based upon the concepts of projects and subprojects:

« Projects are collections of pointers to the modules and files that are part of your
application.

= Subprojects are projects contained within other projects, providing a finer level
of organizational granularity. Often the organization of files into subprojects
mirrors the organization of files into subdirectories, but this is not a
requirement.

In addition to projects and subprojects, these terms are also central to a solid
understanding of Project Builder:

« Types. A type is the basis of every item, and controls the actions that are
available in Project Builder. Project Builder types recognize their associated file
types primarily by default extension; for example, . TXT for text files. Project
Builder predefines types for many commonly used files, such as forms
documents (FIVB), text files, and C source files. You can also use the Type
Wizard to define types for other applications.

= Project items. The components that make up a project are known as items. An
item is simply a description of a file that is part of a project. Each item is fully
described in the associated Property Palette, which lists the item’s type, location
in the file system, size, and when it was last modified. The actions and macros
(see below) for the item are also defined.

It is important to remember that an item is not the file itself; rather, it is a
description of the file. So, when you delete an item from a project, you are
simply telling Project Builder that the file is no longer part of the project. The
file itself is not deleted.

= Actions. Actions are command strings that apply to files of a given type; for
example, the Edit action for a text item may be the command string that invokes
Notepad or WordPad.

« Macros. Macros are variables you can use to modify actions. A macro may be
either a constant or a simple expression (which, in turn, may contain other
constants and/or expressions). For example, Project Builder inserts all the
information you’ve specified for connecting to a database into the ORACONNECT
macro, which is included in all commands that might require you to connect.

1-4 Guidelines for Building Applications

The Software Development Lifecycle: An Overview

The information in the macro is then inserted into the action so you can log on
automatically.

Just as you might use environment variable in scripts or batch files to
conveniently modify a script’s actions without editing the script itself, so you
can use macros to customize actions without having to edit the action
themselves. For example, you might define a macro to determine whether to
compile your application in Debug mode or Optimized mode. In preparation
for building the deployment version of the application, you would simply
change one macro definition to switch off Debug, rather than having to find and
modify every type whose Build command made use of the Debug flag.

Global registry. The Global Registry contains the pre-defined Project Builder
types.

User registry. Each user has a user registry in which to define new types,
redefine existing types, and modify or create actions or macros.

Project registry file. The project registry file contains information necessary to
track a project, including pointers to modules contained within the project,
default connection strings, and a pointer to the "home" directory for the project.

The Project Builder interface provides three tools for manipulating the items that
make up a project:

The Project Navigator furnishes a familiar "navigator" or "explorer" style
interface with which you can view the modules in your application. In addition,
you can use Project Builder’s filtering capabilities to display only the modules
you want to see. You can also launch editing tools directly from the Project
Navigator.

The Property Palette enables you to examine and modify the properties of
selected items.

The Launcher, a secondary toolbar, provides another means of accessing
development tools. You can even add buttons to the Launcher and associate
them with your favorite third-party tools.

Managing Your Applications 1-5

The Software Development Lifecycle: An Overview

Figure 1-2 depicts all three of these tools.

PmJ'?Ct e 5@ Project Builder - Dependency Yiew M=l 3 Efflﬂpe”v
alette

Navigator Fil= Edit HMawigator Project Tool: Help

I_I_IEiEIKILIEI-

=l == 4] D

Current zelected iter: D2kswinc.pll

Launcher —

-2 Global Registry

L_|j Types = General Information =
=2l User Registry o Title D2k zwinc. pll
{1 Connections a Type PLL - Forms Builder fibr.
[] L_|j Types @ Project directony CHORAWIMSENTOOLS
= Projects a Filename C:AORAWIMISATOOLS
= ,.r:l Project A Y Authar lawhite
[% Wiizard.pl Y ‘erzion contral file Yes
@ wizard.pl b Deliver file No
= @ Calcform. frox b Comments Test project,
I—Eﬂ Calcform.fmb | = Connection
- [2kdistr ple o Usemane scott
L% D 2kdlstr.pll o Passward | wessesss b
E- D 2kswine. ple a Databaze test]
I—% D 2kswinc.pll = Actions
L . Y Build from PLD {0RACLE_HOME bin'
|Eonnection: Y Check file inta FCS d2sov put {1}

Y Check file out of RCS d2zcv -get {1} =
- T e ”—_>|_I

Figure 1-2 The Project Builder user interface

1.1.2.2 How Project Builder affects existing development roles

Certain roles must be filled to keep the application development effort going
smoothly. Some, such as project manager, development manager, and team leader,
are common roles within development groups and require no definition. However,
with Project Builder one new role exists—that of project administrator.

A project administrator is charged with creating projects and making them available
to developers. The project administrator maintains the Global Registry and modifies
it as necessary, exporting the changes to the developers on the team. He or she may

1-6 Guidelines for Building Applications

The Software Development Lifecycle: An Overview

also export the project information to different environments, such as test
environments, or other platforms for cross-platform development.

The work the project administrator does when managing projects may affect the
roles of the following team members:

« Developers

= Source control administrator
« Testers (QA)

= Releaser

Of course, the precise duties of each team member vary from development group to
development group. A team member may also take on more than one role; for
example, a team leader may also be a project administrator, or a developer may be
in charge of source control.

1.1.3 Exploring Project Builder benefits

Now that you are familiar with basic Project Builder terminology (see
Section 1.1.2.1, "Understanding Project Builder terminology"), let’s examine the
benefits Project Builder provides.

1.1.3.1 Associating modules with an application

You can associate all of the modules in an application with the application itself
simply by adding the modules to the same project. This allows you to track a large
application as a single entity, determine the dependencies between modules, and so
on.

1.1.3.2 Automating actions based on file types

Project Builder ships with an extensive list of types, to which are assigned default
actions (such as Open, Edit, or Print). When you select a module, then click the right
mouse button, a pop-up menu displays the actions associated with that type. By
default, the actions included in a type definition apply to all modules of that type in
a project. You can also modify and add to these actions.

Actions are simply command strings. One benefit to defining actions with the actual
command strings (besides simplicity, of course) is that an action can be associated
conceptually with several different types. For example, editing a Word document
requires a different tool than editing a text document, yet conceptually the two edits
are very similar. Project Builder can associate an Edit command with many different

Managing Your Applications 1-7

The Software Development Lifecycle: An Overview

types, using a different command string for each. In this way, a single command
executes an appropriate action no matter what type of module you’re working with.

1.1.3.3 Creating dependencies between modules

Knowing which modules depend on which other modules is necessary to
determine when modules need to be recompiled as a result of a change. It’s also the
key to managing the impact of changes; for example, if a library changes, which
forms are now out-of-date?

Project Builder includes the dependencies for module types in their type definitions.
Thus, it can recognize dependencies between existing modules in a project. Since it
can also track modifications to modules, it automatically recompiles changed
modules and the modules dependent on them.

In fact, Project Builder can recognize dependencies that do not yet exist within the
project and create markers for them. These markers are called implied items. For
example, suppose your project contains an .FMB file, defined by the Project Builder
type "Form Builder document.” The "Form Builder executable,” or . FMX file, may
not exist—you may not have generated it yet. But Project Builder knows the
existence of this . FMX file is implied by the existence of the .FMB file, and creates an
implied item to mark it.

To determine the existence of an implied item, Project Builder correlates the value of
the property Deliverable Type for each defined type with the input items, or
source, required for the Build From <type> action for each defined type. In our
example above, the Deliverable Type property for the "Form Builder document"
type is defined as "Form Builder executable," or . FMX.The Build From <type>
action defined for a Form Builder executable is "Build From FMB". This means .F\VB
files are the input items for creating . FMX files, and, conversely, . FMX files are
targets for .FMB source.

The chain of implied items can consist of multiple files. For example, suppose you
add a C source file to a library file. In this case, Project Builder adds modules of
whatever other types are necessary to get a complete path of Build From <type>
actions from one file type to the other (like an object file).

While Project Builder detects dependencies only between compilable modules and
their resultant executables, you can set dependencies manually by adding modules
to a project below the item dependent on them. For example, if an .FMB is
dependent on a PL/SQL library, you can add the .PLL to the project below the .FNVB,
and Project Builder will recognize the dependency.

1-8 Guidelines for Building Applications

The Software Development Lifecycle: An Overview

1.1.3.4 Assigning default connection strings to modules

With Project Builder, you can define all of your most-used connection strings and
store their definitions under the Connections node. You can then assign a
connection to a module by dragging the connection from the Connections node and
dropping it on the module. When you need to edit that module—for instance, a
form—you can select the form in the Project Navigator and choose Edit from the
pop-up menu. Project Builder automatically opens Form Builder and connects to
your database for you.

1.1.3.5 Designating which modules are to be included in the final install set

Project Builder makes it easy to determine and track the modules that will be
included in your final install package (for example, .EXE files, .DLL files, and .HLP
files).To earmark a file for delivery, set the Deliver File property to Yes. When
you’re ready to create an install package, you can use the Delivery Wizard to
package all modules for which the Deliver File property is set to Yes into a single
unit.

Note: You can set the Deliver File property for a type or for individual project
items.

1.1.3.6 Sharing and porting project and subproject registry files

Project Builder enables you to export the information about a project to other team
members and to other platforms. Information about types, actions, macros, and
project registry files—including all the customizations you’ve made—can be written
to a text-based export file which you can then import to other environments and
other platforms. This enables cross-platform development and testing.

1.1.3.7 Accessing other product components and third party tools

You can access other tools from the Project Builder user interface through several
means:

« Actions, which you access by selecting a module in the Project Navigator and
clicking the right mouse button. A pop-up menu displays all the actions
associated with the selected item; the actions listed invoke whatever tools are
specified in the command strings. You can also double-click an item in the
Project Navigator to invoke its default action.

« The Build, Deliver, and source control actions, which launch whatever tools are
associated with them.

Managing Your Applications 1-9

Managing Project Documents During Design and Development

« The Launcher toolbar, which launches many components such as Form Builder,
Report Builder, and Graphics Builder. You can also add your own buttons to the
Launcher toolbar and associate them with your favorite third-party tools.

1.1.3.8 Using source control packages

Both Forms Developer and Reports Developer provide interfaces to these source
control packages:

« PVCS from Intersolv
« Clearcase from PureAtria
= \ersions, the source control component of StarTeam, from StarBase

You can also use other source control tools by modifying the source control actions
provided with Project Builder to point to them.

Since a variety of source control packages are available and can be used with Forms
Developer and Reports Developer, specific instructions for source-controlling your
projects are beyond the scope of this chapter.However, general guidelines will be
provided where applicable.

1.2 Managing Project Documents During Design and Development

Much has been written about the importance of design in the success of an
application.Deliverables during the design phase can include design documents
and specifications, meeting minutes, Ul prototypes, results from customer surveys
(if the application is new), user tests and lists of enhancement requests (if the
application is to be revised)—all documents that can be added to and tracked
within a project.

This means the project administrator for the development effort should be
identified early in the design process and begin creating the project immediately.
(See Section 1.1.2.2, "How Project Builder affects existing development roles" for
information on the role of the project administrator.) This section describes the role
of the project administrator and the members of the development team in setting up
Project Builder to manage a project during the design and development
phase.Specifically, this section addresses:

« Installing Project Builder
« Creating a project

« Working with projects and project documents

1-10 Guidelines for Building Applications

Managing Project Documents During Design and Development

« Managing projects and project documents across multiple platforms

Note: The steps involved in accomplishing simple tasks with Project Builder are in
the Project Builder online help and are not included in this chapter.

1.2.1 Installing Project Builder
Project Builder is automatically installed to ORACLE_HOVE\ PJ10.Noteworthy files
found in this directory are:
« Global Registry file (TYPESnn. UPD), where nn indicates the national language
« Default user registry files (PJUSERnN. UPD), where nn indicates the national
language

Perhaps the most important issue to address during Project Builder installation is
how you want to make these various files available to team members.
Section 1.2.1.1, "Installing the project and user registries" discusses your options.

1.2.1.1 Installing the project and user registries

Project Builder depends on native file sharing protocols for its security. This can
make project files vulnerable to accidental changes, which is something to keep in
mind as you decide how to configure the Global Registry and user registries.
Table 1-1 lists the available options.

Table 1-1 Registry installation options

Option Pros Cons Recommendation
Install Project Builder If your team is If all team members To prevent the
with the Global networked, have write accessto Global Registry from
Registry on a shared developers can the Global Registry, being accidentally
network drive and the access a single copy itcan be accidentally overwritten, install it
user registries on local of the Global overwritten. in a directory to
machines. Registry. This which only you have
ensures that all write access.

versions of the
Global Registry in
use are up-to-date.

Managing Your Applications 1-11

Managing Project Documents During Design and Development

Table 1-1 Registry installation options

Option Pros Cons Recommendation
Install Project Builder You can propagate The individual Use Project Builder’s
with copies of the updates to the Global Registries are Export facility to
Global Registry Global Registry not safe from propagate changed
available to each team simply by makinga accidental registry files instead
member, in addition to copy of the changed overwrites or of providing copies.
their own user file available to your deletions. A more rigorous
registries. team members (if process may help
they are on the same discourage a casual
platform). attitude toward
registry files.
Install Project Builder The types, actions, Don’t choose this
with the Global projects, and project option. But if you
Registry and a single modules are at risk must, have members
user registry shared for conflicting of your development
among team members. modifications. team edit only the

modules, not the
project itself.

1.2.2 Creating a project

This section focuses on the creation of a single project for distribution to a team of
developers. However, this may not be the best option for your group. If the
application being developed is very large or if components are to be split up among
team members, you may choose to create several separate, smaller projects, the
contents of each determined by the responsibilities of each developer or group of
developers.

If you decide to distribute a single project, note that Project Builder projects will
accept pointers to modules that do not exist in the specified location. (You can
determine whether a module exists by examining its information in the Property
Palette; Time created/modified and File size (bytes) are blank if the module does
not exist). This means you can distribute a single large project without requiring all
team members to have all modules available.

Creating a project is an ongoing task that requires the participation of both the
project administrator as well as each member of the development team. This section
describes the responsibilities unique to each role.

1.2.2.1 Creating a project: Project Administrator

As project administrator, your role goes beyond creating a project registry file and
deciding what to include in the project. Whether you use the Project Wizard

1-12 Guidelines for Building Applications

Managing Project Documents During Design and Development

provided by Project Builder to create the project, or create a project registry file and
manually edit the various properties, prior planning is highly recommended before
you complete the following tasks:

1. Create the project:
a. Set up the project’s directory structure.
b. Add modules.
c. Establish default actions, macros, and connection strings.
d. Set necessary dependencies manually.

2. Work with the source control administrator to set up a concurrent source
control project.

a. Define new types and edit existing ones.
b. Customize actions and macros.
c. Create reusable connections.

3. Make the project available to team members.

The next few topics provide recommendations for completing each of these tasks.

1.2.2.1.1 Step 1: Creating the project

The Project Wizard provides an easy-to-use interface for creating a project. You can
also create a new project without the Project Wizard (using the New Project tool on
the toolbar) and set project properties in the Property Palette.

At its simplest, a new project is a default project registry file primed with
information about the Global Registry, but little else. Project Builder needs a bit
more information before it can keep track of your project, as discussed in the next
few topics.

Step la: Set up the project’s directory structure

The directory structure of a project can have far-reaching consequences. For
example, suppose a project contains modules that are located in a directory that’s
not a child of the project directory. Now suppose you create actions that search for
and modify project modules. How will you find the "orphan" modules? Create
alternate actions with hardcoded paths? Not portable. Search from the root? Not
efficient.

Managing Your Applications 1-13

Managing Project Documents During Design and Development

Recommendations:

« Place modules in the project directory or in a directory that’s a child of the
project directory (a good choice when adding subprojects).

« As much as possible, organize your projects and subprojects so that they mirror
your actual directory structure.

The standard methods for adding modules to a project are the Add Files to Project
and Add Directory dialogs. Note that the dialogs always insert the full path unless
the module you want to add is in the project directory; then a relative path name is
used.

Step 1b: Add modules
Once you have planned the directory structure, you can add modules to the project.

Recommendation: Use subprojects whenever possible to help organize your
project. But don’t simply group together all forms or all reports. Group the modules
into components; for example, you might create a subproject for all the modules in a
large form, including .FMB files, .FMX files, PL/SQL libraries, menus, bitmaps,
icons, etc. This enables you to more easily create some necessary dependencies not
detected by Project Builder.

Step 1c: Establish default actions, macros, and connection strings

This step involves making site-specific edits to actions and macros; for example,
changing build actions to use the compilers and compiler options that are standard
at your site. If you have not already done so, you can also create connection strings
for commonly used databases containing test data or necessary tables.

Step 1d: Set necessary dependencies manually

Project Builder can recognize some dependencies between modules (it knows that
.FMXfiles are built from .FMB files, which are built from .FMT files), but only the
dependencies it can deduce by cross-referencing the Deliverable Type and the
Build From <type> actions.

1-14 Guidelines for Building Applications

Managing Project Documents During Design and Development

Other dependencies may exist as well: dependencies on PL/SQL libraries, menus,
icons, and so on. You can tell Project Builder about these dependencies by creating
entries for the modules on which a module is dependent below the item for the
dependent module, as shown in Figure 1-3, "Manually added dependencies".

Iﬂ-]—@ Mawmiz, s
" 51
& Wizard.pll

@& Mavigate.pll
“El Navwiz.mmb

Figure 1-3 Manually added dependencies

This figure illustrates NAVW Z.FMB’s dependency upon W ZARD.PLL,
NAVI GATE.PLL, and NAVW Z.MVB.

1.2.2.1.2 Step 2: Work with the source control administrator

After you create your project, you're ready to introduce a source control package.
Many third-party source control packages also implement the concept of projects.

Recommendation: Work with your source control administrator to set up a source
control project that mirrors your development project in Project Builder.

When setting up a project to source control a complex application, remember to
include the non-obvious modules as well. For example, when checking in a form,
don’t forget menus, PL/SQL libraries, user exits, icons, or special fonts you use.
Applications running on Windows may use OCX or ActiveX controls that should be
source-controlled as well.

Managing Your Applications 1-15

Managing Project Documents During Design and Development

1.2.2.1.3 Step 3: Make the project available to team members

Once you've done the preliminary work of creating the project and establishing
source control, it’s a good idea to export all project information to a project export
file and notify team members of its location. They can then import the project.

It is possible to notify team members of the location of the actual project registry
file, but remember that Project Builder uses your operating system’s own security
features to protect your project modules from being deleted or overwritten. Simple
deletes and overwrites are possible. To maintain the integrity of your projects,
follow Project Builder’s own process for updating projects, and always import and
export modifications to the project instead of simply distributing changed registry
files.

When you notify your team members of the location of the project export file, you
should also notify them of the directory structure you’ve set up so they can mirror
that structure on their development machines. The easiest course for setting up the
project is to have all team members map the project location to the same project
directory on their machines, since mappings to different project locations would
require separate copies of the project registry file with different values for the
Project Location: Q@ \ nyproj, R\, etc.

Team members can then check out the modules they have been assigned.

1.2.2.2 Creating a project: Team members

After the project administrator has completed the tasks described in Section 1.2.2.1,
"Creating a project: Project Administrator", project team members can fine-tune the
work. If you are a project team member, you can expect to:

1. Set up your directory structure and import the project
2. Customize your user registry

a. Define new types and edit existing ones

b. Customize actions and macros

c. Create re-usable connections

3. Check out your assigned modules

1.2.2.2.1 Step 1: Set up your directory structure and import the project

When your project administrator informs you that the project is available, it’s time
to import the project information and set up your working directories with the
modules you’ve been assigned.

1-16 Guidelines for Building Applications

Managing Project Documents During Design and Development

Recommendation: File management is easier if you set up your directory structure
to mirror what your project administrator has already created for the project.

1.2.2.2.2 Step 2: Customize your user registry

One of the first things to do when setting up a project is to customize your user
registry.

Step 2a: Define new types and edit existing ones

If you want to add modules to your project that are of a type not represented in the
Global Registry, you can use the Type Wizard to define your own type in your user
registry and assign actions, macros, and so on to it.

In addition, you may want to override a default command or macro for a particular
type in the Global Registry. An easy way to accomplish this is to copy the type in
the Global Registry, paste it into your user registry, and edit it. Now, all modules of
that type in your project will inherit the modifications from the type in the user
registry.

Recommendation: Notify your project administrator when you modify a global
type by copying it into your user registry and editing it. Such a modification might
be useful to the whole team.

Step 2b: Customize actions and macros

While you can customize the actions and macros associated with the types you add
to your user registry, it’s important to remember that you can modify actions and
macros at other points in the Project Builder hierarchy as well. Where you edit the
item depends on the extent of the influence you want your change to have.

The following table lists all the locations you might find an action or macro, the
scope of that action or macro, and what can override it.

An action or macro

assigned to: Affects: Unless overridden by:

Global Registry All items of type(s) to which itis Actions or macros in a user
assigned in all user registries registry, project, subproject, or
and projects beneath the Global item.
Registry.

User registry All items of type(s) to which itis Actions or macros in a project,

assigned in all projects beneath subproject, or item.
the user registry.

A project All items of type(s) to which itis Actions or macros in a
assigned in the project. subproject or item.

Managing Your Applications 1-17

Managing Project Documents During Design and Development

An action or macro
assigned to: Affects: Unless overridden by:

A subproject All items of type(s) to which itis Actions or macros in an item.
assigned in the subproject.

An item Itself only. Cannot be overridden.

Step 2c: Create reusable connections

If you have your own set of tables with data you’ve created for testing purposes,
you can add your own connections to the list provided by the project administrator.
Once you’ve created the connections, you can assign a connection to a module by
selecting the connection’s item in the Project Navigator, dragging it to the project
file entries, and dropping it on the item for the module you’ve chosen. Now, when
you select an action that opens a tool requiring a database connection, Project
Builder logs on for you.

1.2.2.2.3 Step 3: Check out your assigned modules

Once you have your directory structure in place and the project imported, you can
populate your workspace with the modules you’ve been assigned. The source
control commands Check In, Check Out, and Source Control Options, accessible
from the File ~Administration menu, are associated with actions defined for each
type. This means you can modify the actions, if necessary, to affect the results of the
commands—though this is not recommended for source control.

1.2.3 Working with projects and project documents

When the project enters the development phase, maintaining the integrity of the
project becomes increasingly important.

Recommendation: Only the project administrator should make changes to the
project that affects multiple team members (such as modifying the Global Registry
or adding new subprojects containing new modules).

1-18 Guidelines for Building Applications

Managing Project Documents During Design and Development

1.2.3.1 Working with projects: Project Administrator

While the application is in development, as project administrator your role is to
maintain and support the project. In addition, you might be in charge of managing
development deliverables, or working with a development manager to do so. You
might need to:

« Add new modules and dependencies
« Export modifications to the project registry file

« Apply version labels

1.2.3.1.1 Adding new modules and dependencies

Sometimes new modules must be added to a project after its initial creation, and
dependencies added manually. The process for doing so is the same as when
creating the initial project. For more information, see Section 1.2.2.1.1, "Step 1:
Creating the project".

1.2.3.1.2 Exporting modifications to the project registry file

Once you’ve added the new modules and made the necessary changes, you can
export the changes and make them available to members of your team. The process
for doing so is the same as when exporting the initial project. For more information,
see Section 1.2.2.1.1, "Step 1: Creating the project”.

1.2.3.1.3 Applying version labels

Although you can try to keep various revisions synchronized with each other (for
example, through a nightly check-in), often development on one module will be
completed while another needs bugs fixed or headers changed. Synchronous
revisions are generally impractical.

A better method is to synchronize versions by applying a symbolic version label to
the group of revisions that mark the achievement of a significant milestone. Most
major source control tools enable you to apply a symbolic label to a source control
project.

Managing Your Applications 1-19

Managing Project Documents During Design and Development

1.2.3.2 Working with project documents: Team members

When your project is set up and your modules have been assigned, you can use
Project Builder to:

« Edit modules
« Add modules and dependencies manually
« Build your project

« Check modules in and out

1.2.3.2.1 Editing modules

Recommendation: The most efficient way to use Project Builder to edit modules is
to customize the actions associated with the types of modules you’ll be editing so
they invoke the tools you want to use with the options you need. In addition, be
sure to associate a connection string with either the individual module or the
project. Then you can drag the connection from its location in your user registry and
drop it on the module or project item. Once your modules are prepared in this
fashion, choosing a pop-up menu item or double-clicking on a project item opens
your module in the correct application. If necessary, you'll already be logged on.

You can also use the Launcher to access development tools. The Launcher is

shipped with toolbar buttons already set for the Forms Developer or Reports
Developer tools, but you can add a third-party tool by creating a button and

associating it with an executable.

Note: If you invoke a tool via the Launcher and then open a module, the tool will
not be aware of any associated connection strings. You will need to log on to the
database manually.

1.2.3.2.2 Adding modules and dependencies manually
See Section 1.2.2.1.1, "Step 1: Creating the project”, or contact your project
administrator.

1.2.3.2.3 Building your project

The Build commands—Build Selection, Build Incremental, and Build All—are
available from the Project menu. They are also associated with an action—in this
case, the Build From <type> action.

This means you can select a single command for any different module type and the
module will be compiled according to the definition of the Build From <type>
action—not for that particular type, but for the target you actually want to build.

1-20 Guidelines for Building Applications

Managing Project Documents During Design and Development

For example, the Build From <type> action for an .FMX file invokes the Form
Generator and creates the .FMX file from the corresponding .FMB.What the Build
command compiles is the .FMB, but how it compiles the .FMB is determined by the
action associated with the .FMX that results.

You can modify the results of the Build commands by modifying the definition of
the Build From <type> action for the corresponding target.

Choose Build Selection to compile selected modules, or force a compile of all
compilable modules by choosing Build All. Because Project Builder can detect
when modules are out-of-date and need to be recompiled, you can compile only
out-of-date modules by selecting the item for the project containing them, then
choosing Build Incremental.

Note: The Build commands are also available from the pop-up menu.

1.2.3.2.4 Checking modules in and out

If modules need conversion for source control (for instance, the source control only
works on text and your modules are binary), you can edit the Check file into RCS
action to automate the conversion to text before check-in.

You can also edit the Check file out of RCS action in a similar fashion to convert
the text-based source controlled version of the module back to binary.

1.2.4 Managing projects and project documents across multiple platforms

Many applications today run on multiple platforms, with development taking place
on a variety of platforms as well. Chapter 5, "Designing Portable Applications" can
help you ensure that the application underlying your project is portable.

To ensure that your project is portable, too, Project Builder supports development
on several major platforms. To do so, it must ship with a Global Registry that
reflects the platform; in other words, the types defined must be found on that
platform, and the actions and macros must be written according to the syntax rules
of that platform. This means the Global Registry, and, by extension, all user
registries and project registry files, are not portable.

However, you can export information about a project to a text file and import the
text file to another platform, as discussed in Section 1.1.3.6, "Sharing and porting
project and subproject registry files".

Managing Your Applications 1-21

Managing Project Documents During the Test Phase

1.2.4.1 Managing projects across multiple platforms: Project Administrator
If you are the administrator of a project undergoing development on multiple
platforms, you can expect to:

= Branch off a source control project to contain the code for the platform

« Export projects and project information to alternate platforms

1.2.4.1.1 Branching off a source control project to contain the code for the platform

Work with your source control administrator to create a branching source control
project that enables your team members to isolate the code for the new platform.

1.2.4.1.2 Exporting projects and project information to alternate platforms

Creating an export file for the purpose of distributing a project to another platform
is no different from creating an export file to distribute to team members on the
same platform. The export file created by Project Builder is a text file, easily
transferred to the alternate platform.

1.2.4.2 Managing project documents across multiple platforms: Team members

The role of a team member working on development on an alternate or secondary
platform is actually quite similar to the role of a team member developing on the
base platform. However, there is one major difference: when you receive a project
already created on a different platform, you can expect to:

= Revise customized actions and macros to conform to platform requirements

1.2.4.2.1 Revising customized actions and macros to conform to platform requirements

Equivalent versions of pre-defined actions and macros, where they exist, are
provided by Project Builder for all supported platforms. However, if some actions
have been customized or new actions created, you will either need to edit the
actions to make them work on the new platform or create equivalent new actions.

1.3 Managing Project Documents During the Test Phase

Though the test phase is often thought of as separate and distinct from the
development effort—first you develop, then you test—testing is a concurrent
process that provides valuable information for the development team.

1-22 Guidelines for Building Applications

Managing Project Documents During the Test Phase

There are at least three options for integrating Project Builder into the test phase:

= Your testers do not install Project Builder. You use Project Builder functionality
to compile and source-control the modules to be tested and hand them off to the
testers, whose process remains unchanged.

« The testers import the same project or projects that the developers use.

= You create a project based on the development project but customized for the
testers (for example, it does not include support documents, specs, or source),
who import it.

Recommendation: A combination of the second and third options works best.
Associating your application with a project can be useful during the testing phase,
as well. You can create actions to automatically run test scripts or add script types
and make them dependent on the modules they are to test.

During unit test, testers can use the same project or projects as the developers, if the
project is organized by functional units, or separate projects have been created for
functional units.The project or projects can also be exported, so unit test can take
place in a variety of environments and on a variety of platforms.

System test might require a new, stripped-down version of the development
projects that includes only the modules being tested, especially if you need to
concatenate several smaller projects.

1.3.1 On the development side

The goal of the development group in this phase of the process is to provide the test
group with the modules to be tested in as smooth a manner as possible.

1.3.1.1 The test phase: Project Administrator

The tasks involved in creating and exporting a project for testing purposes are the
same as the tasks required when creating and exporting a project to a development
team:

« Create a test project based on deliverable modules (optional)
= Create the test version

« Export the project to different test environments

Managing Your Applications 1-23

Managing Project Documents During the Test Phase

1.3.2 On the test side

Although members of the test team generally are not responsible for any
modifications to the modules of an application, they do have input (modules to test)
and deliverables (fully-tested modules and lists of bugs uncovered during the
testing phase).

Project Builder can help the test team keep track of its input and deliverables in the
same way it helps development team members.Testers can add scripts and logs to a
project, modify actions to include debugging options, and add subprojects
containing testing information.

1.3.2.1 The test phase: Testers

If you have decided to use Project Builder to help test your application, you’ll need
to do some preparatory work that is very similar to that of the developers when
they are first setting up their projects.You may need to:

= Import the test project and set up the testing environment
« Add test scripts and test data to the project

« Modify actions and macros to facilitate testing

1.3.2.1.1 Importing the test project and setting up the testing environment

The process of importing a test project and setting up a testing environment is the
same as the process for importing a project and setting up the environment for
development.See Section 1.2.2, "Creating a project”, for more information.

1.3.2.1.2 Adding test scripts and test data to the project

You may need to add some items, such as test scripts, to the project.In addition, you
may need to add connection strings to database accounts containing test data.

Remember that you can automate the running of test scripts just as you can
automate actions associated with the modules in your application.
1.3.2.1.3 Modifying actions and macros to facilitate testing

If actions specifying "run with debugging" have not already been provided, you can
either modify existing actions to include a debug flag, or create new actions.

1-24 Guidelines for Building Applications

Deploying Completed Applications

1.4 Managing Project Documents During the Release Phase

When your application has been thoroughly tested and is ready to release, Project
Builder can help you simplify the process of delivering the application to
customers.

1.4.1 On the development side

During the release phase, the development group passes the tested and verified
versions of all modules necessary for installation to the releaser.Because Project
Builder marks all modules to be included in the final application and associates
special commands with them, this hand-off can be automated in the same fashion as
other processes, such as compiling your project and source controlling it.

1.4.1.1 The release phase: Project Administrator

Once your project has been thoroughly tested and is ready for release, you have one
remaining task: package the project.

1.4.1.1.1 Packaging the project

Project Builder provides the Delivery Wizard to help you package your applications
as installable components, as well as to:

« Copy or FTP your completed project to a staging area.From the staging area,
you can copy or archive your files to a distribution medium, or make them
available internally.

= Generate the necessary scripts so your project is installable on Windows 95 and
NT through the Oracle Installer.You can even package the Forms Developer or
Reports Developer runtime environments with your project, so your users can
install the entire package—your application, plus the required runtime
environment—from a single invocation of the Oracle Installer.

« Runacustomized Deliver action to TAR or ZIP your files.

The modules actually packaged by the Delivery Wizard are determined by the
value of the Deliver file property associated with each item (Yes to include the
module in the package, No to leave it out).

1.5 Deploying Completed Applications

After you have packaged your application, you’re ready to make it available to your
customers.In addition to installing your application, your customers will also need

Managing Your Applications 1-25

Deploying Completed Applications

to use the Oracle Installer to install the Runtime environment on which your
application depends.To simplify the installation process for your customers, both
Forms Developer and Reports Developer provide the Oracle File Packager, with
which you can make your own application installable with the Oracle Installer on
Windows NT and Windows 95.When you’ve completed the steps in this section,
your customers can install everything they need—your application, plus the
required Runtime environment(s)—using a single mechanism.

1.5.1 Before You Begin

Before discussing how to package your application, it’s a good idea to familiarize
yourself with the terminology and background information relevant to the
installation/packaging process:

« Section 1.5.1.1, "Terminology"
« Section 1.5.1.2, "The Oracle Installer files"

« Section 1.5.1.3, "The contents of the TEMPLATES directory"

1.5.1.1 Terminology
This table defines some important terms for the installation/packaging process:

Term Definition

Stage (or staging) area The area on your PC or network where files
and installation scripts are prepared, then
copied to the distribution media.

Distribution media The set of media (for example, tapes, CDs, or
diskettes) from which users install your
application.

Installable component Any product (for example, Forms Runtime,

GUI Common Files, and so on) that has its
own set of Oracle Installer files (MAP, VRF,
INS, and DEI).

Product file (PRD file) A file that lists all installable components in a
given staging area.

Oracle File Packager A wizard that creates the product file and all
the Oracle Installer files (MAP, VRF, INS, DEI)
needed to make your Windows application
installable through the Oracle Installer.

1-26 Guidelines for Building Applications

Deploying Completed Applications

1.5.1.2 The Oracle Installer files

The Oracle Installer files control how and where an application is installed (and
de-installed) on a user’s machine.While the Oracle File Packager creates the Oracle
Installer files for you, you may have to make some slight modifications manually. If
you just want to look at some sample installer files, take a look at;

\ TEMPLATES\ RELEASE\ YOURAPP
\ FORMSAPP

FORMSAPP. VAP
FORMSAPP. VRF
FORMSAPP. | NS
FORMSAPP. DEI

\ DEV2KAPP

DEVZKAPP. VAP
DEVZKAPP. VRF
DEVZ2KAPP. | NS
DEVZ2KAPP. DEI

All of these files are text files and should be viewable and editable in a text editor.

15121 ThePRDfile

The PRD file lists all the installable components in a given staging area. It also
identifies the base filename and location for the Oracle Installer files of each
component.In other words, the PRD lists all the files that appear in the Available
Products pane of the Oracle Installer. Its name reflects the platform it describes; e.g.,
W N95. PRDand NT. PRD.There is one PRD file per staging area, per platform.

Column Name Description

HHH Product number.You shouldn’t have to modify this.

Product A unique name used to identify your application.

Parent Leave as "root".

Filename Base filename of your MAP, VRF, INS, and DEI installation
scripts.

\ersion Version number of your application.

Interface Label Name of your application as it appears in the Available

Products window of the Oracle Installer.

Managing Your Applications 1-27

Deploying Completed Applications

Column Name Description

Location Relative path to the directory that contains the installation
script files (MAP, INS, VRF, and DEI) and all the files that
make up your application.

Size Total size of the installable component.Set automatically
by the CHECKMAP utility.

Visible? Makes the component visible (or not) in the Available
Products window of the Oracle Installer.

Selected? Makes the component selected (or not) in the Available
Products window of the Oracle Installer.

Open? Used for parent/child components.You should not need to
modify this field.

Description Describes your application.

Volume Should match what appears in the Filename field.Not used

for CD or LAN installations.

15.1.2.2 The MAP file
The MARP file is a table that lists all the files that make up your application.

Column Name Description

Source File to be copied to the user’s machine.

Destination Directory to which the file is copied.

Group Program group that will hold the program item(s).

Item Name of the item or icon as it appears in the menu.
Command Command that is executed when the item or icon is

invoked.Appears in the format:
command line working_directory alternate_icon

Working_directory and alternate_icon are optional, however, if
"command line" appears alone, it must end with a semicolon.

Note: Group, Item, and Command are required only for applications that appear in
the Start menu.To see an example of how these fields are filled in, use your OS
search capabilities to locate DEVDEMB0. MAP, the map file for the Forms and Reports
Developer demos. (If you can’t find it, you may have to install "Forms Developer
[or Reports Developer] Demos and Add-ons" from your Oracle distribution media.)

1-28 Guidelines for Building Applications

Deploying Completed Applications

15.1.23 The VRFfile

The VRF file VeRiFies that all the correct dependencies are identified and installed.
For example, by specifying that your application depends on Forms Runtime, your
application’s installation process will automatically detect whether Forms Runtime
is already present on a user’s machine.If it is not, Forms Runtime will be installed.

The VRF file also prompts the user for information, such as where the product
should be installed.In addition, the VRF file sets up the user’s environment,
defining such things as environment variables in the Windows registry.
15.1.24 The INSfile

The INS file INStalls the files that make up an installable component, sets any
needed environment variables, and registers the product with the Oracle Installer.It
works in coordination with the MAP file and the VRF file.

15.1.25 The DElfile

The DEI file DEInstalls the files that make up an installable component.It also
removes environment variables and unregisters the component after successful
deinstallation.It works in coordination with the MAP file.

1.5.1.3 The contents of the TEMPLATES directory

The TEMPLATES directory provides everything you need to set up and customize
your own staging area. Available on your Oracle distribution media, the
TEMPLATES directory contains:

« The RELEASE subdirectory, which serves as a starting point for creating your
own staging area.

« RELEASE\ | NSTALLR\ | NSTALL\ W N95. PRD, a PRD file that lists the
installable components for Forms, Reports, and Graphics Runtime
environments on Windows 95:

« Required Support Files
= System Support Files

« GUI Common Files

= Tools Utilities

« Forms Runtime

= Reports Runtime

Managing Your Applications 1-29

Deploying Completed Applications

« Graphics Runtime

RELEASE\ | NSTALLR\ | NSTALL\ NT. PRD, a PRD file that lists the installable
components for Forms, Reports, and Graphics Runtime environments on
Windows NT (see the previous bullet for a components list).

1.5.2 Making your application an installable product

This section contains instructions for creating a one-step or a multi-step installation
process for your customers:

One-step process: Your customers install your application and the Runtime
environment they need from a single PRD file.Another way to think of this is
that your customers install everything they need—your application, plus the
required Runtime environment(s)—from a single invocation of the Oracle
Installer.

Multi-step process: Your customers install applications from many different
staging areas, each of which has its own PRD file. This approach works well if
you need to distribute many Forms Developer or Reports Developer
applications, or if the required Runtime environment is already available to
your customers from a common area.

Whichever process you choose, to make your application installable with the Oracle
Installer, you will:

Copy the TEMPLATES\ RELEASE directory from the Oracle distribution media
to your machine to serve as a starting point for your own staging area.

Use the Oracle File Packager to create the PRD, MAP, VRF, INS, and DEI files
you need to make your application installable through the Oracle Installer.

Copy your files from your development area to the staging area.From there you
can copy the files to your distribution media.

The rest of this chapter contains specific instructions for completing these tasks.

1.5.2.1 Deploying your application on Windows

If your application is installable on Windows 95 and NT, you can use the Oracle File
Packager to create the Oracle Installer files and to copy your files from your
development area to the staging area. The following steps address both one-step
and multi-step installations.

1-30 Guidelines for Building Applications

Deploying Completed Applications

Step 1: Install the Oracle File Packager

1. From TEMPLATES\ O SFP10 (on your Oracle distribution media), click
SETUP. EXE to invoke the Oracle Installer.SETUP. EXE detects which
operating system is running and launches the appropriate Oracle Installer.

2. Select Oracle File Packager from the list of installable products.
3. Complete the installation process as prompted.
Step 2: Prepare your staging area
1. Copy TEMPLATES\ RELEASE to a drive on your PC or a networked drive.

2. Create a subdirectory for your application under
TEMPLATES\ RELEASE\ FORW N95, even if your application is targeted for
the NT environment.

If you are staging more than one application, create a subdirectory for each.
Step 3: Move your files to the staging area and create the Oracle Installer files.
Repeat this step for each staging area you established in Step 2.

1. From the Start menu, select Oracle for NT or Windows 95, then select
Oracle File Packager.

2. Follow the steps presented in the Oracle File Packager, using the online help
to assist you.

Notes:

« The internal string you specify in Step 3 is prepended to your Oracle
Installer files (MAP, INS, VRF, and DEI).

« When prompted for the Staging Area Location, specify the subdirectory
under TEMPLATES\ RELEASE\ FORW N95.

Step 4: Merge your PRD file with NT.PRD and WIN95.PRD

This step creates a one-step installation process.If you're creating a multi-step
installation, go to Step 5.

1. Copy the line from your own application’s PRD file and paste it into
RELEASE\ | NSTALLR\ | NSTALL\ W N95. PRD and/or
RELEASE\ | NSTALLR\ | NSTALL\ NT. PRD.

Step 5: Modify the Oracle Installer files

1. If you want your application to appear as an icon in the Start menu, add the
Group, Item, and Command fields to the MAP file(s) for your

Managing Your Applications 1-31

Deploying Completed Applications

application(s). To see an example of how to fill in these fields, use your
operating system’s search capabilities to find the Oracle Demos MAP file,
DEVDEM50. MAP,

2. If you wish to establish some dependencies for your application, add them
to the VRF file.

For example, if you establish Forms Runtime as a dependency for your
application, the installation process will automatically detect whether
Forms Runtime is already present on a user’s machine. If it is not, Forms
Runtime will be installed.

3. Ineach staging area, click SETUP. EXE to bring up the Oracle Installer.
Examine the files listed in the Available Products pane. If you do not want a
file to appear in this pane—for example, a file has already been established
as a dependency in the VRF file and does not need to be installed
explicitly—edit the staging area’s PRD file and change the file’s "Visible?"
value to false.

Step 6: Test your installation

Test your installation on a "clean” machine (a machine with no
previously-installed products) that is representative of the projected end-user
environment. Do not rely on tests conducted on a developer’s machine—that
machine may already have files such as icons or libraries that you inadvertently
omitted from your map file, or registry settings that were not included in your
INS file. This is one of the most common causes of installation problems.

1. Install your application and make sure it installs the components it should.
2. Launch the application to make sure it runs correctly.
3. Test removing your application using the Oracle Installer.

Step 7: Copy the staging area to your distribution media

When you are ready to copy your application to CD, tape, diskette, or another
medium—or simply to a LAN or other networked machine—be sure you
include the entire staging area—that is, TEMPLATES\ RELEASE in its entirety. If
you include only your subdirectory, the required runtime environment(s) will
not be accessible.

1-32 Guidelines for Building Applications

2

Designing Visually Effective Applications

This chapter offers guidelines to help you develop a graphical user interface (GUI):

Section Description

Section 2.1, Briefly describes the process for developing a GUI-based

"Understanding the application. (If you’ve developed GUIs in the past, you may

Process” want to go directly to Section 2.1.3, "Planning the user
interface"”.

Section 2.2, "Creating an Addresses visual considerations for creating forms. The section

Effective Form" begins with a review of basic Form Builder terminology,
discusses the importance of object libraries as a means of
enforcing standards, and presents guidelines for employing
forms objects in your GUI.

Section 2.3, "Creating an Helps you understand how to control the placement of report
Effective Report" objects and where page breaks occur.

Section 2.4, "Creating an Presents some visual considerations for graphical
Effective Display" representations of your data.

2.1 Understanding the Process

Even more important than understanding the process for developing an effective
GUI is understanding the people who will use it. In fact, your success is directly
related to how well you understand your users—the tasks they perform, the order
in which they perform them, their surroundings, and their expectations.

If you're like many application developers, this idea may require a profound shift of
focus. Applications typically evolve from the inside out: from the datasource itself,
to the code, and finally to the GUI. If you are committed to developing an effective
GUI, you must reverse this process: first, interview your users; next, design a user

Designing Visually Effective Applications 2-1

interface that supports their specific tasks; and finally, create the underlying code
base that makes it all work.

¢

O
o
o |
®

User GUI

Figure 2-1 Thinking about the user first

No set of prepackaged standards or guidelines can serve as a substitute for
developing an accurate understanding of your users’ needs. This chapter can help
you develop that understanding, as well as assist you in creating an interface
uniquely tailored to your particular group of users.

2-2 Guidelines for Building Applications

2.1 Understanding the Process

2.1.1 What are the stages?

As shown in the Figure 2-2, the process for developing a GUI consists of four major

stages:
+ I
Define User Plan the User Build the User User Feedback
Requirements » Interface » Interface » and Testing
Elements
* Gather * Produce * Create/modify * Prototype testing
documentation process plans Ul elements and monitoring

* Interview users
» Observe users

¢ Plan Ul elements

* Plan/implement

standards
mechanisms

« Create/modify

Ul functionality

Figure 2-2 Stages in developing a user interface
The rest of this section offers guidelines for completing each of these stages:

« Section 2.1.2, "Defining user requirements"

« Section 2.1.3, "Planning the user interface"

= Section 2.1.4, "Building the user interface elements”

= Section 2.1.5, "Gathering user feedback"

* Apply user
feedback

Note: This chapter is not intended to treat the subject of GUI development
exhaustively. If you require more detail on how to proceed in a given stage, you
may want to visit your local library or computer bookstore. In particular, Jeffrey
Rubin’s "Handbook of Usability Testing" is an excellent source of information on

defining user requirements and gathering user feedback.

2.1.2 Defining user requirements

In the first stage of GUI development, you determine what the user needs and
expects from your application. While it may be tempting to skip this stage and
move right to the design phase, it’s risky to do so. Without a clear understanding of
the users themselves and the tasks they must perform, it is virtually impossible to
create an effective GUI.

Designing Visually Effective Applications 2-3

To define user requirements:

« Gather documentation. Relevant policies and procedures manuals and existing
documentation about the system (whether previously computerized or not) will
help you formulate the necessary background for conducting user interviews.

« Observe users doing their jobs. Make a list of the tasks users perform and the
order in which they perform them.

= Interview users. Find out what people want from a GUI-based system. When
conducting your interviews:

Ask not only what users do, but how they work. For example, does a clerk
need to be able to work on several orders at the same time, or just on one?

Find out what users like and don’t like about the current system (even if it’s
not computerized).

Ask users how they envision the GUI. Encourage them to provide as much
detail as possible.

Get to know the users. Do users typically stay on the job for a long time or
is there high turnover? Will they use the application constantly or only
occasionally? For infrequently used applications, you’ll want to provide a
lot of buttons, text, and guidelines to help reduce the amount of
familiarization time. For applications that are used daily, try to provide a lot
of shortcuts and accelerator keys to help experienced users complete their
tasks quickly.

Find out if users have any disabilities or special circumstances you should
consider. For example, are users typically standing when they use the
application? If so, they won’t have the time or patience for excessive
navigation.

« Sample a wide variety of users. Feedback from users at a single customer site
are biased toward their specific experiences.

2.1.3 Planning the user interface

In the second stage, you plan and document how you will implement a user
interface that meets the users’ needs. This involves:

2-4

« Developing a set of standards that you will adhere to and, if necessary,
obtaining buy-in from your team. Refer to Section 2.1.3.1, "Creating your
standards".

Guidelines for Building Applications

2.1 Understanding the Process

« Considering platform-specific requirements and other restrictions in the
deployment environment. Refer to Section 2.1.3.2, "Considering portability".

« Mapping out each screen and deciding which types of interface elements to use
in order to meet user needs effectively. Refer to Section 2.1.3.3, "Creating a

prototype".

2.1.3.1 Creating your standards

A set of consistent development standards is crucial to the success of any
development effort. By developing and enforcing standards pertaining to layout,
use, and behavior of various GUI elements, you can ensure that even disparate
parts of the application have a common look and feel. Both Forms Developer and
Reports Developer offer several mechanisms to assist you in developing a
consistent set of standards.

Table 2-1 Standards mechanisms

Mechanism

Description

Object Library (Form
Builder)

An object library is a set of objects and standards that you
create and make available to your entire development team.
Through the use of subclassing, each developer can ensure that
changes made to the objects in the object library are
propagated throughout all applications that use them. Object
libraries are the preferred mechanism for standardizing your
Form Builder applications.

Form Builder provides two object libraries which you can
customize to meet your own site requirements:

« Standard Object Library, which contains suggested
standards optimized for the Windows 95 environment.

« Oracle Applications Object Library, which contains
standards for cross-platform applications: Windows 95,
Solaris, Macintosh, and character mode.

For more information, see the Form Builder online help topics
"About object libraries" and "About subclassing".

Designing Visually Effective Applications 2-5

Table 2—-1 Standards mechanisms

Mechanism Description
Object Group (Form An object group is a container for a group of objects. You
Builder) define an object group when you want to package related

objects so you can copy or subclass them in another module.

For example, suppose you build an appointment scheduler
using several types of objects, including a window and canvas,
blocks, items that display dates and appointments, and triggers
that contain the logic for scheduling and other functionality. By
packaging these objects into an object group, you can copy all
of them to other forms in one simple operation.

For more information, see the Form Builder online help topic
"Guidelines for using object groups".

Visual attributes (Form Visual attributes are the font, color, and pattern properties you
Builder) set for form and menu objects that appear in your application’s
GUI. Visual attributes can include the following properties:

« Font properties: Font Name, Font Size, Font Style, Font Width,
Font Weight

. Color and pattern properties: Foreground Color, Background
Color, Fill Pattern, Charmode Logical Attribute, White on
Black

For more information, see the Form Builder online help topic
"Guidelines for using visual attributes".

Template (Form Builder, In Form Builder, you can create templates to provide other

Report Builder) team members with a default starting point for new forms.
Templates typically include generic objects, such as graphics
(like corporate logos), toolbars, program units, standard
window layouts, toolbars, and menus, and other common
objects.

Report Builder not only allows you to create your own
templates to help control the appearance of your reports, but
provides a wide variety of pre-defined templates as well. Using
the Report Wizard, you select the objects you want to include
in your report, then select a template to arrange those objects
and apply standard formatting attributes.

For more information, search the Form Builder or the Report
Builder online help index for "templates".

2.1.3.2 Considering portability

If you intend to deploy your application in more than one environment, it’s
important to understand how various GUI elements are rendered on each platform

2-6 Guidelines for Building Applications

2.1 Understanding the Process

and which elements are restricted altogether. For example, due to formatting
constraints between platforms, interactive buttons that you create for Windows may
shrink and become less readable when displayed on Solaris. Chapter 5, "Designing
Portable Applications", helps you understand platform-specific constraints and
provides tips and guidelines for working around them. It also provides
considerations for character mode, which restricts the Ul in numerous ways.

2.1.3.3 Creating a prototype

Prototypes are an extremely effective means for ensuring usability in your
application. The most effective prototypes follow an iterative development model,
beginning with a storyboard and ending with a fully functional application. The
process breaks down as follows:

1. Draft astoryboard to give you a clear picture of how the application will actually
look and behave. A storyboard is a frame-by-frame drawing of screens showing
transition and appearance. Include a narrative to describe how the screens
relate to the tasks you identified when you defined the users’ requirements.

Designing Visually Effective Applications 2-7

Here is an example of three panels from a storyboard for an ordering

application:
Customers 0 » Orders Screen Stock Screen
Screen rders
ID Cust. Order Product

R | |

Order
Filled ltem Product

116 I

Stock

You display/enter ...the Orders screen then ...and the stock
customer information, shows any orders for the information is
then press Orders customer. displayed for the
button... related product.

Select the lineitem from
the order, then press the
Stock button...

Figure 2-3 Example of a storyboard

2. Show the storyboard to users. Verify that your planned application addresses
their needs and supports their tasks the way they perform them.

3. Expand the storyboard into a paper prototype. Whereas a storyboard sketches
task and window flow at a high level, a paper prototype is a fairly detailed
illustration of the entire application. A paper prototype typically contains one
piece of paper for each window you’ve planned, complete with widgets, arrows
to represent task flow and navigation, and so on.

4. Show the paper prototype to users. Most of the organizational issues should
have been identified during the storyboard phase, so you can now focus on
details: the placement of buttons, the layout of a supporting dialog, and so on.
Section 2.1.5, "Gathering user feedback" offers some tips for conducting the
session with users.

2-8 Guidelines for Building Applications

2.1 Understanding the Process

Based on user feedback, create a functional prototype using Forms Developer or
Reports Developer. The following sections can help you select the appropriate
objects for your prototype:

« Section 2.2, "Creating an Effective Form"
« Section 2.3, "Creating an Effective Report"
« Section 2.4, "Creating an Effective Display"

Let users experiment with the functional prototype. Be sure to include users
who were not involved in the earlier sessions so you can determine whether the
application is easily grasped by new users.

Repeat steps 5 and 6 until you are satisfied that you have met all the objectives
stated in your user requirements.

2.1.4 Building the user interface elements

Only when you have devoted sufficient time to developing your conceptual
model—that is, when you fully understand your users and the tasks they perform
and have designed smoothly flowing dialogs in support of those tasks—only then
are you ready to begin building your user interface. This chapter contains three
sections to help you choose your user interface elements carefully:

Section 2.2, "Creating an Effective Form"
Section 2.3, "Creating an Effective Report"

Section 2.4, "Creating an Effective Display"

2.1.5 Gathering user feedback

When you have developed a working prototype, either on paper or with Forms
Developer or Reports Developer, return to the users you interviewed in the first
phase and let them experiment with it. To gather user feedback effectively:

Produce instructions for user tests using a task-based approach.
To ensure a broad perspective, use at least six typical users.
Record user activity through notes, sound, and video monitoring.
Question users about the prototype’s performance.

Get more than one designer to interpret the results.

Designing Visually Effective Applications 2-9

Remember: only the actual user of your application is qualified to comment if the
Ul is appropriate.

After testing the prototype on users and gathering their feedback, return to the
build stage, modify the user interface accordingly, then test your changes again.
Continue this cycle until the interface meets the objectives you outlined in the
requirement definition phase.

2.2 Creating an Effective Form
This section explains how to build an effective GUI using Form Builder.

Note: The information in this section assumes a Eurocentric viewpoint. (If you are
developing for a non-Western audience, be sensitive to the cultural background of
the users. If practical, have your design reviewed by several members of your target
audience.)

2.2.1 Understanding forms

Before addressing specific considerations for forms, it may be helpful to briefly
introduce some basic forms concepts. (Experienced Form Builder users should go to
Section 2.2.2, "Guidelines for building forms".) For more details on these and other
related forms topics, see the Form Builder online help and/or the Forms Developer
Quick Tour.

2.2.1.1 What is a module?

When you build an application with Form Builder, you work with individual
application components called modules. There are four types of modules in Form

Builder:

Module Type Description

Form module A collection of objects and code routines. Some of the
objects you can define in a form module include
windows, text items (fields), check boxes, buttons,
alerts, lists of values, and blocks of PL/SQL code called
triggers.

Menu module A collection of menus (a main menu object and any

number of submenu objects) and menu item commands.

2-10 Guidelines for Building Applications

2.2 Creating an Effective Form

Module Type Description

PL/SQL Library A collection of user-named procedures, functions, and

module packages that can be called from other modules in the
application.

Object Library module A collection of objects that can be used to develop
applications. See Table 2-1, "Standards mechanisms" for
more information.

This chapter does not address the use of PL/SQL library modules. For information
on this topic, refer to the Form Builder online help.

2.2.1.2 What are forms, blocks, items, regions, and frames?

Simply put, a form (or form module) is an application that provides access to
information stored in a datasource. When you look at a form, you see interface items
such as check boxes, radio groups, and so on, which enables the user to interact
with the datasource. These interface items belong to a container called a block. In
Figure 2-4, the fields Customer ID, First name, Title, and so on all belong to the

same block.

= Bank Customer Service System v |~

File Becord Query Yiew Purchase

L 13

D=l [«]+] (B [om] [[

— Customer Information

111

Known as |Dazza

Status E

Customer Id | 243023 Title
First name | Darren Mothers Name |J0nes
Lazt name |Smith Social Security |NE 123242220

Addiezz Tel Photo

Accounts

AJC 213043 A/C 213048 A/C 123023 A/C 345368
CHECK MORTGAGE CREDITCARD CDSAYE

R

Figure 2—-4 Sample form

Designing Visually Effective Applications 2-11

There are two types of blocks: a data block, which serves as a link between the
datasource and the user, and a control block, which is not associated with a
datasource. Each data block can enable the user to view and access data from one
table in the datasource. Blocks can be single-record blocks, which means that they
show one row of data at a time, or multi-record blocks, which enable users to see
many rows of data at once. All of the fields in Figure 2—4 are in single-record blocks.

A region is a rectangle or line that separates a logical grouping of fields from others
in the block. In Figure 2—4, the rectangle that separates the Customer Information
fields from the Accounts icons is a region.

A frame is a pre-defined way of arranging certain items in a block. For example, the
block shown in Figure 2—-4 was arranged by a frame that established its margins and
offsets, the distance between the items and prompts, and so on.

2.2.1.3 What are windows and canvases?

A window is the container for all visual objects that make up a Form Builder
application. A single form can include any number of windows; all but the simplest
of forms have several windows associated with them. Several types of windows are

available:

Window type Description

Container (MDI) Holds all other windows. It usually, but not always, contains
the toolbar and main menu. (Windows only)

Modeless Enables the user to interact with any other window, as well as
the toolbar and the menu. Modeless windows are used most
often in GUIs when the user is free to choose among many
tasks.

Modal Forces the user to work within a single window, then either

accept or cancel the changes they have made. The toolbar and
menu are not accessible. Use a modal window when the user
must complete a particular task before continuing.

2-12 Guidelines for Building Applications

2.2 Creating an Effective Form

Here is an example of a typical Form Builder window:

M Oracle Applications

Menu Aotion Edit Query Block Record Field Window Help
Toolbar H2E] B FEE] BEE v] [F==
Window title — | BNy R A el = [_|E
Region— —— Window
Field o |1 Mame INDrth America
Single-record
block
. —Departments —
Region = Order Records B
[m] Flame Iﬁy Poplist
10 [Finance |0 Mumber oplis
| Sales
41 ||Operations [v Motify HR? Check box
&0 ||Administration
51 [Legal Add Employee Button
Multi-record = Employees ——
block D Last Mame First Mame Title Salary
2 Mlgac LaDOoris WP, Operations 1450 =
E Urguhart flally ‘W arehouse Manager 1200
16 |Madurc Elena Stock, Clerk 1400
17 |Emith George Stock Clerk 340
EE |Cornejo Fia Maria Stock Clerk oo ﬂ
Message line — || FRib-401 00: At first recard.
Status line —— | |Record: 176 [[[— Console

Figure 2-5 Typical Form Builder window

Like most Windows 95 Form Builder windows, this one contains:

=« Window title

« Menu bar and pull-down menus

« Buttons and other control items that do not correspond to the data

« Dataitems in the blocks

« Console, which includes the message line and status line

Designing Visually Effective Applications 2-13

A canvas is the background object upon which interface items appear. There are four
types of canvases:

Canvas Type Description

Content canvas Occupies the entire pane of the window in
which it is displayed (and possibly more, if the
window enables scrolling). Every window has
at least one content canvas.

Stacked canvas Displayed atop—or stacked on—the content
canvas assigned to the current window.
Stacked canvases are useful for conditionally
obscuring areas of the content
canvas—unpopulated fields, for example.
Through the use of viewports you can control
how much of a stacked canvas is visible.

Tab canvas A set of tabs that enable you to group and
display a large amount of related information
on a single dynamic canvas.

Toolbar canvas Used to create toolbars for individual
windows.

Each window may display one or more canvases. You can also conditionally display
a canvas in a window, depending on whether certain conditions are met.

2.2.2 Guidelines for building forms

The following sections offer specific recommendations for building an effective GUI
with Form Builder:

= Section 2.2.2.1, "Using object libraries"

= Section 2.2.2.2, "Understanding basic design principles"”
« Section 2.2.2.3, "Adding color"

= Section 2.2.2.4, "Creating canvases"

= Section 2.2.2.5, "Creating windows"

= Section 2.2.2.6, "Creating regions”

« Section 2.2.2.7, "Adding items to blocks"

« Section 2.2.2.8, "Designing messages"

= Section 2.2.2.9, "Implementing online help"

2-14 Guidelines for Building Applications

2.2 Creating an Effective Form

« Section 2.2.2.10, "Building effective menus"

2.2.2.1 Using object libraries

Perhaps the most important means of standardization available to you as a form
developer is the object library. An object library is a set of objects and standards that
you create; each object or standard can determine the appearance and layout of an
entire frame, window, or region. When housed in an object library, these objects
become available to all the developers on your project or site, thus ensuring that
even developers working at different locations can produce an application—or
different modules within the same application—with a common look and feel.
Through the use of subclassing, each developer can ensure that changes made to the
objects in the object library are propagated throughout all applications that use
them.

A good strategy for using object libraries is to create a separate one for each logical
grouping of standards. For example, you may want to have one object library for
corporate standards that you make available company-wide, and another tailored
for the specific needs of your project.

To help you get started building your own object libraries, Form Builder provides
two samples:

« Standard Object Library, which contains objects for Windows 95-only
deployments where multi-language support is not a requirement

« Oracle Applications Object Library, recommended for multi-platform
deployments

Before you create your object library, it’s a good idea to test the contents of the
Standard or Oracle Application Object Libraries to see what works well and what
you need to modify.

To test: Do this:
The items in the Standard 1. Use the Data Block Wizard to create a data
Object Library in a data block block.

2. Click an item in your control or data block, then
click the right mouse button. A list of Smart
Classes applicable to that item is displayed,;
click the SmartClass you want.

Open STNDRD20. OLB.
Drag and drop the item(s) into the block.

The items in the Standard
Object Library in a control
block

=

Designing Visually Effective Applications 2-15

To test: Do this:

Only the visual attributes in the Open the STNDRD20. OLB template form.
Standard Object Library

The objects in the Oracle Open the APPSTDS. OLB template form.
Application Object Library

If you use the Standard Object Library, be sure to subclass all the attributes under
the VAGs tab to the Visual Attributes node in your form. Many of the standards are
based upon these visual attributes and will not display correctly if the visual
attributes are not applied. By subclassing (rather than copying) the visual attributes,
you ensure that you always have access to the latest definitions.

If you know that you will be using a particular set of visual attribute groups in all or
most of your forms, create a template form that already contains the visual attribute
groups subclassed from the standard object library. Then you can name this
template when prompted by the Layout Wizard.

For more information on the object libraries, see the help topics "Standard Object
Library" and "Oracle Application Object Library" under "Reusable Components" in
the Forms Developer Demos online help.

2.2.2.2 Understanding basic design principles
Here are some general guidelines for building forms:

« Use a Real Coordinate system with a measurement unit of inches, centimeters,
or points. Choose a single unit and use it across all modules.

Points Often the easiest to use, since you can designate
sizes in whole numbers. Since text is always
specified in points, it’s easier to size objects
relative to text if the objects are in points as well.

Inches and Enables you to specify a higher precision than

centimeters points (but it’s not as easy to compare the size of
objects to text). Useful if your target environment
is exclusively SVGA or better.

Pixels Strongly discouraged. Use only if you are certain
that all users have identical screens and
resolutions and will continue to have them in the
future.

Characters Use only if you intend to deploy to a character
mode platform.

2-16 Guidelines for Building Applications

2.2 Creating an Effective Form

Place users in control by enabling them to enable or disable dialogs wherever it
makes sense to do so. Making this determination requires you to carefully
balance your knowledge of the users with the freedoms or restraints imposed
by their working conditions.

Example: All users should be enabled simple freedoms, like the ability to
interrupt an application and resume it later on. But enabling users the ability to
completely rearrange a company-issued invoice may not be wise, since it
affords the user power to disregard company standards.

The extent to which users should have control is also determined by the user’s
experience level. If you are developing an application for both experienced and
inexperienced users, consider providing a wizard to provide step-by-step
assistance for those who want it, along with manual alternatives.

Make it obvious to users when a task is finished, either by closing a window,
opening another window, or displaying an informational message.

Make windows only as large as necessary.
Use blank space as a way to group information.

Use the frame objects in the Standard Object Library to help you obtain a
consistent layout style across form modules.

Orient screen layouts based on a top-to-bottom task sequence. Arrange blocks,
regions, and items in the order they will be used, from left-to-right, then
top-to-bottom.

In single-record blocks, left-align items where possible. (Right-align fields
containing currency and numbers.) In multi-record blocks, stack items
horizontally and align them along the top.

Designing Visually Effective Applications 2-17

2.2.2.3 Adding color

Use color sparingly, and only to get the user’s attention.

Use color meaningfully and consistently. Example: Use color coding to
differentiate between required, optional, and display-only fields, making sure
that all such fields are color coded the same way.

Consider enabling users to change the color scheme, if possible.

Do not rely on color alone for communicating status or other information;
always provide alternative cues, such as sound or other highlights. For
example, if you display a negative total in red, include parentheses so that the
message is clear without the use of color. Also, avoid references to specific
colors in messages, as many users are color blind.

Use object libraries or Visual Attributes to standardize color usage.
When choosing colors, remember:

— Red and blue combinations are hard on the eyes.

— Blue text has a receding effect.

— Deep blue backgrounds are hard on the eyes over long periods, as are other
bright colors.

— Assignificant number of people have color-identification problems,
especially with red-green.

— Colors have different implications in different countries. Follow the cultural
color coding in your target market, observing the needs of different
professions, situations, and so on. For example, while green generally has
positive connotations for most of the western world, to those in
chemical-related professions the color green might mean danger.

Color Implies...

Blue Cool

Black Profit (financial)

Green Go, OK, Danger (for chemists)
Red Hot, Stop, Danger, Loss (financial)
Yellow Warning, Attention

2-18 Guidelines for Building Applications

2.2 Creating an Effective Form

2.2.2.4 Creating canvases

The following table presents recommendations for creating canvases.

Table 2-2 Recommendations for creating canvases

Canvas Type Recommendation

General .

Provide plenty of white space between items and regions.

Consider placing optional information on separate
canvases.

Avoid scrolling windows, if possible. Studies have shown
that productivity decreases sharply when the user has to
scroll a window to complete a task.

Plan separate windows for canvases that need to be
viewed concurrently.

Although your planned layouts may fit comfortably on a
monitor using Super VGA mode, they may scroll
off-screen in different resolutions, like VGA. Test your
layout on all your users’ monitors.

Content canvas .

Set content canvases to Display immediately.

Remember that the view size for a content canvas is
determined by the current size of its assigned window.

Consider using non-white canvases so that the bevel
effects of objects on the canvas are maximized. In addition,
white backgrounds are often so bright that they can be
tiring.

Use one content canvas per window. Using more than one
can be confusing if the user does not understand why the
entire window is being replaced. If you do use more than
one content canvas, make sure they are logically related,
and require the user to move between them explicitly. One
successful implementation of multiple content canvases is
a word processing application in which the user chooses
between several views of the same document: print
preview, normal, and outline.

Designing Visually Effective Applications 2-19

Table 2-2 Recommendations for creating canvases

Canvas Type

Recommendation

Stacked canvas

Use stacked canvases to hide and display groups of
objects, including boilerplate.

Size the stacked canvas only large enough to contain the
necessary items.

Be sure you know how stacked canvases behave before
you implement them. For example, if the user uses Next
Field or Next Record to navigate to a field that is obscured
by a stacked canvas, the stacked canvas seems to
disappear--that is, it is automatically placed beneath the
content canvas. To re-display the stacked canvas, users
must either navigate to an item on the stacked canvas or
navigate away from the stacked canvas and select the
Show Canvas action.

Tabbed canvas

Limit the number of tabs to 4-6.

Use tabs to organize related information about a single
object. For example, employee information such as salary,
benefits, and job description might work well as a tabbed
dialog.

2-20 Guidelines for Building Applications

2.2 Creating an Effective Form

2.2.2.5 Creating windows
The following table presents recommendations for creating windows.

Table 2-3 Recommendations for windows

Attribute Recommendations

General « Do not use bevels around the edge of the window.
« Inherit color settings from the environment.

. Leave the top and bottom lines of the window blank,
except for buttons and coordination check boxes.

« Leave the left and right edge character cell columns blank,
except for region lines and block boundary lines.

= Use modeless (non-modal) windows to allow scrolling,
and for "leave and come back" navigation (use the STD_
DIALOG_WINDOW_MODELESS object in the Standard
Object Library).

« Use modal windows to prevent mouse navigation
elsewhere and for dependent tasks that are part of a
procedure (use the STD_DIALOG_WINDOW_MODAL
object in the Standard Object Library).

Title « Title each window in a form uniquely so that iconified
names and entries in the Windows menu are significant.

Position « Make sure each window is fully visible when it is first
opened.

. Make all windows moveable.
« Retain window positions when a form is exited.

Scrollbar « Design your windows so that scrolling is not required by
default. Scrolling is acceptable only when provided as a
result of the user re-sizing the window.

Toolbar « Place the toolbar only on the container window (on
Windows) or the root window (on all other platforms).

« Provide hints for the toolbar buttons in tooltip help
displayed just beneath each button as the mouse passes
over it. (See Section 2.2.2.9.1, "Implementing Tooltips".)

Designing Visually Effective Applications 2-21

2.2.25.1 Choosing atitle for modeless windows

While the STD_DI ALOG_W NDOW MODELESS object in the Standard Obiject Library
addresses all issues pertaining to positioning, closing, resizing, and placement, you
still have to choose your own title. When doing so:

« If the window performs a product-specific task, use the format <Verb><Noun>,
as in Transfer Items, Post Journals, and AutoCreate Quotes.

« Pluralize window names—that is, use "lItems" instead of "ltem"—except when
the window pertains to a single instance of data.

« Provide context for child windows in the form <window title> - <context>,
where context is the topmost master record or, for a new record, [New].

Examples: Assignments (OR1) - [John Doe]
Purchase Order Lines (ABC) - [New]

2.2.2.6 Creating regions

The following table presents recommendations for creating regions.

Table 2-4 Recommendations for regions

Attribute Recommendation

General .

Avoid creating regions or adding boilerplate lines to group
items unless doing so is meaningful to the user and
improves the usability of the screen.

Make the line or rectangle creating the region black, with
an inset bevel.

Use a frame for regions containing an entire block. A
frame has properties that control the layout of the items
within it, such as the space between the frame and items
(margin), spacing, and visual attributes. Using standard
frames ensures the consistency of your window layout.
(Although the Layout Wizard creates a frame, you can
always override it by applying a frame stored in your
object library.)

2-22 Guidelines for Building Applications

2.2 Creating an Effective Form

Table 2-4 Recommendations for regions

Attribute Recommendation

Title « Add atitle to the region unless the information contained
within is obvious. Use boldface.

« Position the title on top of the rectangle or line, leaving
one leading and one trailing space in the title text.

« Todisplay the title, use one of these widgets:

Boilerplate (for static region titles)
Frame title (for frames)

Display item, designed to look like boilerplate (for
dynamic region titles)

Poplists (for alternative regions)

Check boxes (if an entire region is applicable or
non-applicable)

2.2.2.7 Adding items to blocks

The following table should help you decide when to choose one form item over
another. It also presents some guidelines that you can use if you decide to modify
an object or standard in the Standard Object Library. The items are presented in

alphabetical order.

Table 2-5 Recommendations for items

Item When to use Recommendations

Boilerplate « Use for text that is neither « Use mixed case.

text a prompt nor a title.

Avoid overuse of italics and underlining.

« Use font styles consistently. For example, if you use bold
for emphasis, do not use bold for any other purpose.

. Avoid excessive variations of fonts, sizes and colors.

Designing Visually Effective Applications 2-23

Table 2-5 Recommendations for items

Item When to use Recommendations
Buttons « Useasdialogresponses (in « Useone ofthe STD _BUTTON_t ype objects in the
(non-iconic) modal windows) and for Standard Object Library.

item-related actions.

Limit six to a window. Arrange in a single row, if possible,
or asingle column.

Align buttons, leaving 0.1" space between them. Separate
logical groupings of buttons by 0.5".

Leave 0.1" between the right edge of the rightmost button
and the right edge of the window.

Capitalize label words; for example, ‘Print Invoice’.

Use an ellipsis (...) at the end of a button label if the button
opens a modal window or if the user must provide more
information about the action in another window (modal or
not) before the action can be completed.

Place OK and Cancel buttons together.

Put affirmative and cancellation buttons first, unique
buttons last.

Use chevrons (>>) to indicate that the dialog will be
expanded.

For labelled buttons (except OK and Cancel), always
provide an accelerator key (underlined letter).

= Use the first letter of the first or second word in the
label ("F" for "File" or "P" for "Start Posting"). If a stron-
ger link exists (like "X" for "Exit"), use that letter.

= Use consonants instead of vowels when possible.

= Make access keys unique within a window. Ensure they
do not conflict with the keys used by the top level of
the menu.

Check boxes « Useonly whenthe labelon «
the check box can clearly
be thought of as having
"true" (checked) and "false" *
(unchecked) states.
Otherwise, use a radio
button group with two
items.

Use the STD_CHECKBOX object in the Standard Object
Library.

Use positive statement labels:
Not good: Don’t show this alert in the future.

Better: Show this alert in the future.

2-24 Guidelines for Building Applications

2.2 Creating an Effective Form

Table 2-5 Recommendations for items

Item When to use Recommendations
Display « Use for display-only fields « Use the STD_DI SPLAY_| TEMobject in the Standard
items in which the user can Object Library.

never type; for example,
the Total field in a financial
application.

Icons « Use only for frequent or « Place frequently used buttons on a toolbar.

critical actions. . Group related tools together and separate groups with

= Use where a picture white space.
conveniently conveys a . Disable buttons that are unavailable.
task or mimics a

real-world object, « Always provide tooltips, as users are often confused by

the meaning of icons.

« lIcons are often cultural. Be aware that you may need to
translate them.

« Avoid "visual puns", such as a running figure for "Run".
Their meanings are not obvious, and will certainly not be
understood in other languages.

Lists (see « Usewhen itis easier for « For 15 entries or less, use a poplist. For more than 15
also Poplists the user to select a value entries, use an LOV (List of Values). For more than 30
and T-Lists) than to type in a value. entries with a lot of real estate, use a T-List.

« Use for data entry and « Make all related fields the same length.

display of text values in a

- Use the color of the canvas background for text items that
selectable list format.

have become non-enterable.

« Use when displayed value
entries are relatively short
(up to 30 characters each).

« Use the combo-box style if
the user may enter new

values.
LOVs « Use when the user must « Automatically select a row for the user when there is only
select from a list of more one valid value.

than 15 rows or to show

several columns of data. Move the cursor automatically to the next field after a

selection is made.

« If there are more than 100 rows in the LOV, prompt the
user to reduce the list of valid values before making a

selection.
Poplists « Usewhenonlyonevalue .« Beforeimplementing a poplist, consider whether frequent
is applicable and the list of users can type faster than they can select.

choices is 15 or less.

Designing Visually Effective Applications 2-25

Table 2-5 Recommendations for items

Item When to use Recommendations
Pop-up « Use to associate menu « Usethe STD_POPUP_MENU_I TEMobiject in the Standard
menus options with an item, Obiject Library.
rather than the whole
application.
« Use to provide access to
frequently used
commands.
Prompts « Useas labels for fields, « Place toward the top or left of the element they are
check boxes, lists, etc. describing.
« Always place single-record blocks prompts to the left of
the field and multi-record block prompts above the field.
« Use the terms "From" and "To" to identify fields involved
in a range rather than "Start" and "End" or "Low" and
"High".
« For percentages, place the percent sign (%) after the field.
Do not include it in the prompt.
Radio « Use to present mutually « Usethe STD_RADI O_GROUP obiject in the Standard Object
groups exclusive choices. Library.
« Usetoseta ‘mode’, such « Use vertical orientation instead of horizontal.
as what type of
information will be « Group related buttons into radio groups with a title.
displayed. « If the choices are binary (ON/OFF, YES/NO), use a check
box instead.
« Always provide a default value.
T-Lists « Useonlywhenonevalue . Alwaysshow at least five rows of data.
is applicable and the list of - . .
choices is never expected * Use only in forms with a lot of available real estate.
to grow beyond 30.
Text items « Use for data entry and « Use the color of the canvas background for text items that

display of character
values.

Use for lengthy or
unprepared values (that is,
those that do not appear in
a short, pre-defined list).

have become non-enterable.
Use a bevel if the user can enter values in the field.

Use the STD_TEXT_| TEMor one of the STD_DATE_t ype
objects in the Standard Object Library.

2-26 Guidelines for Building Applications

2.2 Creating an Effective Form

2.2.2.8 Designing messages

Messages are shown either in the window console area or in popup windows called
alerts. How you display messages depends upon their type and whether a reply is
required by the user. Here are some suggestions:

Table 2—-6 Displaying messages

Message Type Recommendations

Example

Errors « To present an error message, use the STD _
ALERT_STOPR object under the Alerts tab in
the Standard Object Library.

« Usewhen an error is serious enough to halt
processing. Include a stop sign icon in the
dialog.

« Use sparingly.

"You do not have sufficient
authority to approve this Order."

Warning « Usethe STD_ALERT_CAUTION_1, STD_
ALERT_CAUTI ON_2, or STD_ALERT_
CAUTI ON_3 objects under the Alerts tab in
the Standard Object Library. While in the
Library, click the object once to see a
description of the message text.

« Use to present a question that the user must
respond to before processing continues.
Include ayield sign icon (!) in the dialog.

=« Keep the warning short and concise. For
example, use "Delete this order?" rather than
"Do you really want to delete this order?"

« Phrase questions positively ("Save changes?"
rather than "Are you sure you don’t want to
save changes?")

"Copy all lines on this invoice?"

Information « Usethe STD_ALERT_| NFORMATI ONobject
in the Standard Object Library.

« Use to present messages that the user must
acknowledge when no choice is involved.
Include the information icon (the letter "i" in
a circle) and the OK button.

"Line and Shipment Quantities
currently do not match."”

"There are items awaiting your
attention."”

Hints « Appears on the Form Builder message line in
the Console.

« Use to present messages of very little
consequence, or process indicators that do
not require a response.

"Working..."
"At first record."
"Processed Order line 12 of 37."

Designing Visually Effective Applications

2-27

2.2.28.1 Creating Message Text

If possible, error messages should include:

« What was done
« Cause (why it was wrong)

« Action (how to fix it)

Here are some examples of bad and good message text:

Bad

Good

Invalid Date

"Please re-enter the date as DD-MON-YY."

Do not enter a start date later than the
ending date

"The start date must be earlier than the end
date."

Error: 1623, constraint violation

"Please re-enter a unique value for this
field."

You should not receive this message

Don’t display the message at all.

Tool lost at sea

Replace it with an appropriate message or
take it out altogether

When writing message text, try to adhere to these guidelines:

Recommendation

Example

Use active voice.

"Do this now", not "This will need to be
done"

Use imperative voice.

"Enter a commission plan”, not "You can
enter a commission plan”

Use "can" instead of "may" or "could".

"You cannot delete a printed release”, not
"You may not delete a printed release"

Refer to actual field names when possible.

If a field is labelled "Sales Associate", don’t
use the message "Please enter a different
salesperson".

Use uppercase for commands and
keywords.

ALTER CLUSTER statement is no longer
supported.”

Avoid the use of humor.

2-28 Guidelines for Building Applications

You made a boo-boo!

2.2 Creating an Effective Form

Recommendation Example
Avoid accusatory messages. Do not Instead of "You didn’t choose a value”, try
insinuate that the user is at fault. Do not "Please choose a value".

mention the user’s mistake unless it
pertains to the problem’s solution.

When a message contains instructions, use "Please choose a value" is preferred over

"please". "Choose a value".

Address the user as "you", not "the user". Instead of "The user should back up his

Avoid using "I", "He", or "She". modules", try "Please back up your
modules".

Consider providing context-sensitive help See Section 2.2.2.9.2, "Implementing Online
when errors occur. Help".

2.2.2.9 Implementing online help
This section discusses using two types of online help:

Tooltips Also known as popup hints and microhelp. Displayed when
the user moves the mouse over an item on the screen.

Online Help Contains context-sensitive help and hypertext links that
enable users to jump to related topics.
2.2.29.1 Implementing Tooltips

Each item has a property called Tooltip and another called Tooltip Visual Attribute
Group. In the Property Palette’s Tooltip property field, enter the text you want to
display in the pop-up. To ensure consistency across your application, apply the
STD_TOOLTI P visual attribute from the Standard Object Library. If you don’t apply
a visual attribute, the tooltip uses a platform-specific default.

2.2.2.9.2 Implementing Online Help

« Consider using help authoring tools.

« Create standalone topics that are hyperlinked to other topics.

« Keep text short and concise.

« Provide a Help button on each dialog, a Help option on the main menu, and a
Help button on the toolbar.

Designing Visually Effective Applications 2-29

2.2.2.10 Building effective menus

Form Builder provides a default menu for every form. The default menu includes
commands for all basic database operations, including querying, inserting, and
deleting. If your application has specific requirements not met by the default menu
you can quickly create a custom menu. (See "Creating a menu" in the Form Builder
online help for instructions.) While building a menu, keep the following ideas in
mind:

« Organize commands according to the tasks they belong to.

« Although Forms Developer supports scrolling menubars, try to keep valid
items on the screen where the user can see them.

« Disable items that are unavailable.
« Limit submenus to two levels, if possible.
« Capitalize labels.

« Use the standard menus in the demos and add-ons as models for your own
menus.

2.3 Creating an Effective Report

The first steps in using Report Builder to design an effective report are the same as
those for designing an effective form or display. Before reading the rest of this
section, it’s a good idea to read Section 2.1.2, "Defining user requirements", if you
haven’t already.

Here are a few questions to help you determine the user requirements for your
report:

= What data will people viewing the report want, and in what priority?

= Will users want to "drill down" on data, so they can see more details? If so,
you’ll want to include buttons in your reports. Buttons can have blocks of
PL/SQL code associated with them, so they can invoke secondary reports,
play videos or sounds, and so on.

= Will users want charts in the report to present data visually? If so, what
data? You can create a chart in Graphics Builder, then pass data to the chart
from Report Builder (instead of performing a second query).

« If users modify data using a form application, will they want to print the
data afterward? If so, you’ll want to call the report from a form, and have
the form pass data to the report.

2-30 Guidelines for Building Applications

2.3 Creating an Effective Report

= Will users want a report to be embedded in a form? If so, you’ll want to
design a template that has font and color standards similar to your forms.

« Will users want to view the report in HTML, PDF, or hardcopy? Will they
want to make a few formatting changes in the Live Previewer before
(optionally) printing? If so, you will need to specify the report destination
parameter (DESTYPE), or enable your users to do so.

« Will users want to specify parameters for a report, as in "Show only the top
10 sales for the userid SCOTT"? If so, you will need to create user
parameters, and have users specify their values in a form or the Runtime
Parameter dialog.

« Based on network traffic and machine performance, should the report run
in a client/server or 3-tiered architecture?

« Do you have a corporate standard that you want to propagate in the
reports? If so, you should define standard templates.

« For Web reports, will the number of reports be static, or do you want to
dynamically generate the Web sites?

2.3.1 Understanding Reports

Before addressing specific considerations for reports, it may be helpful to briefly
introduce some basic reports concepts. (Experienced users of Report Builder should
skip this section.) For more details on these and other related reports topics, see the
Report Builder online help and/or the Report Builder section of the Reports
Developer Quick Tour.

When you build a report, you work with two application components:

Module Type Description

Report module A collection of objects and code routines. Some of the objects
you can define in a report module include repeating frames,
frames, fields, boilerplate, anchors, and blocks of PL/SQL code
called triggers.

PL/SQL Library module A collection of user-named procedures, functions, and
packages that can be called from other modules in the
application.

This section does not address the use of PL/SQL libraries. For information on this
topic, refer to the Report Builder online help.

Designing Visually Effective Applications 2-31

For some reports, you will use the Report Wizard (to choose a report type, define a
data model, and a layout for the data) and the Report Editor’s Live Previewer (to
fine-tune the report). For other reports, you will use other views of the Report

Editor:
View Used to:
Data Model view Create a report with more than one query.
Layout Model view « Create reports with multiple sections (e.g., a single report
with a tabular and matrix style)
« Add new layout objects (e.g., buttons)
=« Control how objects are sized or positioned
Parameter Form view Present users with a dialog in which they can specify

parameter values before running the report.

Because this chapter discusses how to create visually effective applications, the
remainder of this section focuses on using the templates, objects, and settings found
in the Layout Model view.

2.3.2 Using Templates in Report Builder

Perhaps the most important means of standardization available to you as a report
developer is the template. A template is a collection of boilerplate objects, and layout
and report settings that determine the appearance of an entire report. Several
templates are shipped with Report Builder, and you can create your own. By
creating corporate or group templates and making them available to your entire
development team, you can ensure a common look and feel. For instructions on
how to create a template, see the Report Builder online help.

2-32 Guidelines for Building Applications

2.3 Creating an Effective Report

2.3.3 Understanding Layout Objects

The Layout view of the Report Editor may contain the following objects:

Object

Description

Frames

Containers that control repeating frames, fields, boilerplate,
buttons, and child frames. Unlike Form Builder frames, Report
Builder frames do not have formatting properties that control
the location of child objects.

Repeating frames

Containers that control:
« Fields containing report data
« Other objects owned by the repeating frame

Fields

Containers that display the report data, dates, page nhumbers,
and so on.

Boilerplate

Text or graphics that appear as often as required by the object
that surrounds it (the report, frame, or repeating frame), or to
which it is attached.

Anchors

Objects that determine how two objects in a report layout
relate to one another (i.e., parent/child relationships and
relative positioning).

Buttons

Objects that perform an action when users click on them.

With the exception of anchors, layout objects may have format triggers, such as
PL/SQL blocks that are invoked each time the object is activated.

2.3.4 Controlling Layout Objects in Report Builder

When designing a report, remember that the size of the entire report and the size of
many of its individual objects may vary, which can affect pagination in a printed
report. Consider a report based on this query:

sel ect enane, sal fromenp

where sal > 2000

The size of this report and its objects is based on several factors:

« The amount of data that satisfies the query, which can range from a few records,
to hundreds or thousands of records.

Designing Visually Effective Applications 2-33

= When you run the report. For example, the number of records might change
dramatically the week after pay raises are distributed (for example, the number
of people with salaries above 2000 might increase).

= Whether group filters or format triggers are used, which exclude data or objects
from the report.

Instances of the same object may also vary in size. For example, suppose you have a
VARCHAR?2 column in the database called COMMENTS. For one record,
COMMENTS might contain two sentences. For another, it might contain 10
sentences. The size of the field in your layout that corresponds to the COMMENTS
column must then be able to accommodate values of different length. In addition,
objects around that field may have to be "pushed" or "pulled" to avoid being
overwritten or leaving large gaps in the report.

Fortunately, Report Builder provides a variety of mechanisms in the Layout View of
the Report Editor that enable you to control how objects are sized and positioned.
These mechanisms are described in the following sections:

« Section 2.3.4.1, "Using anchors"

= Section 2.3.4.2, "Using the Print Object On and Base Printing On properties"
« Section 2.3.4.3, "Understanding Horizontal and Vertical Elasticity"

« Section 2.3.4.4, "Using the Page Break Before and After property"

= Section 2.3.4.5, "Using the Page Protect property"

= Section 2.3.4.6, "Using the Keep with Anchoring Object property"

2.3.4.1 Using anchors

Anchors determine how objects in a report layout relate to one another. When two
objects are anchored together, one object is considered the parent and the other the
child. By defining parent-child relationships between objects, anchors establish a
hierarchy for the objects in a report. Based on this hierarchy of objects, Report
Builder decides how objects should be printed in relation to each other, whether it
should attempt to keep the two objects on the same page, and how objects should
be pushed or pulled depending on the size of surrounding objects.

Anchors can be created in one of two ways:

« Automatically, by Report Builder. This is known as an implicit anchor. In most
cases, implicit anchors are the only ones you need.

« By you, using the Anchor Tool in the Layout view of the Report Editor. This is
known as an explicit anchor. Explicit anchors are necessary only when you need

2-34 Guidelines for Building Applications

2.3 Creating an Effective Report

to override the implicit anchors for some reason. See the topic "About anchors"
in the Report Builder online help.

2.3.4.2 Using the Print Object On and Base Printing On properties

The Print Object On property determines the frequency with which an object
appears in a report. The Base Printing On property specifies the object on which to
base the Print Object On property.

For example, if you specify a Print Object On of All Pages and a Base Printing On of
Anchoring Object, the object is triggered to print on every logical page on which its
anchoring object (parent object) appears. Objects created by the Report Wizard have
these properties set for them. In most cases, the values that Report Builder chooses
are the best ones for the object. The only time you should need to set these
properties yourself is when you want to override the default value set by Report
Builder.

In applying the Print Object On property, Report Builder considers the first page of
an object to be the first logical page on which some part of the object is printed.
Likewise, the last page is considered to be the last logical page on which some part
of the object is printed. For example, if you specify a Print Object On of First Page
and a Base Printing On of Enclosing Obiject, the object will be triggered to print on
the first logical page on which its enclosing object appears.

Notes:

« If an object is inside a repeating frame, Base Printing On refers to each instance
of the repeating frame. If the object is outside the repeating frame and explicitly
anchored to it, Base Printing On refers to the repeating frame as a whole.

= Just because an object is triggered to print on a logical page does not mean it
will print on that logical page. Other settings (e.g., Page Break Before) or the
amount of space available on the page may cause Report Builder to print an
object on a page other than the one on which it was initially triggered to print.

For more information, refer to the Report Builder online help, index entries: Print
Object On and Base Printing On.

2.3.4.3 Understanding Horizontal and Vertical Elasticity

The Horizontal and Vertical Elasticity properties determine how the horizontal and
vertical sizes of the object may change at runtime to accommodate the objects or
data within it:

Designing Visually Effective Applications 2-35

« For frames and repeating frames, elasticity defines whether the size of the frame
or repeating frame should vary with the objects inside of it.

« For objects containing text, elasticity defines whether the field or boilerplate
should vary with the size of the text. Fixed size text will wrap within the
defined size of the object and may be truncated if there is not enough room.
Number or date data will appear as asterisks if the data cannot fit within the
defined size.

« Forimages, drawings, and chart objects, Report Builder uses proportional
scaling. The elasticity options for images, drawings, and chart objects determine
the scaling factor.

Objects created by the Report Wizard have these properties set for them. In most
cases, the values that Report Builder chooses are the best ones for the object. The
only time you should need to set these properties yourself is when you want to
override the default value set by Report Builder.

Different elasticity settings can produce unexpected results in the output. For
example, if an object with variable horizontal elasticity contracts, all objects to the
right are moved to the left, since these objects are implicitly anchored to the variable
object.

For more information, refer to the Report Builder online help, index entries:
Horizontal Elasticity and Vertical Elasticity.

2.3.4.4 Using the Page Break Before and After property

Unlike word processing documents, reports and their objects can vary in size and
position at runtime. As a result, page breaks in a report can be difficult to predict.

= Use the Page Break Before property to indicate that you want an object to be
formatted on the page after the page on which it is initially triggered to print.
Note that this does not necessarily mean that all the objects below the object
with Page Break Before will move to the next page. If one of the objects below
does not have Page Break Before set and can fit on the page, it may print above
the object which has Page Break Before set.

= Use the Page Break After property to indicate that you want all children of the
object to move to the next page. In other words, any object that is a child object
of an anchor (implicit or explicit) to this object will be treated as if it has Page
Break Before set. Note that this does not necessarily mean that all the objects
below the object with Page Break After will move to the next page. If one of the
objects below does not have Page Break After set and is not a child of the other
object, it might print above the object which has Page Break After set.

2-36 Guidelines for Building Applications

2.4 Creating an Effective Display

For more information, refer to the Report Builder online help, index entries: Page
Break Before and Page Break After.

2.3.4.5 Using the Page Protect property

Use the Page Protect property to try to keep the entire object and its contents on the
same logical page. If the contents of the object cannot fit, they are moved to the next
logical page. Note that this does not necessarily mean that all the objects below the
object with Page Protect set will move to the next page. If one of the objects below
can fit on the page, it might print above the object which has Page Protect set.

For more information, refer to the Report Builder online help, index entry: Page
Protect.

2.3.4.6 Using the Keep with Anchoring Object property

Use the Keep with Anchoring Object property to keep an object and the object to
which it is anchored on the same logical page. If the object, its anchoring object, or
both cannot fit on the logical page, they are moved to the next logical page.

If you set Keep with Anchoring Object for a repeating frame, the first instance of the
repeating frame must be able to fit on the same page as its anchoring object.
Otherwise, the Keep With Anchoring Object condition is not satisfied. If you set
Keep With Anchoring Object to Yes for any layout object other than a repeating
frame, the object must be able to format entirely on the same page as its anchoring
object.

The anchor between the two objects may be explicit or implicit. Consequently, Keep
With Anchoring Object may have an effect even if you have not explicitly created an
anchor between two objects.

2.4 Creating an Effective Display

Graphics Builder enables you to produce displays for inclusion in both forms and
reports. A display can be an application by itself, or included in a form or report.

Use displays when you want to:

= Show relationships between different categories (number of tennis shoes sold as
compared to dress shoes)

« Show trends rather than specific values

= Provide user interaction with graphical areas and shapes (maps, sectors of
images, and so on). Graphics Builder allows you to respond to mouse

Designing Visually Effective Applications 2-37

interactions with the shapes that you create in the layout editor. Irregular,
transparent buttons can be placed over areas of a diagram or bitmapped image
so that users can effectively make selections from pictures.

When creating graphics, keep the following guidelines in mind:

Keep things simple. Displays containing too many lines, bars, slices, and so on
can quickly overwhelm users and render your graph or chart unusable. If you
have a lot of data, summarize it at the highest level and use drill-downs to
present more detailed information. Or, consider breaking up a complicated
graph into smaller, individual graphs, then creating a form from which users
can select which graph they want to view.

Use 3-D effects only if they help communicate information, as they can be
resource-intensive.

Test your graphics on all the display devices in your deployment environment
and make sure they perform well even on the lowest resolution monitor.

Use colors to show transition; use primary colors to show differences. See
Section 2.2.2.3, "Adding color" for more information on using color.

Use legends for complicated graphs.

Remember, you can pass mouse events from forms to graphics modules. For
example, you can create a When-Mouse-Click trigger on a form’s chart item and
call the OG.MouseDown procedure from this trigger to pass mouse information
to a display. The display can then return information to the form, including
details of which sector in the display was clicked by the user. See the Graphics
Builder demo called "Map Example" in the product’s standard demo set for
more information.

2.4.0.7 Choosing the Right Graph
Here are some guidelines for implementing the most commonly used displays:

Table 2-7 Recommendations for displays

Display type When to use: Recommendations

Bar graph Showing relationships Limit bars to 20-25.

between discrete objects and
their related values.

Pie chart Showing part-to-whole Limit slices to 10.

relationships. Typically used
to show percentage values.

2-38 Guidelines for Building Applications

2.4 Creating an Effective Display

Table 2-7 Recommendations for displays

Display type When to use:

Recommendations

Show the cumulative effect
of continuous data.

Line chart

Limit lines to 6-8.

Double-Y Comparing data within a

large range of values.

Limit plots to 4 or less.

Gantt Scheduling and date

duration data.

Limit bars to 40-50.

High-low Displaying daily
temperature values, stock
market values, and similar
data tracking high, low, and

current values.

Limit rows to 30 or less.

Mixed Comparing actual values
(bar) to projected values

(line).

Limit rows to 30 or less.

Scatter Showing relationships
between numeric data on

the X and Y axis.

Limit rows to less than 50
per inch.

Designing Visually Effective Applications 2-39

2-40 Guidelines for Building Applications

3

Performance Suggestions

This chapter details suggestions for improving performance of your applications. It
includes the following sections:

3.1 Summary

Summary

Introduction: What Is Performance?

Measuring Performance

General Guidelines for Performance Improvement
In a Client/Server Structure

In a Three-Tier Structure

The following table summarizes the available performance suggestions, and
indicates where a detailed explanation can be found in this chapter.

Before getting into the details, you should read the introductory information in
Section 3.2. The material on performance measurement in Section 3.3 may also be
helpful.

The suggestions are grouped according to their scope, in this sequence:

1.

those that apply to any Forms Developer or Reports Developer application, in
any environment

those for specific Builder applications (Forms, Reports, or Graphics), in any
environment

those for any Forms Developer or Reports Developer application in a
client/server (2-tier) environment

Performance Suggestions 3-1

4. those for any Forms Developer or Reports Developer application in a 3-tier

environment

Performance Suggestion Explanation

For any application:
Upgrade your software on page 3-10
Upgrade your hardware on page 3-11
Use array processing on page 3-11
Eliminate redundant queries on page 3-11
Improve your data model on page 3-12
Choose one of the database server’s optimizers on page 3-12
Perform your calculations within your query SQL on page 3-13
Avoid using explicit cursors on page 3-13
Use group filters on page 3-14
Share work between components on page 3-14
Move wait time forward on page 3-14

For any Forms application:

(all the general suggestions also apply to Forms)
Tune array processing on page 3-15
Base data blocks on stored procedures on page 3-15
Optimize SQL processing in transactions on page 3-17
Optimize SQL processing in triggers on page 3-18
Control inter-form navigation on page 3-18
Raise the record group fetch size on page 3-18
Use LOBs instead of LONGs on page 3-18
Erase global variables after use on page 3-19
Reduce widget creation on page 3-19
Examine the necessity for locking on page 3-19

3-2 Guidelines for Building Applications

3.1 Summary

Performance Suggestion Explanation

For any Reports application:

(all the general suggestions also apply to Reports)
Reduce layout overhead on page 3-20
Use format triggers carefully on page 3-20
Link your tables on page 3-21
Control runtime parameter settings on page 3-22
Turn off debug mode on page 3-22
Use transparent objects on page 3-22
Use fixed sizes for non-graphical objects on page 3-22
Use variable sizes for graphical objects on page 3-23
Use image resolution reduction on page 3-23
Avoid word wrapping on page 3-23
Simplify formatting attributes on page 3-23
Limit your use of break groups on page 3-24
Avoid duplicating work with Graphics Builder on page 3-24
Choose between PL/SQL and user exits on page 3-24
Use PL/SQL instead of SRW.DO_SQL for DML on page 3-25
Evaluate the use of local PL/SQL on page 3-26
Use multiple attributes when calling SRW.SET_ATTR on page 3-26
Adjust the ARRAYSIZE parameter on page 3-26
Adjust the LONGCHUNK parameter on page 3-26
Adjust the COPIES parameter on page 3-27
Avoid fetch-ahead in previewing on page 3-27
Choose appropriate document storage on page 3-28
Specify path variables for file searching on page 3-28
Use the multi-tiered server on page 3-28

Performance Suggestions 3-3

Performance Suggestion Explanation

For any Graphics application:

(all the general suggestions also apply to Graphics)
Pre-load graphics files on page 3-29
Update displays only if necessary on page 3-29
Move display updates out of loops on page 3-29
Use common elements wherever possible on page 3-29
Limit the DO_SQL procedure to DDL statements on page 3-29
Use handles to reference objects on page 3-30
Consider not using shortcut built-ins on page 3-30

For any application in a client/server environment:

(all the general suggestions earlier also apply to client/server)
Choose an appropriate installation configuration on page 3-30
Choose the best application residence on page 3-31

For any application in a 3-tier environment:

(all the general suggestions earlier also apply to 3-tier)
Increase network bandwidth between tiers 1 and 2 on page 3-32
Minimize changes to the runtime user interface on page 3-32
Adjust stacked canvases (non-visible, raise on entry) on page 3-32
Perform validation at a higher level on page 3-32
Avoid enabling and disabling menu items on page 3-32
Keep display size small on page 3-33
Identify paths for graphics on page 3-33
Limit the user of multimedia on page 3-33
Avoid use of animations driven from the application server on page 3-33
Take advantage of hyperlinks on page 3-33
Put code into libraries on page 3-33
Reduce start-up overhead with JAR files on page 3-33

3-4 Guidelines for Building Applications

3.2 Introduction: What Is Performance?

Performance Suggestion Explanation
Reduce start-up overhead with pre-loading on page 3-34
Use just-in-time compiling on page 3-34
Increase Tier 2 hardware power on page 3-34
Use multiple Tier 2 components (Web Application Server) on page 3-35

3.2 Introduction: What Is Performance?

Before setting out to improve performance, it’s helpful to have a clear view of
specific goals, and what is involved in achieving them.

You need to be precise about what areas you want to improve, and how
performance in those areas is perceived or measured.

Additionally, improving performance can involve understanding the many
interrelationships and dependencies in today’s computing environment, the costs
involved, and the trade-offs that may occur in improving performance in one area.

3.2.1 Performance When?

The use of Forms Developer and Reports Developer is divided into design time and
runtime. Design time, when programmers are building the applications, is not
usually a concern in terms of performance. It is runtime — when the applications
are being exercised by multiple end users in the daily business environment — that
is almost always the main concern. As a result, the rest of this chapter focuses on
performance in the runtime environment.

3.2.2 Performance of What?

There are many ways to view an application’s performance. Its storage
requirements, its coding efficiency, its network loading, and its server usage, are just
a few areas. Every situation is different, and every site and department will have its
own set of priorities and its own view of which performance area is most important.
In addition, "good" and "bad" performance in these areas are relative things. There
are rarely any absolute standards.

Often the most visible area is performance in terms of response time for end users
(that is, how long people using the application must wait after making a choice or
entry). Here, too, there are no absolute standards. No matter what the actual
response time, users will have an opinion — which will depend in part on what

Performance Suggestions 3-5

they are accustomed to and what their expectations are. Real numbers are
irrelevant. If end users are not happy with the response time, then that area is
certainly a candidate for improvement.

3.2.3 Interrelationships

Applications do not run in a vacuum. In a client/server environment, the
application is dependent on two underlying hardware and operating system
configurations, plus a hardware and software network connection. In a three-tier
environment, the situation is even more complex. In addition, the application is
interacting with one or more database servers, and may also be calling other
software components as it runs.

Further, an application is often sharing these hardware and software resources with
other applications. Because of this sharing, an application that is efficient in itself
can be adversely affected by other inefficient applications.

Performance of an application, then, is not just a result of its own design and
usages, but a very complex result of the combined interactions of a great number of
different components and factors.

3.2.4 Trade-offs

Some improvements in performance are straightforward and purely beneficial.
Eliminating useless code in an application would be an example.

Other improvements might not be so clear cut, however. For example, giving one
application a higher network priority by necessity lowers the relative priority of the
others. As another example, we might restructure a database to improve access time
for one type of application, but find that we have actually degraded access time for
other important applications.

At the single application level, a classic trade-off is space versus speed. We might be
able to decrease our main storage requirements by off-loading some components,
but that would most likely degrade the application’s response time (since those
components would need to be loaded when needed). On the other hand, we might
move the loading operations into the start-up phase, which would improve later
response time, but at the cost of higher initial start-up overhead.

Before deciding on any particular improvement effort, it’s helpful to understand the
broader implications, and make choices according to your priorities.

3-6 Guidelines for Building Applications

3.3 Measuring Performance

3.3 Measuring Performance
How do we tell if our applications are performing adequately?

In the case of response time, the opinion of our end users is paramount. But in
other areas we would like more tangible data; some hard numbers.

3.3.1 Forms Developer- and Reports Developer-Specific Measurements

The Ora_Prof built-in package is distributed with both Forms Developer and
Reports Developer. It allows you to examine the PL/SQL in an application, and find
out how much time a specific piece of code takes to run.

The following product-specific measurement tools are also available.

3.3.1.1 Forms Measurements

You can obtain general information about a Forms application by setting the
runtime option STATI STl CS=YES.

33111 PECS

You can use Form Builder’s Performance Event Collection Services (PECS) to gather
more detailed information about an application’s runtime behavior.

You activate the PECS data collection by specifying the runtime option PECS=0N.

The simplest use of PECS is to collect application-wide statistics. This does not
require any changes to the existing application (only the activation of PECS via the
runtime option).

PECS also allows you to focus on specific areas in your application. PECS provides
you with a number of built-ins that you can insert into your code to identify
sections or events or classes that you want to examine in detail.

Once the data has been collected, you can use the PECS Assistant to view and
analyze it. The Assistant produces various types of reports that let you see such
things as elapsed time, CPU time, events or occurrences reached, usage of your
PL/SQL code, and so forth. Your analysis of the application’s runtime behavior can
help you spot potential areas for improvement. For example, some section of code
might be taking considerably longer to execute than the others, and would therefore
be a candidate for closer investigation.

Performance Suggestions 3-7

3.3.1.2 Reports Measurements

Report Builder offers two measurement tools: the Reports profile option and the
Reports trace option.

3.3.1.2.1 Reports Profile

The Reports profile option, when set, produces a log file that shows where the
report spent its processing time. This may help you identify performance
bottlenecks.

To set the profile option, specify PROFI LE=<f i | enane>, where <f i | enane> is
the name of the required log file. Profile can be either a report parameter or a
command line argument.

Typical profile output from a sample report is shown below:
Total Elapsed Time: 29.00 seconds

Reports Time: 24.00 seconds (82.75% of TOTAL)
Oracle Time: 5.00 seconds (17.24% of TOTAL)
UPI: 1.00 seconds

SQL: 4.00 seconds

From this profile, it is possible to see the execution time (total elapsed time) for the
report, the amount of time that was spent formatting the retrieved data (Reports
Time), and the amount of time spent waiting for the data to be retrieved (Oracle
Time). UPI time is the time spent establishing the database connection, and parsing
and executing the SQL. The SQL time is the time spent while the database server
fetches the data, and time spent executing SRW DO_SQ_() statements (the DML
and DDL statements that your application may contain).

In this example, the profile shows that the majority of the time was spent laying out
the data rather than querying and fetching.

3.3.1.2.2 Reports Trace

The Reports trace option produces a file that describes the series of steps that a
report carries out during the execution of the report. The trace option can be set so
that all events are logged in the file, or only a subset of steps are logged (for
example, only SQL execution steps). The trace file provides an abundance of
information that is not only useful for performance tuning, but also in finding out
what executed when.

3-8 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

The trace option can be set either from the main menu (choosing Trace under Tools)
or from the command line arguments TRACEFI LE (filename for trace information),

TRACEMODE (either append trace information from future runs to the existing trace

file, or replace the trace file), or TRACEOPTS (a list of the event types where tracing

is required).

3.3.2 Server- and Network-Specific Measurements

Database servers and network systems often provide measurement and analysis
tools that you can use to obtain performance information in those areas.

For example, an invaluable aid to tuning your SQL is the SQL trace functionality
provided by the Oracle database server. SQL trace enables you to see the SQL sent
to the database, as well as the time taken to parse, execute, and fetch data from the
statement. Once a trace file has been generated, use the TKPROF utility to generate
an Explain Plan, which is a map of the execution plan used by the Oracle Optimizer.
The Explain Plan shows, for example, where full-table scans have been used, which
may suggest that the application could benefit from an index (depending on the
performance hit). More information about the Explain Plan is available in the Oracle
SQL Language Reference Manual.

As well as measurement and analysis tools offered by the servers and network
systems your application uses, you should also consult with the administrators of
those areas. They may be able to offer direct assistance, or suggestions for ways to
improve application performance in the existing environment.

3.4 General Guidelines for Performance Improvement

The following performance-improvement guidelines apply to Forms Developer and
Reports Developer in general (all their component Builders), and to both
deployment architectures (client/server and three-tier).

The general guidelines cover these areas:
« Upgrades of hardware and software
« Data design (data modeling)

« Work sharing between components
= Wait time transfer

« Debug mode

Performance Suggestions 3-9

3.4.1 Upgrades of Hardware and Software

Perhaps the simplest way to obtain improved performance is to upgrade your
hardware and/or software. While there is effort involved in upgrading, the
performance improvements offered by the newer components often make it
worthwhile.

3.4.1.1 Software Upgrades

3.4.1.1.1 Upgrading Oracle software

Each successive release of Oracle software offers improvements and extensions over
its predecessors. Improvements are in many categories, and vary in nature from
release to release. But often a new release will offer not only new functionality, but
also something in the way of performance enhancements — perhaps additional
tuning aids or even automatic performance improvement.

For example, Release 1.6 improves on Release 1.5 by providing a load balancer that
can make efficient use of multiple application servers. Release 2 offers the
returned-table-of-records feature, which allows passing changes once to a stored
procedure that in turn distributes them to multiple tables, saving network trips. As
yet another example, Release 6 contains re-written internal code that uses the more
efficient OCI language to interface with the database server, providing
improvements without any required customer action.

Consider upgrading to a later, more efficient release.

3.4.1.1.2 Upgrading Other Software Components

Both Forms Developer and Reports Developer, of course, run with other software,
most notably the Oracle database server and the PL/SQL language components.
Better performance in associated components will often be reflected in better
performance in your applications. More tuning features in those areas may offer
more opportunity for making improvements in the applications.

The later releases of the associated software almost always offer better performance.
For example, the Oracle8 database server offers a number of performance
improvements over Oracle7: for example, table and index partitioning, enhanced
parallel processing, and deferred constraint checking.

Therefore, to the extent you are able to control or influence the choice of database
server and other associated software, consider upgrading to a higher, more efficient
level.

3-10 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

3.4.1.2 Hardware Upgrades

Increasing the capacities and/or speeds of the underlying hardware systems is an
obvious approach to improving performance. This includes not only the desktop
and server machines, but also the network connections between them.

3.4.2 Suggestions for Data Usage

Accessing a database is a major activity of typical Forms Developer and Reports
Developer applications. Being efficient in reading and writing that data can have a
significant effect on overall performance.

3.4.2.1 Use Array Processing

Both Forms Developer and Reports Developer are able to take advantage of the
Oracle database server’s array processing capabilities. This allows records to be
fetched from the database in batches instead of one at a time, and results in
significantly fewer calls to the database. The downside of array processing is that
more space is required on the execution platform for storing the arrays of records
returned.

If load on the network becomes a major bottleneck in the production environment,
then set the Developer product’s runtime ARRAYSI ZE parameter to as large a value
as possible for the execution environment.

3.4.2.2 Eliminate Redundant Queries

Ideally, an application should have no redundant queries (queries which return data
which is not required), since they will clearly diminish performance. However,
situations can arise where an application not only needs to produce a different
format for different users, but also needs to utilize different query statements.
Clearly this could be achieved by developing two different applications, but it may
be desirable to have a single application for easier maintenance.

For example, in a report, you could disable redundant queries by use of the
SRW SET_MAXROW() procedure. The following code in the Before Report trigger
will disable either Query_Emp or Query_Dept, depending on a user parameter:

IF :Parameter_1="A'then
SRW.SET_MAXROW(Query_Emp’0);
ELSE
SRW.SET_MAXROW(Query_Dept0);
ENDIF;

There are several points to remember when using SRW SET_MAXROW() :

Performance Suggestions 3-11

« The only meaningful place to use SRW SET_MAXROW() is in the Before Report
trigger (after the query has been parsed). If SRW SET_MAXROW() is called after
this point, then the SRW MAXROW UNSET packaged exception is raised.

« The query will still be parsed and bound, but no data will be returned to the
report.

3.4.2.3 Improve Your Data Model

If an application is known to be spending an inordinate amount of time in the
database, then it is often beneficial to review the structure of the data and how it is
being used. Both Forms Developer and Reports Developer are non-procedural tools
that are optimized for set-based logic, and a bad schema design can have a dramatic
negative effect. For example, an overly normalized data model can result in many
avoidable joins or queries, while a lack of appropriate indexes can result in many
costly full-table scans.

The specific nature of your application will determine the most efficient data model.
A query-driven application can benefit from de-normalized tables; normalized
tables are usually best for applications that do many updates and inserts.

Efficient design and operation of the database and server will clearly benefit its
client applications. However, because the creation and management of the database
is a large topic, and one usually outside the domain of the application developers,
the topic of database performance is only introduced here. The subject is covered
in its own manual: Oracle Server Tuning. Using that manual and such server tools as
SQL trace and the TKPROF utility, you can determine where your data model could
be improved.

Even if that area is outside your direct control, you might still want to consult with
the database server personnel to see if specific performance concerns could be
addressed to mutual advantage.

3.4.2.4 Use SQL and PL/SQL Efficiently

Both Forms Developer and Reports Developer use SQL to talk to the database and
retrieve data, and it is helpful for anyone tuning applications to have a good
working knowledge of SQL and to understand how the database is going to execute
these statements.

3.4.24.1 Choose an Appropriate Optimizer

Inefficient SQL in your application can severely impact its performance. This is
particularly true in applications that have large queries.

3-12 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

The Oracle database server provides you with two SQL optimizers: cost-based and
rule-based. Using the cost-based optimizer gives you a significant amount of
automatic optimization without having to involve yourself in the complexities of
tuning your SQL ; in addition, hints are provided that allow for additional tuning.
Using the rule-based (heuristic) optimizer allows you to fine-tune your SQL to
potentially achieve an even higher level of optimization, although it does require
more work on your part and some understanding of SQL processing.

For most applications, the cost-based optimizer will give a satisfactory level of
optimization. Indeed, an untuned cost-based optimization is often superior to a
hand-tuned rule-based optimization. However, a developer who understands the
spread of the data and the rules governing the optimizer, and who wants to attempt
to achieve the highest level of efficiency, can try using the rule-based method.

In any event, it is important to choose one or the other optimizer. Either:

« activate the cost-based optimizer (by either running ANALYZE on the tables or
setting the i ni t. or a parameter), or

« optimize all your SQL following the suggestions and access path choices
provided for you by the rule-based optimizer.

3.4.2.4.2 Perform Calculations within the Query SQL

When performing calculations within an application, the general rule of thumb is
that the more calculations that can be performed within the query SQL the better.
When calculations are included in the SQL, they are performed by the database
before the data is returned, rather than the data being returned and cached before
the calculation is performed by the application. From Oracle 7.1 onwards, you can
include server-stored user-defined PL/SQL function calls in the query select list.
This is more efficient then using a local PL/SQL function (e.g., in a formula
column), since the calculated data is returned as part of the result set from the
database, so no further calculations are required.

In Oracles, calls to methods can use the SELF parameter, which simplifies and
speeds the passing of arguments.

3.4.2.4.3 Avoid Explicit Cursors

Declaring and using explicit cursors in your application gives you complete control
over your database queries. However, such cursors are rarely necessary. (Both
Forms Developer and Reports Developer create any needed cursors implicitly, and
manage them for you.) Explicit cursors also add to network traffic, and therefore
should be avoided in most applications.

Performance Suggestions 3-13

3.4.2.5 Use Group Filters
Group filters are available in the Reports and Graphics components.

The main use for group filters is to restrict the number of records being retrieved to
be the first or last n records, although there is also an option to create a PL/SQL
filter condition. When using a group filter of either type, the query is still passed to
the database and all data will still be returned to the application, where the filtering
will take place. Therefore, even if the application displays only the top five records,
the result set returned will contain all the records returned by the query.

For this reason, it is usually more efficient to try to incorporate the group filter into
the where clause of the query wherever possible. This will restrict the data returned
by the database.

3.4.2.6 Share Work Between Components

Both Forms Developer and Reports Developer offer the ability to construct
applications that use multiple components. For example, data might be fetched and
manipulated by Forms, which then calls Reports to produce some output. Reports,
too, could call Graphics to display some output visually.

While each called component could re-query the data, it is more efficient to have
Forms create a record group to hold the data, and then pass that along as a
parameter to Reports, and Reports similarly to Graphics. (This technique is
sometimes referred to as query partitioning.) Using this technique, the data is
queried only once.

3.4.2.7 Move Wait Time Forward

When one component calls another, and the called component is not already in
memory, there is a certain amount time taken to load it. While this
load-upon-demand makes more efficient use of memory, it can cause a perceptible
wait for the end user.

It is possible to reduce the wait time by having the called component loaded
initially (along with the calling component). This does lengthen start-up time (as
well as use memory less-efficiently), but a wait at start-up is usually less noticeable
than a wait in the middle of processing.

(This technique is more useful for Forms calling Reports than it is for Reports
calling Graphics.)

3-14 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

3.4.3 Forms-Specific Suggestions

All the general suggestions offered earlier in this chapter also apply to Forms
applications. In addition, consider the following.

3.4.3.1 Tune Your Array Processing

The general value and trade-offs of array processing have already been noted. In
Forms, this setting for querying is controlled in the block property Query Array
Size. For updating/inserting/deleting, the array processing setting is controlled in
the block property DML Array Size.

3.4.3.2 Base Data Blocks on Stored Procedures
If you can, base your data block on a stored procedure.

Stored procedures are the most direct way of moving processing to the server.
When correctly designed, stored procedures can also eliminate many network
round trips. For example, by basing a query on a stored procedure, the foreign key
lookups and calculations can be performed on the server rather than in Post-Query
triggers. Such triggers typically add at least one round trip per row, thereby losing
the benefit of array fetches.

Similarly, by performing updates through a stored procedure, audit trails or
denormalized data can be written without an additional network round trip; so can
validations that might be necessary before attempting to perform the DML. This
eliminates network round trips that previously might have occurred in Pre-Update,
Pre-Insert, and Pre-Delete triggers.

If you are using a release prior to 2.0, you can manually build a data block on a
stored procedure by writing transactional triggers, such as On-Select and On-Fetch
Using Release 2.0 or later, you can perform array fetches through stored procedures.

You also have two options for queries through stored procedures. The first option is
to base a data block’s query on a stored procedure that returns a Ref Cursor; the
other is a stored procedure that returns a Table of Records.

3.4.3.2.1 Query Based on Ref Cursor

A Ref Cursor is a PL/SQL construct that allows the stored procedure to open a
cursor, and return to the client a "pointer" or reference to the cursor. The client can
then fetch records from the cursor just as if the client had opened the cursor itself. In
the case of Forms, records are fetched through the Ref Cursor using array fetches
exactly as if Forms had opened the cursor itself for a data block based directly on a
table or view.

Performance Suggestions 3-15

A data block based on a Ref Cursor has many similarities to a data block based on a
view, but there are two major advantages to a Ref Cursor. First, a stored procedure
provides better encapsulation of the data. By denying direct query access to the
tables, you can ensure that applications query the data only in ways that are
meaningful (for example, a set of tables might be designed to be joined in a specific
way to produce a particular set of information) or only in ways that are efficient (for
example, queried in such a way that the indexes can be used).

The second advantage is that the stored procedure can be more flexible. The
procedure can determine at runtime which one of several Select statements to
execute in opening the cursor. This decision might depend on the role or authority
of the user. For example, a manager might see all of the columns in the Emp table,
but a clerk would be shown blanks for the salary. Or it might depend on a
parameter so that a different set of data - historical versus current, for instance - can
be displayed in a single data block. This decision can be as complex as you wish,
providing you can write the PL/SQL. The only limitations are that all of the
different Select statements must return a compatible set of columns and the Select
statement cannot be composed dynamically at run time. (The database doesn’t yet
support Ref Cursors with dynamic SQL).

Note: Use of the REF cursor prevents use of Query-by-Example.

3.4.3.2.2 Query Based on Table of Records

Introduced with PL/SQL release 2.3, a Table of Records is an in-memory structure
similar to a database table. The stored procedure can build an in-memory table
consisting of, quite literally, any data at all you can construct, row by row, much like
an array. Whereas a Ref Cursor allows you to return anything that you know how to
construct in SQL, a Table of Records allows you to return anything that you know
how to construct in PL/SQL. Not only can you perform lookups and calculations on
the server side, you can also make complex decisions about which records to
include or exclude from the returned record set.

One example of something relatively easy to do in PL/SQL and very hard to do in
SQL would be to return the employees in each department whose salary is in the
top 5 salaries for their department. (What makes this hard in SQL is that several
people could have the equal fifth high salary. In PL/SQL, it’s a relatively simple
loop.)

When called in response to a Forms query, the procedure builds the Table of
Records on the server side. It then returns the whole result set to the client at once,

using as few physical network round trips as the network packet size allows. Each
record in the Table becomes a row in the Forms block. This frees up server resources

3-16 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

and uses the network bandwidth very efficiently, at the cost of client resources and
potentially wasting network traffic for unneeded records.

Note that when used for a master/detail query, the Table of Records technique will
return all the detail records on the query. Thus it is suited only for smaller queries.

In summary then, although a Table of Records allows the procedure the greatest
flexibility in determining the result set, it should be used with care.

Note: Use of the REF cursor prevents use of Query-by-Example.

3.4.3.2.3 Insert/Update/Delete Based on Table of Records

In Release 2.0, you can also use a Table of Records returned to a stored procedure to
perform inserts, updates and deletes from a block. The stored procedure can then
"fan out" your changes to as many tables as necessary, potentially saving many
network round trips if your data model is highly normalized. Writing audit trails is
another possible use. This technique requires that you provide a procedure for each
of Insert, Update and Delete.

As with a block based on a regular table, Forms automatically maintains the state of
each record to determine if it is an inserted, updated or deleted record. At commit
time, Forms constructs a Table of Records for all of the inserted records, another for
the updated records and another for deleted records. It then calls each of the
procedures, passing it the relevant Table of Records. As with query, the Table of
Records is passed in a "single shot." In this case, though, there is no disadvantage to
sending the whole Table at once, since all the records have to be sent to the server to
be committed anyway.

3.4.3.24 Combining Techniques

Finally, it is worth noting that you might combine these other techniques in any
way. For example, you might choose to query through a Ref Cursor while
performing DML through a Table of Records, giving you the best of both worlds.

3.4.3.3 Optimize SQL Processing in Transactions

By default, Forms assigns a separate database cursor for each SQL statement that a
form executes implicitly or as part of posting or querying data. This behavior
enhances processing, because the statements in each cursor need to be parsed only
the first time they are executed in a Runform session — not every time.

Forms does allow you to save some memory by having a single cursor for all
implicit SQL statements (other than query SELECTSs). You would do this by setting
the runtime option Opt i m zeTP to No.) However, the memory savings are usually

Performance Suggestions 3-17

insignificant, and when you do this, processing is slowed because all Insert, Update,
Delete, and Select for Update statements must be parsed every time they are
executed.

Therefore, it is recommended that you avoid using the Opt i mi zeTP=NOsetting.

3.4.3.4 Optimize SQL Processing in Triggers

By default, Forms assigns a separate database cursor for each SQL statement that a
form executes explicitly in a trigger. This behavior enhances processing, because the
statements in each cursor need to be parsed only the first time they are executed in a
Runform session — not every time.

Forms also allows you to save some memory by having a single cursor for all SQL
statements in triggers. (You would do this by setting the runtime option

Opt i mi zeSQL to No.) However, the memory savings are usually insignificant, and
when you do this, processing is slowed because the SQL statements must be parsed
every time they are executed.

Therefore, it is recommended that you avoid using the Opt i mi zeSQL=NOsetting.

3.4.3.5 Control Inter-Form Navigation
It is often more efficient to divide a large application into multiple small forms, and
then navigate between the various forms as needed.

You can reduce navigation time if you keep a frequently-used form open after its
initial use, rather than opening and closing it each time it is used. Closing and
re-opening a form involves considerable overhead, which slows performance.

To keep forms open, navigate by using the OPEN_FORM built-in instead of the
NEW_FORM built-in. (NEW_FORM closes the previously-used form when opening
the new one.)

3.4.3.6 Raise the Record Group Fetch Size

A larger fetch size reduces the number of fetches required to obtain a record group.
If your application is using record groups (or constructing record groups at
runtime), set this size using the Record Group Fetch Size property.

3.4.3.7 Use LOBs instead of LONGs

If you are using the Oracle8 server, it is more efficient to use the LOB (large object)
datatypes instead of LONG or LONG RAW.

3-18 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

3.4.3.8 Erase Global Variables

Each global variable takes 255 bytes. If an application is creating a large number of
these variables, consider erasing them when they are no longer required. (Use the
Erase built-in for that purpose.)

3.4.3.9 Reduce Widget Creation on Microsoft Windows

The following suggestions may improve resource usage for very large forms
running on Microsoft Windows. (These suggestions differ from standard design
practice, and should only be used in those cases where resource usage is a problem.)

« Have some commands available as entries on the Special menu rather than as
buttons on the form.

« Change horizontal scrolling areas into alternative regions showing only a subset
of the columns at a time.

« Reduce the number of windows by using multiple alternative regions in one
window or by improving the window flow.

« Display multiple rows of certain information (primary key and descriptor
fields) and one row of less important information by using overflow regions or
combination blocks.

« Use the Rendered property whenever possible.

« Ingeneral, limit the number of native widgets (non-rendered items) used in the
form.

3.4.3.10 Examine the Necessity of Locking

Whenever a user updates a record, Forms locks the record, and a round-trip to the
database takes place.

If only a single user is updating the data, the locking is not necessary. To turn off
locking, set the Form property Isolation Mode to Serializable; set the block property
Locking Mode to Delayed.

However, the suppression of Forms’ locking should be done only if you are quite
certain that there can never be simultaneous use of the data.

3.4.4 Reports-Specific Suggestions

All the general suggestions offered earlier in this chapter also apply to Reports. In
addition, consider the following:

Performance Suggestions 3-19

3.4.4.1 Areas to Focus On

Once the data has been retrieved from the database, Reports needs to format the
output following the layout model that the user has created. The time taken to
generate the layout is dependent on a number of factors, but it is mostly devoted to
preventing an object from being overwritten by another object, and performing any
calculations or functions in the format triggers. Greater efficiency in these two areas
will have the greatest payoff.

3.4.4.2 Reduce Layout Overhead

When generating a default layout, Reports puts a frame around virtually every
object to protect it from being overwritten when the report is run. At runtime, every
layout object (frames, fields, boilerplate, etc.) is examined to determine the
likelihood of that object being overwritten. In some situations (for example,
boilerplate text column headings), there is clearly no risk of the objects being
overwritten, and hence you can remove the immediately surrounding frame. This
reduces the number of objects that Reports has to format, and hence improves
performance.

Similarly, when an object is defined as having an undefined size (variable,
expanding or contracting in either or both the horizontal and vertical directions)
then extra processing is required, because Reports must determine that instance of
the object’s size before formatting that object and those around it. Where feasible,
set this sizing to fixed, which will eliminate this additional processing, since the size
and positional relationships between the objects is already known.

3.4.4.3 Use Format Triggers Carefully

It is generally preferable to use declarative format commands rather than format
triggers. However, format triggers are useful for making runtime changes.
Specifically:

« Disabling and enabling objects dynamically at runtime.
« Dynamically changing the appearance of an object at runtime.

Care should always be exercised when using format triggers, being aware that the
trigger does not only fire for every instance of its associated object on the output
media, but every time the object is formatted at runtime.

These two purposes noted above may seem like the same thing, but consider the
following example. A tabular report includes a single repeating frame that can
expand vertically and has page protect set on. As this report is formatted, there is
room for one more line at the bottom of the first page. Reports starts to format the

3-20 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

next instance of the repeating frame and fires its associated format trigger. One of
the objects inside the repeating frame is found to have expanded, and this instance
of the repeating frame is therefore moved to the following page, and the format
trigger for the repeating frame is fired again. Hence, although the repeating frame
only appears once (at the top of the second page), the format trigger has fired twice.
Had this format trigger contained an INSERT statement, then two rows of the same
data would have been inserted.

Format triggers should also be placed at the highest level possible in the
object/frame hierarchy, so that the trigger fires at the lowest possible frequency. For
example, if there are four fields in a frame, a format trigger at the field level will fire
four times, whereas a format trigger at the frame level will need to fire only once.

If PL/SQL must be used in a format trigger, place it in the trigger of the object with
the lowest frequency possible. For example, PL/SQL in the format trigger of a
frame instead of a field typically makes the report run faster. The PL/SQL in a
format trigger is executed for each instance of its object. The lower the frequency of
the object, the fewer times the PL/SQL will be executed and the faster the report
will run.

Because you cannot be sure how many times a format trigger will fire for a
particular object, you should not perform calculations or use DML in a format
trigger.

If the display attributes of a field are to change dynamically (for example, to draw
attention to values outside the norm), then all attribute changes can be set in a
single call to SRW ATTR(), or in multiple calls to SRW SET built-ins with each call
setting a separate attribute. Although the latter technique makes for more readable
code, runtime efficiency is usually better with a single SRT. ATTR() call —
especially if many attributes need to be set.

3.4.4.4 Consider Linking Tables

As with most operations, there are a number of ways to create data models that
include more than one table. Consider, for example, the standard case of the
department-employee join; i.e., the requirement is to list all the employees in each
department in the company. In Reports Developer, the programmer can either
create a single query, or two queries and use a master-detail relationship between
the two.

On the application side, when designing the data model it is preferable to minimize
the actual number of queries by using fewer, and larger (multi-table) queries rather
than more, and simpler (single-table) queries. Each time a query is issued, Reports
Developer needs to parse, bind and execute a cursor. A single query is therefore

Performance Suggestions 3-21

able to return all the required data in a single cursor rather than many. Also be
aware with master-detail queries that the detail query will be re-parsed, re-bound
and re-executed for each master record retrieved. In this instance it is often more
efficient in a report to merge the two queries and use break groups to create the
master-detail effect.

It should be noted, however, that the larger and more complex a query becomes, the
more difficult it can be to maintain. Each site needs to decide how to balance its
performance and maintenance requirements.

3.4.4.5 Control Your Runtime Parameter Settings

Having designed a report to run efficiently, you can further improve the overall
performance of a report by setting specific runtime arguments.

The ARAYSI ZE and RUNDEBUG settings have been discussed previously.

If a parameter form or on-line previewing of the report is not required, then you can
bypass these functions by setting the PARAMFORMand BATCH system parameters
appropriately.

3.4.4.6 Turn Off Debug Mode
When your application is in regular, production use, make sure it is not running in
debug mode.

In debug mode, the runtime products will gather information and perform other
internal operations. Once your application is debugged, these operations are no
longer needed and detract from performance.

In Reports, debug mode is controlled through the runtime parameter RUNDEBUG,
this should be set to NO.

3.4.4.7 Use Transparent Objects
Give layout objects (e.g., frames and repeating frames) a transparent border and fill
pattern.

Transparent objects do not need to be rendered in a PostScript file. As a result,
processing is faster when objects are transparent.

3.4.4.8 Use Fixed Sizes for Non-Graphical Objects

Make your non-graphical layout objects (e.g., boilerplate text or fields with text)
fixed in size — that is, Vertical and Horizontal Elasticity of Fixed. In particular,
making repeating frames and their contents fixed in size can improve performance.

3-22 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

Non-graphical objects that are variable in size require more processing because
Report Builder must determine their size before formatting them. Non-graphical
objects that are fixed in size do not require this additional processing because their
size is already known.

3.4.4.9 Use Variable Sizes for Graphical Objects

Make your graphical layout objects (e.g., images and Oracle Graphics objects)
variable in size — that is, Vertical and Horizontal Elasticity of Variable.

Graphical objects that are fixed in size usually need to have their contents scaled to
fit inside of the object. Scaling an object’s contents requires more processing. If the

object is variable in size, it can grow or shrink with the contents, and scaling is not
necessary.

3.4.4.10 Use Image Resolution Reduction
Specify Reduce Image Resolution for image objects whose size you reduce. (This
option is available as a drawing option under the Format menu.)

When you reduce the size of an image, it requires less information to display it than
when it was larger. Reduce Image Resolution eliminates the unnecessary
information and reduces the amount of space needed to store the image. This can be
particularly useful for large, multi-colored images.

3.4.4.11 Avoid Word Wrapping
Make fields that contain text one line long and ensure that their contents fit within
their specified width (e.g., by using the SUBSTR function).

If a field with text spans more than one line, then Report Builder must use its
word-wrapping algorithm to format the field. Ensuring that a field only takes one
line to format avoids the additional processing of the word-wrapping algorithm.

3.4.4.12 Simplify Formatting Attributes

Minimize the use of different formatting attributes (e.g., fonts) within the same field
or boilerplate text.

If text in a field or boilerplate object contains numerous different formatting
attributes, it requires longer to format.

Performance Suggestions 3-23

3.4.4.13 Limit Your Use of Break Groups

Ensure that the break order property is set for as few columns in the break group as
possible (break order is indicated by a small triangle to the left of the column name

in the group). Each break group requires at least one column within in to have break
order set.

If sorting is necessary for a break group, use an ORDER BY clause in its SQL. This
will cause the rows to be returned already sorted by break order, and improve
performance by reducing the amount of sorting that must be done on the client.

For each column that has break order set, Reports places an extra column into the
appropriate query’s ORDER BY clause. The fewer columns in the ORDER BY, the
less work the database server has to do before returning the data. The creation of a
break group may make the ORDER BY clause defined in the query redundant. If
this is the case, then the redundant ORDER BY should be removed, since this will
require extra processing on the database.

Break order columns should be as small as possible, and should also be database
columns (as opposed to summary or formula columns) wherever this is feasible.
Both of these conditions can help the local caching that Reports does before the data
is formatted to be as efficient as possible. Clearly, these conditions can not always be
met easily, but are worth considering all the same.

3.4.4.14 Avoid Duplicate Work with Graphics Builder

If a Graphics Builder display referenced by a report uses some or all of the same
data as the report, pass the data from the report to the display. You can specify that
data be passed in the Property Palette for the display in Report Builder.

If the report and the display use the same data, passing the data reduces the amount
of fetching that needs to be done. If you do not pass the data from the report to the
display, the data is actually fetched twice: once for the report and once for the
display.

3.4.4.15 Choose Between PL/SQL and User Exits

Depending upon the circumstances, PL/SQL or a user exit may perform better.
Following are the items you should consider when deciding between PL/SQL and
user exits:

« If you need to make many references to Report Builder objects, PL/SQL is
typically faster.

« Ifthe report needs to be portable, or if the action is executed on the group or
report level, then use PL/SQL.

3-24 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

« Ifareport does not need to be portable use user exits, instead of PL/SQL, to
perform DML.

« User exits are especially beneficial when the action is executed for each record
in a large report, or requires a large number of complex computations.

PL/SQL is highly recommended, because it allows the code to be procedural and
still portable. PL/SQL also offers performance advantages when referencing
report-level objects. User exits will perform better, but they require linking and are
not portable. It makes sense to include a user exit if the action required will be
executed for every record in a very large report or performs numerous calculations.
A PL/SQL procedure makes more sense if the action is only for each group or at the
report level. Furthermore, not everything can be done in PL/SQL; some actions like
controlling external devices have to be done in a C program.

Note: If there is no performance improvement or other good reason to use a user
exit, you should use PL/SQL because it is easier and portable.

3.4.4.16 Use PL/SQL instead of SRW.DO_SQL for DML

Use PL/SQL for DML, unless you want to pass parameters to your DML
statements.

SRW DO_SQL() should be used as sparingly as possible, because each call to

SRW DO_SQL() necessitates parsing and binding the command and opening a new
cursor (just as with a normal query). Unlike the query, however, this operation will
occur once each time the object owning the SRW DO_SQL() fires. For example, if a
PL/SQL function calls SRW DO_SQ_() , and the group where the function resides
returns 100 records, then the parse/bind/create cursor operation will occur 100
times. It is therefore advisable to only use SRW DO _SQ_() for operations that
cannot be performed within normal SQL (for example, to create a temporary table,
or any other form of DDL), and to use it in places where it will be executed as few
times as possible (for example, in triggers that are only fired once per report).

Writing DML statements in PL/SQL is faster than an SRW DO_SQ_ call containing
the same statement. The reason to use SRW DO_SQL for DML statements is that it
can concatenate bind parameters to construct the DML statement. For example, you
can have SRW DO_SQL create a table whose name is determined by a parameter
entered on the runtime parameter form:

SRW.DO_SQL (CREATE TABLE || tname || (ACOUNT NUMBER
NOT NULL PRIMARY KEY, COMP NUMBER (10,.2)));

Performance Suggestions 3-25

Usage Notes: You can also use the dbms_sql package that comes with Oracle 7.1 or
later for DML. Refer to your Oracle database server documentation for more
information.

3.4.4.17 Evaluate the Use of Local PL/SQL

Your PL/SQL code can be local (in the Program Units node of your report in the
Object Navigator) or stored externally in a PL/SQL library on the server.

Depending on conditions, local PL/SQL might execute more quickly than a
reference to a procedure or function in an external PL/SQL library. However, even
if you determine that local PL/SQL would run faster under your conditions, you
should still weigh that benefit against the loss of the benefits of the library method
(e.g., sharing the code across many applications).

3.4.4.18 Use Multiple Attributes When Calling SRW.SET_ATTR

Minimize the number of calls to SRW SET_ATTR setattr>referenc by specifying
multiple attributes in one call. You can specify multiple attributes per call to
SRW.SET_ATTR instead of making a separate call for each attribute.

Rationale: The fewer calls you make to SRW SET_ATTR, the faster the PL/SQL will
run.

3.4.4.19 Adjust the ARRAYSIZE Parameter
The value of array processing has been noted earlier.

For Report Builder’s ARRAYSI ZE executable argument (e.g., ARRAYSI ZE=10), enter
as large a value as you can. Note that the array size is measured in kilobytes, not
rows. ARRAYSI ZE means that Report Builder can use that number of kilobytes of
memory per query in executing your report. Report Builder uses Oracle’s array
processing, which fetches multiple records in batches, instead of one record at a
time. As a result, you can control the amount of data to be fetched by the batch
processes.

3.4.4.20 Adjust the LONGCHUNK Parameter

For Report Builder’s LONGCHUNK executable argument (e.g., LONGCHUNK=10), enter
as large a value as you can. Refer to the Oracle installation information for your
operating system for the recommended amount for your machine. LONGCHUNK
determines the size of the increments in which Report Builder will retrieve a LONG
value. The LONGCHUNK size is measured in kilobytes.

3-26 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

By increasing LONGCHUNK as much as possible, you can reduce the number of
increments it takes Report Builder to retrieve LONG values.

3.4.4.21 Adjust the COPIES Parameter
When printing to PostScript, specify COPl ES=1.

If COPI ES is set to something greater than 1 for a PostScript report, Report Builder
must save the pages in temporary storage in order to collate them. This can
significantly increase the amount of temporary disk space used by Report Builder,
and the additional writing to files can slow performance.

3.4.4.22 Avoid Fetch-Aheads in Previewing

Report Builder provides you with the ability to display data such as total number of
pages, or grand totals in the report margins or on the header pages. This is an
extremely useful function, but has the requirement that the entire report must be
processed before the first page can be displayed.

Avoiding "fetch-ahead" operations when designing a report for the Previewer or
Live Previewer will help speed the display of the first page of the report.

The following items can result in fetching ahead when referenced before the data on
which they rely:

« total number of pages/panels

= grand totals

« break columns that are formulas

« break columns that have Value if Null specified

When you use a total number of pages field source, Report Builder must save all of
the pages in temporary storage in order to determine the total number of pages.
This can significantly increase the amount of temporary disk space used by Report
Builder, and the additional writing to files can slow performance.

Cross-product groups also cause fetching ahead. In order to cross-tabulate the data
in a cross-product group, Report Builder must first fetch all of the data. It should be
noted that these items are not really performance "problems." They slow down the
Previewer or Live Previewer, but they do not affect performance when writing to a
file or some other destination.

Note: A column can cause fetching ahead even if it is not displayed. For example, a
grand total may not appear in the report output, but, since it is in the report,
fetching ahead may still occur when Report Builder calculates it.

Performance Suggestions 3-27

3.4.4.23 Choose Appropriate Document Storage

Store documents in files to enhance performance. Store documents in reports and in
the database for security. If you open a report from or save a report to a database,
some Report Builder tables will be put into memory. As a result, you need to ensure
that you have enough resources to cache the tables.

For documents, writing to and reading from files tends to be much faster than the
database.

Exception: If you must use a busy network or slow machine to access the files, you
may not realize performance gains from storing in files.

3.4.4.24 Specify Path Variables for File Searching

Specifying path variables may be of some help in speeding up file searching and
creation/access of temporary files. (Report Builder provides two environment
variables, REPORTSnhn_PATHand REPORTSnn_TMP, that govern where to search for
files and where to store temporary files. The nn is the Report Builder release level.)
For REPORTSNnn_PATH, specify the path in which files referenced by the report are
located. For REPORTSnn_ TP, specify a path that has sufficient free space for
temporary files and is on a device with fast response time (e.g., a RAM disk).

REPORTSnn_PATH is the default path in which Report Builder will search for files
(e.g., link file boilerplate). By specifying the path in which the files referenced by the
report are located, you can reduce the amount of searching Report Builder needs to
perform to retrieve the files. (By using REPORTSnn_PATH instead of hard-coding
the paths in the report definition, you also maintain the portability of your report.)
REPORTSnn_TMP is the path in which Report Builder will create its temporary files.

If using the server, set the SOURCEDI R= parameter on the ser ver - nane. or a file.
That directory will be searched before using the REPORTSnn path.

3.4.4.25 Use the Multi-Tiered Server

The Multi-Tiered Reports Server is a feature designed to efficiently handle
large-scale production reports — reports that are not practical to run on a desktop
machine.

With this feature, you can run multiple large reports simultaneously on a robust
server machine more appropriate for the task. The server can invoke multiple
Reports engines if desired, thus further maximizing efficiency. In addition, report
output can be cached on the server, where it can be available to multiple Reports
users in the network (so the report need be generated only once).

3-28 Guidelines for Building Applications

3.4 General Guidelines for Performance Improvement

3.4.5 Graphics-Specific Suggestions

The general suggestions offered earlier in this chapter also apply to Graphics
applications. In addition, consider the following:

3.4.5.1 Pre-Load Your Graphics Files

Start-up time for an application that uses graphics will be faster if the OGD graphics
files have been pre-loaded. If it is uncertain which specific files will be needed at
runtime, a dummy OGD can be created and pre-loaded.

3.4.5.2 Update Displays Only If Necessary

Understand and control the damage update flag — which is one of the arguments
to most Graphics PL/SQL built-ins. If you allow the damage flag to default, it will
be set to TRUE, which means that redrawing will occur every time the Graphics
display list is modified. Such redrawing may not always be necessary.

3.4.5.3 Move Display Updates Out of Loops

Performance is improved if PL/SQL program units (including button procedures,
triggers, and so forth) update the display only once. Don’t include updates in loops
if not necessary.

3.4.5.4 Use Common Elements Wherever Possible

If the Graphics application is called by Forms or Reports, try to design the
applications to share as many elements as possible. For example, when charting
data already fetched by Forms, pass the same data to the display in record groups
(instead of having the display re-query the database).

If all data is being shared and the Graphics application has no need to call the
database server, set the LOGON parameter to NO when the Graphics application is
invoked. (If LOGON is not set to NO, Graphics will reconnect to the server, slowing
down its initiation.)

Also, use the same color palette and same fonts in your form or report and in your
display. In addition, keep the same coordinate system, if possible.

3.4.5.5 Limit the DO_SQL Procedure to DDL Statements

The DO_SQL procedure is useful for executing DDL statements. However, do not
use this procedure to execute DML statements. In general, DML statements are
executed more efficiently within program units than with the DO_SQL procedure.

Performance Suggestions 3-29

3.4.5.6 Use Handles to Reference Objects

When you use a built-in subprogram to perform an operation on a Graphics object,
you need to identify the object. If you are going to reference an object multiple times
in PL/SQL, it is more efficient to assign a handle (that is, a pointer) to the object and
identify the object by its handle, rather than to identify the object by its name.
Providing the handle reduces internal search time.

3.4.5.7 Consider Not Using Shortcut Built-ins

Graphics provides a series of built-in subprograms that simplify the process of
creating objects and getting or setting their attributes. Using these built-ins in place
of the attribute record approach reduces development time, and makes program
units easier to read and understand.

However, using these built-ins has an adverse effect on runtime performance. Each
call to a built-in requires Graphics to define and populate a new internal attribute
record. It also takes longer to execute multiple set routines than to execute just one.
In addition, using these built-ins requires your application to rely on default
settings.

As a rough guideline, if you need to set three or more attributes, it is more efficient
to use attribute masks or create a library of your own shortcuts with pre-defined
defaults.

3.5 In a Client/Server Structure

In the traditional client/server structure, the application runs on the client, and the
database and its software reside on the server. All of the general suggestions offered
earlier in this chapter are applicable in a client/server set-up. In addition, consider
the following client/server-specific suggestions:

3.5.0.8 Choose the Best Installation Configuration

Both Forms Developer and Reports Developer give you an install-time choice in
where their software will reside. Each configuration has assets and drawbacks.
Choose the one best suited for your situation.

« Product kept on the server. This saves disk space on the client, but the software
will run more slowly because the client must run the software over the network.

« Product kept on the client. All product files are fully replicated on the client
machine. This takes up the most client disk space, and adds to installation and
maintenance overhead, but provides the fastest execution.

3-30 Guidelines for Building Applications

3.6 Ina Three-Tier Structure

3.5.0.9 Choose a Suitable Application Residence

After you have created an application, you have the choice of storing it on the client
or on the server. Storing applications on the server allows shared access to them,
and also saves disk space on the clients. On the other hand, applications stored
locally on the clients allow faster access.

In addition to the space and sharing considerations, storing on the server may offer
the additional advantage of superior security.

Given these considerations, choose the residence best suited to your situation.

3.6 In a Three-Tier Structure

In a three-tier structure, Tier 1 is the runtime user’s desktop machine. It runs a Java
applet, which loads part of the Forms runtime product, known as the Forms client
portion. Tier 2 is an application server, which runs the remaining portion of the
Forms runtime product, known as the Forms server portion. Tier 3 is the database
server. Communication takes place between the Forms client and Forms server,
and also between the Forms server and the database server.

The general performance suggestions offered earlier in this chapter also apply here
in the three-tier world. For example, the interaction between the application server
component and the database server is essentially the same as that between the
application server and the database in the two-tiered client/server environment.
Therefore, areas such as improved use of PL/SQL and more efficient use of the
database are equally relevant here.

With a three-tier environment, obviously there is communication not just between
the application server and the database (Tiers 2 and 3), but also between the client
on the desktop machine and the application server (Tiers 1 and 2). Therefore, the
reduction of network usage becomes an even more important area on which to
focus.

The suggestions below are those that are specific to the three-tier environment.

3.6.1 Maximizing Tier 1 - Tier 2 Scalability

The interactions between the client on the Tier 1 desktop machine and the server on
the application server machine become more significant as the number of end users
increases. The following suggestions will help you maximize your application’s
scalability. (These suggestions apply to any Forms Developer or Reports Developer
application.)

Performance Suggestions 3-31

3.6.1.1 Increase Network Bandwidth

The network connection between Tiers 1 and 2 is often heavily used in the three-tier
environment, and therefore network efficiency is an important area for
performance. Increasing the bandwidth here can lead to significant improvements.

3.6.1.2 Minimize Changes to the Runtime User Interface

Changes in the user interface during execution require interactions between the Tier
1 and Tier 2 machines. Such changes slow down performance (as experienced by
the end user).

You can speed up execution by avoiding the following types of runtime activities:
« making dynamic (runtime) visual attribute changes

= using current record visual attributes

« changing item size and position

« changing labels and prompts

= enabling, disabling, hiding objects.

As a general principle, you should limit activities that involve frequent screen
refreshing. For example, avoid the use of short-interval visual timers or clocks.
(Timers with intervals longer than one minute are usually not a problem.) Design
your user interfaces so that events are initiated by user interaction rather than
elapsed clock time.

3.6.1.3 Adjust Stacked Canvases

If your application uses stacked canvases, set their Visible property to No, and set
their Raise on Entry property to No. This will minimize runtime interface changes.

3.6.1.4 Perform Validation at a Higher Level

Try to perform validation at a higher level. Application design and scalability
decisions often involve a trade-off; for example, field-level validation will generate
significantly more network traffic than block-level validation, but will be more
interactive for users.

3.6.1.5 Avoid Enabling and Disabling Menu items

Enabling and disabling menu items programmatically can reduce performance in
Webforms.

3-32 Guidelines for Building Applications

3.6 Ina Three-Tier Structure

3.6.1.6 Keep Display Size Small

If your application uses graphics, limiting the size of the display files will help
performance. To help keep the display size small, you can, for example:

« Limit the number of layers in the display.

« Create objects programmatically.

« Take advantage of stored procedures for data-intensive displays.

3.6.1.7 Identify Paths for Graphic URLs

If your application uses graphics (JPG files), use the environment variables
FORVSNNn_MAPPI NG and FORMSnn_PATH to identify their URL location.

3.6.1.8 Limit the Use of Multimedia

Use multimedia only if it is important for the user interface. Where you do use it,
define (or redefine) button triggers to make a call to a URL that contains media
information.

3.6.1.9 Avoid Use of Animations Driven from the Application Server

Running animations over a network is extremely costly. If such elements are
required, look at using animated graphic files that are client-side based.

3.6.1.10 Take Advantage of Hyperlinks

Take advantage of custom hyperlinks to create hyperlink drill-downs. With this
technique, code is not loaded to the user machine unless it is actually needed.

3.6.1.11 Put Code into Libraries
Put as much code as possible into libraries to maximize code sharing between
objects and applications and to minimize file size during loading.

Beginning with Release 2.0, libraries are shared across multiple forms. This means
that program units don’t have to be re-loaded and unpacked with each form. It also
means that less memory is used, because there is only a single copy of the program
unit in memory.

3.6.1.12 Reduce Start-up Overhead with JAR Files

When an application begins running on the desktop machine, it requires the
availability of a number of Java class files. In the typical application, there may be a

Performance Suggestions 3-33

considerable number of these files, and downloading them from the server adds to
start-up overhead.

Beginning with Release 6.0, some of these Java class files are packaged as JAR files.
The JAR files can then be stored on the desktop machine instead of on the
application server, so application start-up is faster.

You can also place the remaining class files required for your application into JAR
files on the desktop machine. This can be done using the Oracle Java Developer Kit.

3.6.1.13 Reduce Start-up Overhead with Pre-Loading

In some situations where fast user interaction is desired, it may be advantageous to
pre-load the application; that is, to start it before the actual intensive usage will be
needed. In this way, the initial loading phase will already have been completed, and
the subsequent invocations will be faster.

3.6.1.14 Use Just-in-Time Compiling

When the application is invoked from the desktop, the user can choose to have it
downloaded in an uncompiled state, and compiled on the desktop as it begins
running. This option may produce faster overall invocation time.

3.6.2 Maximizing Tier 2 - Tier 3 Scalability

The suggestions for Tier 2 - Tier 3 interaction (interaction between the application
server and database server) are the same as for the client/server environment
discussed earlier in this chapter. For example, you can use the DML Array Size
property, use data blocks based on stored procedures, and so forth. All those earlier
suggestions for database interaction apply here as well.

3.6.3 Increase Tier 2 Power — Hardware

Increasing the power of the underlying hardware anywhere in the three-tier system
will almost certainly have a positive effect on performance.

Some recent test results suggest that the most significant improvements can be
obtained by upgrading the power of the Tier 2 processor. However, each site and
situation is unique, and these results may not be universally applicable.

3-34 Guidelines for Building Applications

3.6 Ina Three-Tier Structure

3.6.4 Increase Tier 2 Power — Software

In a three-tier structure, it is possible to have multiple versions of the Tier 2
component. You can employ several intermediate server machines, each running a
copy of the Forms or Reports Server component.

You use the Oracle Application Server to coordinate processing. Requests from the
client (Tier 1) machines come to the Oracle Application Server, which passes them
to one of the Tier 2 servers.

With multiple Tier 2 servers operating and sharing the work load, performance on
that tier can be improved.

Performance Suggestions 3-35

3-36 Guidelines for Building Applications

A

Designing Multilingual Applications

This chapter explains how to design multilingual applications.

Section Description

Section 4.1, "National An overview of National Language Support and its
Language Support (NLS)" components.

Section 4.2, "Using Instructions on developing applications using National
National Language Language Support.

Support During
Development"

Section 4.3, "Translating Instructions on translating application elements not handled
Your Applications” by NLS.

4.1 National Language Support (NLS)

Oracle’s National Language Support makes it possible to design multilingual
applications. A multilingual application is an application which can be deployed in
several different languages. Oracle supports most European, Middle Eastern, and
Asian languages.

National Language Support makes it possible to:
« use international character sets (including multi-byte character sets).
« display data according to the appropriate language and territory conventions.

« extract strings that appear in your application’s user interface and translate
them.

Designing Multilingual Applications 4-1

4.1.1 Thelanguage environment variables

You can use the following parameters as language environment variables to specify
language settings:

Parameter Specifies

NLS_CALENDAR the calendar system used.

NLS_CREDIT the string used to indicate a positive monetary value.

NLS_CURRENCY the local currency symbol.

NLS DATE_FORMAT the default format mask used for dates.

NLS_DATE_LANGUAGE the default language used for dates.

NLS_DEBIT the string used to indicate a negative monetary value.

NLS_ISO_CURRENCY the 1SO currency symbol.

NLS_LANG the language settings used by Forms Developer and
Reports Developer.

DEVELOPER_NLS_LANG the language for the Builder.

USER_NLS_LANG the language for the Runtime component.

NLS_LIST_SEPARATOR the character used to separate items in a list.

NLS_MONETARY_CHARACTERS the decimal character and thousands separator for
monetary values.

NLS_NUMERIC_CHARACTERS the decimal character and grouping separator for
numeric values.

NLS_SORT the type of sort used for character data.

4.1.1.1 NLS_LANG

The NLS_LANG language environment variable specifies the language settings
used by Forms Developer and Reports Developer.

NLS_LANG specifies:

« the language for messages displayed to the user, such as the "Working..."
message

« the default format masks used for DATE and NUMBER datatypes
« the sorting sequence

= the character set

4-2 Guidelines for Building Applications

4.1 National Language Support (NLS)

The syntax for NLS_LANG is as follows:
NLS_LANG=l anguage_territory. charset

language specifies the language and its conventions for displaying messages and
day and month names. If language is not specified, the value defaults to American.

territory specifies the territory and its conventions for default date format, decimal
character used for numbers, currency symbol, and calculation of week and day
numbers. If territory is not specified, the value defaults to America.

charset specifies the character set in which data is displayed. This should be a
character set that matches your language and platform. This argument also specifies
the character set used for displaying messages.

For example, let’s say you want your application to run in French. The application
will be used in France. Data will be displayed using the WE8ISO8859P1 character
set. You would set NLS_LANG as follows:

N_S LANG=Fr ench_Fr ance. VE8I SCB859P1

Now let’s say you want your application to run in French, but this time the
application will be used in Switzerland. You would set NLS_LANG as follows:

NS LANG=Fr ench_Swi t zer | and. ViE8| SCB859P1

Note: You are strongly advised to set the language and territory parameters of
NLS_LANG to the same values on the server side and the client side. (The value of
the charset parameter on the server side is specified when the database is created
and cannot be changed.) Use the SQL command ALTER SESSION to change the
values of the language and territory parameters on the server side. For example,
this statement changes the language parameter to French and the territory
parameter to France:

ALTER SESS (N
SET NLS LANAUAGE = French NLS TERR TQRY = France

4.1.1.2 DEVELOPER_NLS_LANG and USER_NLS_LANG

If you must use two sets of resource and message files at the same time, two other
language environment variables are available:

« DEVELOPER_NLS LANG specifies the language for the Builder.
« USER_NLS_LANG specifies the language for the Runtime component.

The syntax of DEVELOPER_NLS LANG and USER_NLS LANG is the same as
NLS_LANG.

Designing Multilingual Applications 4-3

Use these variables instead of NLS_LANG in the following situations:

= You prefer to use the Builder in English, but you are developing an application
for another language, the two variables allow you to use different language
settings for the Builder and Runtime.

= You are creating an application to run in a language that uses a bidirectional
character set.

= You are creating an application to run in a language for which a local-language
version of the Builder is not currently available.

If these environment variables are not specifically set, they take their default values
from NLS_LANG.

4.1.2 Character sets

The character set component of the language environment variable specifies the
character set in which data is represented in the user’s environment. Net8 ensures
that data created using one character set can be correctly processed and displayed
on a system that uses a different character set, even though some characters may be
represented by different binary values in the different character sets.

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.1.2.1 Character set design considerations

If you are designing a multilingual application, or even a single-language
application that will run with multiple character sets, you should determine the
character set most widely used at runtime and generate with the language
environment variable set to that character set.

If you design and generate an application in one character set and run it in another
character set, performance may suffer. Furthermore, if the runtime character set
does not contain all the characters in the generate character set, question marks will
appear in place of the unrecognized characters.

PDF does not support multi-byte character sets.

Note: For Form Builder, the character set used when generating is used at runtime,
regardless of the character set specified in the runtime environment.

4-4 Guidelines for Building Applications

4.1 National Language Support (NLS)

4.1.2.2 Font aliasing on Windows platforms

There may be situations where you create an application with a specific font but
find that a different font is being used when you run that application. You are most
likely to encounter this when using an English font (such as MS Sans Serif or Arial)
in a non-Western European environment. This occurs because both Forms
Developer and Reports Developer check to see if the character set associated with
the font matches the character set specified by the language environment variable. If
the two do not match, Forms Developer or Reports Developer automatically
substitutes the font with another font whose associated character set matches the
character set specified by the language environment variable. This automatic
substitution assures that the data being returned from the database gets displayed
correctly in the application.

Note: If you enter local characters using an English font, Windows does an implicit
association with another font.

There may be cases, however, where you do not want this substitution to take place.
You can avoid this substitution by mapping all desired fonts to the WE8ISO8859P1
character set in the font alias file. For example, if you are unable to use the Arial
font in your application, add the following line to your font alias file:

Aial..... =Arial ... Wl SC8859P1

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.1.3 Language and territory

While the character set ensures that the individual characters needed for each
language are available, support for national conventions provides correct localized
display of data items.

The specified language determines the default conventions for the following
characteristics:

« language for server messages

« language for day and month names and their abbreviations (specified in the
SQL functions TO_CHAR and TO_DATE)

= symbols for equivalents of AM, PM, AD, and BC

« default sorting sequence for character data when ORDER BY is specified
(GROUP BY uses a binary sort, unless ORDER_BY is specified)

Designing Multilingual Applications 4-5

= writing direction
. affirmative/negative response strings
For example, if the language is set to French, the messages:

CRA-00942: table or view does not exist
FRWV 10043: Cannot open file.

will appear as:

(RA-00942: table ou vue inexistante
FRWM 10043: Quverture de fichier inpossible

The specified territory determines the conventions for the following default date
and numeric formatting characteristics:

« date format

« decimal character and group separator
« local currency symbol

« ISO currency symbol

= week start day

« credit and debit symbol

« I1SO week flag

« list separator

For example, if the territory is set to France, numbers will be formatted using a
comma as the decimal character.

4.1.4 Bidirectional support

Bidirectional support enables you to design applications in Middle Eastern and North
African languages whose natural writing direction is right-to-left. Bidirectional
support enables you to control:

« layout direction, which includes displaying items with labels at the right of the
item and correct placement of check boxes and radio buttons.

« reading order, which includes right-to-left or left-to-right text direction.

« alignment, which includes switching point-of-origin from upper left to upper
right.

4-6 Guidelines for Building Applications

4.1 National Language Support (NLS)

« initial keyboard state, which controls whether Local or Roman characters will
be produced automatically when the user begins data entry in forms (the end
user can override this setting).

When you are designing bidirectional applications, you may wish to use the
language environment variables DEVELOPER_NLS LANG and USER_NLS LANG
rather than NLS_LANG. For example, if you want to use an American interface
while developing an Arabic application in a Windows environment, set these
environment variables as follows:

DEVELCPER NLS LANG-AMER CAN AMER CA ARBMBW NL256
USER NLS LANG=ARABI C territory. charset

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.1.4.1 Bidirectional support in Form Builder

Four properties are used to specify the appearance of objects in bidirectional
applications: Direction, Justification, Reading Order, and Initial Keyboard State.

Direction is an umbrella property that provides as much functionality for each
object as possible. For all objects except text items and display items, the Direction
property is the only bidirectional property, and its setting controls the other aspects
of bidirectional function. (List items, however, include an Initial Keyboard State

property.)

Text items and display items do not have a Direction property; instead, you can
specifically set Justification, Reading Order, and Initial Keyboard State properties
for these items.

You may restrict the keyboard state to one language. For example, setting Keyboard
State to Local prevents the end user from switching the keyboard to another
language.

When the bidirectional properties are set to Default, those properties inherit their
values from the natural writing direction specified by the language environment
variable. In most cases, this will provide the desired functionality. You only need to
specify the bidirectional properties when you want to override the inherited default
values.

Designing Multilingual Applications 4-7

Inheritance for bidirectional properties is as follows:

Form Default setting derives value from language environment
variable.

All objects, such as Alert, Default setting derives value from form.
Block, LOV, Window, and
Canvas-view

All items, such as Text Default setting derives value from canvas-view.
Item, Display Item,

Checkbox, Button, Radio

Group, and List Item

Most properties related to bidirectional function can be retrieved and set
programmatically. For more information, see the appropriate built-in subprogram
description. For example, for information about getting the value of the Direction
property for buttons, refer to the description for GET_ITEM_PROPERTY in the
Form Builder online help.

4.1.4.2 Bidirectional support in Report Builder

Three properties are used to specify the appearance of objects in bidirectional
applications: Justify, Direction (for an object), and Direction (for the report). The
bidirectional properties are added to objects in the following hierarchy:

Module
Boilerplate
Field
External Boilerplate
Button
Parameter Form Boilerplate

Objects not in this list either do not require bidirectional support (for example,
images) or they are defaulted from one of the above object’s properties.

4.1.5 Unicode

Unicode is a global character set that allows multilingual text to be displayed in a
single application. This enables multinational corporations to develop a single
multilingual application and deploy it worldwide.

4-8 Guidelines for Building Applications

4.1 National Language Support (NLS)

Global markets require a character set that:

« allows a single implementation of a product for all languages, yet is simple
enough to be implemented everywhere

« contains all major living scripts
« supports multilingual users and organizations

= enables worldwide interchange of data via the Internet

4.1.5.1 Unicode support

Both Forms Developer and Reports Developer provide Unicode support. If you use
Unicode, you will be able to display multiple languages, both single-byte languages
such as Western European, Eastern European, Bidirectional Middle Eastern, and
multi-byte Asian languages such as Chinese, Japanese, and Korean (CJK) in the
same application.

Use of a single character set that encompasses all languages eliminates the need to
have various character sets for various languages.

For example, to display a multi-byte language such as Japanese, the NLS LANG
environment variable must be set to (for Windows platform):

Japan_Japanese. JA16SJI S

To display a single-byte language such as German, NLS_LANG must be set to (for
Windows platform):

Ger nan_Ger nany. VESI SCB8859P1

The obvious disadvantage of this scheme is that applications can only display
characters from one character set at a time. Mixed character set data is not possible.

With the Unicode character set, you can set the character set portion of NLS_LANG
to UTF8 instead of a specific language character set. This allows characters from
different languages and character sets to be displayed simultaneously.

For example, to display Japanese and German together on the screen the NLS_
LANG variable setting must be:

Japan_Japanese. UTF3

or

Ger man_Ger many. UTF8

Designing Multilingual Applications 4-9

Unicode capability gives the application developer and end user the ability to
display multilingual text in a form. This includes text from a database containing
Unicode, multilingual text, text in GUI objects (for example button labels), text
input from the keyboard, and text from the clipboard. Both Forms Developer and
Reports Developer currently support Unicode on Windows NT 4.0 and Windows 95
(limited support).

Note: If you develop applications for the Web, you can use Unicode because of the
Unicode support provided by Java.

4.1.5.2 Font support

Both Forms Developer and Reports Developer rely on the Windows operating
system for the font and input method for different languages. To enter and display
text in a particular language, you must be running a version of Windows that
supports that language. Font support is limited but not restricted to the Windows
NT operating system font support.

Windows NT 4.0 provides True Type Big Fonts. These fonts contain all the
characters necessary to display or print multilingual text. If you try to type, display,
or print multilingual text and see unexpected characters, you are probably not using
a Big Font. Big Fonts provided by Microsoft under NT 4.0 are as follows: Arial,
Courier New, Lucida Console, Lucida Sans Unicode, and Times New Roman.
Third-party Unicode fonts are also available.

4.1.5.3 Enabling Unicode support
To enable Unicode support, set NLS _LANG as follows:

NS LANG=/ anguage_territory. UTF8

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.2 Using National Language Support During Development

If you wish to use Form Builder, Report Builder, or Graphics Builder in a language
other than English, simply specify the correct language and territory in the
language environment variable. Messages, menus and menu items, dialog boxes,
prompts and hints, and alerts are displayed in the appropriate language and
numbers and dates in default values, ranges, and parameters are displayed in the
appropriate format. If the appropriate message file is not available, the default is the
US message file.

4-10 Guidelines for Building Applications

4.2 Using National Language Support During Development

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.2.1 Format masks

4.2.1.1 Format mask design considerations

When working with date and currency fields in multilingual applications, you
should make all screen items (boilerplate, text items, interface objects such as
buttons and lists of values) longer to allow for translation of text and different ways
of displaying data. For example, if you develop an application in American English
with a 9-character DD-MON-YY date and then run the application in Norwegian,
you must increase the size of the field to allow for the 10-character Norwegian date
DD.MM.YYYY.

You should also consider whether you need to use the format mask characters to
create special format masks or if the default format masks specified by the territory
component of NLS_LANG are acceptable.

For implicit datatype conversions, PL/SQL always expects items in the American_
America default format DD-MON-YY, so if you use an item whose type is
territory-specific in PL/SQL, you must specify the correct format masks. Use TO_
DATE to translate territory-specific items in PL/SQL.

Avoid hard-coding a string containing a month name. If a hard-coded month name
is essential, avoid using the COPY built-in. If you use COPY, the month name may
be incorrect, depending on which language is specified.

Language-dependent example (not recommended):
:.emp.hiredate :=‘30-DEC-97;

copy (30-DEC-97','emp.hiredate’);

Language-independent example (recommended):
:emp.hiredate .= TO_DATE(30-12-1997",DD-MM-YYYY?,

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.2.1.2 Default format masks

The language environment variable specifies the set of default format masks used to
display data such as day and month names, numbers, dates, and currency.
Specifically, both Forms Developer and Reports Developer use the default format

Designing Multilingual Applications 4-11

masks associated with the territory specified in the current language environment

variable:

« inthe Builder: When the Builder displays default values for items, ranges, or

parameters

« atruntime: If a user enters data in a text item whose type is territory-specific,
such as DATE or NUMBER

For example, suppose the current territory is America. You create an item of type
DATE, and enter a default value of 20-OCT-98. If you then change the territory to
Norway, the default value for the item will automatically change to 20.10.1998.

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.2.1.3 Format mask characters
The following format mask characters allow you to override the default format

masks.

Character Returns

D Digit for the day (1-7)

DY Name of the day (abbreviated)

DAY Name of the day (padded with blanks to the length of 9
characters)

WwWw Digit for the week, calculated by the algorithm
int((day-janl)/7)

w Digit of the 1ISO week

MON Name of the month (abbreviated)

MONTH Name of the month (padded with blanks to the length of 9
characters)

RM Character for the Roman numeral month

LY, IYY, IYYY Last one, two, or three digits of the ISO year or the ISO year,

respectively

BC, AD, B.C., AD.

BC or AD indicator (with or without periods)

AM, PM, AA., PM.

AM or PM indicator (with or without periods)

4-12 Guidelines for Building Applications

4.2 Using National Language Support During Development

Character Returns

C International currency symbol
L Local currency symbol

D Decimal separator

G Group (thousands) separator

4.2.2 Sorting character data

When you are designing multilingual applications, you want to sort character data
according to the alphabetic conventions of a particular language rather than
according to the characters’ binary values. The SQL function NLSSORT makes it
possible to do this.

4.2.2.1 Comparing strings in a WHERE clause

Strings in a WHERE clause are compared according to the characters’ binary values:
one character is considered greater than another if it has a higher binary value in the
database character set. However, because the sequence of characters based on their
binary values does not match the alphabetic sequence for a particular language,
these comparisons yield incorrect results.

For example, suppose you have a column called COL1 that contains the values
ABC, ABZ, BCD, and ABC. The database character set is 1ISO 8859/1. You write the
following query:

SELECT COL1 FROM TAB1 WHERE COL1 > ‘B’

The query returns BCD and ABC since A has a higher numeric value than B.

Now suppose you write this query:

SELECT COL1 FROM TAB1 WHERE NLSSORT(COL1) > NLSSORT(B)

If the language component of the language environment variable is set to German,
the query returns BCD, because A comes before B in the German alphabet. If the

language component of the language environment variable is set to Swedish, the
guery returns BCD and ABC, because A comes after Z in the Swedish alphabet.

4.2.2.2 Controlling an ORDER BY clause

If the language component of the language environment variable is set correctly, it
is not necessary to use NLSSORT in an ORDER BY clause.

Designing Multilingual Applications 4-13

The following query yields a correct result:

SH ECT ENAME FROM BEVP
CROER BY ENAME

4.2.3 NLS parameters

4.2.3.1 Using ALTER SESSION

You can use the SQL command ALTER SESSION to override the NLS defaults. For
example, suppose you create some parameters (such as language, territory, etc.),
and a user specifies values for them: you could then alter the session as they
specified.

In Form Builder, you can specify any of the following NLS parameters for the
ALTER SESSION command. However, for Report Builder and Graphics Builder,
you can only specify the NLS_SORT parameter.

Parameter Description

NLS_LANGUAGE Language used by the server to return messages and
errors

NLS_TERRITORY Territory used for default date and currency masks

NLS _DATE_FORMAT Default format mask used for dates

NLS_DATE_LANGUAGE Default language used for dates

NLS_NUMERIC_CHARACTERS Decimal character and group separator

NLS_ISO_CURRENCY ISO international currency symbol

NLS_CURRENCY Local currency symbol

NLS_SORT Character sort sequence

NLS_CALENDAR Current calendar system

For example, this statement changes the decimal character to a comma and the
group separator to a period:

ALTER SESS ON
SETNLS_NUMERIC_CHARACTERS =’

These new characters are returned when you use their number format elements D
and G:

4-14 Guidelines for Building Applications

4.2 Using National Language Support During Development

SELECT TO_CHAR(SUM(sal), 1.999G999D99)) Total FROM emp
TOTAL

FF29.025,00

This statement changes the ISO currency symbol to the ISO currency symbol for the
territory America:

ALTER SESSION
SETNLS_ISO_CURRENCY =America

The I1SO currency symbol defined for America is used:
SELECT TO_CHAR(SUM(sal), ‘C999G999D99) Total FROM emp

TOTAL

USD29.025,00

This statement changes the local currency symbol to DM:

ALTER SESSION
SETNLS_CURRENCY =DM

The new local currency symbol is returned when you use the L number format
element:

SELECT TO_CHAR(SUM(sal), 1.999G999D99) Total FROM ermp
TOTAL

DM29.025,00

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

Designing Multilingual Applications 4-15

4.2.3.2 Using NLS parameters in SQL functions

Wherever you use SQL, you can use the following NLS parameters to override
default NLS behavior.

SQL Function NLS Parameter

TO_DATE NLS DATE_LANGUAGE
NLS_CALENDAR

TO_NUMBER NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY

TO_CHAR NLS_DATE_LANGUAGE
NLS_NUMERIC_CHARACTERS
NLS_CURRENCY
NLS_ISO_CURRENCY
NLS_CALENDAR

NLS_UPPER NLS_SORT

NLS_LOWER NLS_SORT

NLS_INITCAP NLS_SORT

NLSSORT NLS_SORT

4.2.3.3 Form Builder NLS parameters

You can use Form Builder built-in functions to obtain the current value of the
language environment variables for use in PL/SQL code:

Environment
Variables

DEVELOPER_NLS_LANG
(defaults to NLS_LANG)

USER_NLS_LANG (defaults to
NLS_LANG)

Built-in GET_FORM_PROPERTY

GET_APPLICATION_PROPERTY

Parameter MODULE_NLS_LANG

USER_NLS_LANG

Because both USER_NLS_LANG and DEVELOPER_NLS_LANG default to the

value of NLS_LANG, the Form Builder NLS parameters will hold the value of NLS_
LANG if either variable is not specifically set.

4-16 Guidelines for Building Applications

4.2 Using National Language Support During Development

Both Form Builder NLS parameters have four variations which allow you to
retrieve either the complete environment variable or a specific portion of it. This
table shows the four parameters of the GET_APPLICATION_PROPERTY built-in
that return the USER_NLS_LANG environment variable:

Parameter Returns

USER_NLS LANG Entire USER_NLS_LANG variable
USER_NLS_LANGUAGE Language portion only
USER_NLS_TERRITORY Territory portion only

USER_NLS_CHARACTER_SET Character set portion only

To retrieve the DEVELOPER_NLS LANG environment variable, call GET_FORM _
PROPERTY using the MODULE_NLS LANG parameter.

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.2.3.4 Report Builder report definition files

When using reports in character mode, you should define the physical page width
of a report as one character less than the page width defined in the printer
definition file (.PRT file). Otherwise, multi-byte characters might start on the last
character space of a line and have to overflow to the next line in order to complete.
For example, if the physical page width is 80 characters and the width in the printer
definition is 80 characters, a multi-byte character might start on the 80th character.
Since multi-byte characters may not be separated, the line would have to overflow
to an 81st character in order to complete the multi-byte character. To avoid this, the
physical page width should be set to 79 for the report.

The following Arabic and Hebrew specific NLS parameters can be set in the printer
definition file:

Use To Values
nls locale set the locale of printing engine. hebrew or arabic
nls datastorageorder set logical or visual data storage logical or visual

nls contextuallayout perform pre contextual layout for Arabic no or yes
printers

Designing Multilingual Applications 4-17

Use To Values

nls contextualshaping perform pre contextual shaping for Arabic no or yes
printers

nls pcharste specify the character set of the printer any character set

4.3 Translating Your Applications
In any Forms or Reports application, the user sees the following:
= error messages from the database
= runtime error messages produced by Forms Developer or Reports Developer
« messages and boilerplate text defined as part of the application

If the language environment variable is set correctly and the appropriate message
files are available, translation of messages in the first two categories is done for you.
To translate messages in the third category, use one of the methods described in the
following sections.

Refer to Section 4.1.1, "The language environment variables" for more information
on the language environment variables.

4.3.1 Translating your applications using Translation Builder

Translation Builder can help you translate menus, boilerplate text, item labels,
messages, and hints defined on item property sheets in your applications. Using
Translation Builder, you can generate separate binary files for each language.

If you plan to use Translation Builder to translate your application, develop the
application in the following stages:

« Create one basic definition (for example, .FMB) in the source language.

« Use Translation Builder to extract strings for translation, translate the strings
into one or more languages, and store the translated strings back into the
definition.

« Manually translate messages in PL/SQL libraries. (Refer to Section 4.3.3, "Using
PL/SQL libraries for strings in code" for more information on translating
messages that are displayed programmatically.)

= Use the Generate component to generate a binary version (for example, .FMX)
for each target language.

4-18 Guidelines for Building Applications

4.3 Translating Your Applications

4.3.1.1 Advantages

This is the simplest way to implement multiple language applications quickly. With
this approach, you can use Translation Builder for maximum efficiency. If you have
a stable application, this approach will work well for you.

For example, if you create an application in four languages and then change a field
label, you would do the following:

« Make the change in the Builder and save the change in the definition file.

« Use Translation Builder to translate the new field label and insert the new
messages into the definition file.

« Regenerate to create a binary file containing the new label.

4.3.1.2 Disadvantages

If your applications must support multiple languages simultaneously, you must use
the runtime language switching approach instead.

4.3.2 Translating your applications using runtime language switching

A small number of applications must support multiple languages simultaneously.
For example, the application may begin by displaying a window in English which
must stay up throughout the application, while an end user may press a button on
that window to toggle the prompts into French, and then back into English.

If your application requires runtime language switching, you can include more than
one language in a single application as long as they share the same character set, but
you cannot use Translation Builder to locate translatable text if you are dynamically
populating the text at runtime. Instead, you would build case structures
(IF...THEN...ELSIF) to change the application to another language by checking the
value of the NLS environment variable using the GET_FORM_PROPERTY built-in.

Using the runtime language switching approach, you could develop your
application in the following stages:

« Develop the entire application for one language, including libraries.
« Manually translate each library.

« Design boilerplate labels as appropriately sized display items that are
dynamically populated at runtime.

Designing Multilingual Applications 4-19

Form Builder supports attaching multiple libraries, so you can use one library
specifically for messages that will be translated, and other libraries for other
purposes.

4.3.2.1 Advantages

The main advantage of this approach is it allows you to support sophisticated
applications which may be highly dynamic. In these cases, this approach avoids
some maintenance problems, because you do not have to generate separate files for
each language each time the application changes.

4.3.2.2 Disadvantages

This approach is more complicated, because it involves considerable effort to create
the language-specific message storage, population, and maintenance involved and
to perform the translation manually. For example, you would set up a
WHEN-NEW-FORM-INSTANCE trigger to set the labels for each button, pulling
the correct labels from an attached library, based on the value of the NLS
environment variable.

4.3.3 Using PL/SQL libraries for strings in code

While Translation Builder helps you translate strings in your application’s user
interface, it cannot pull out string constants in PL/SQL triggers and procedures.
Manual translation is required for constant text within a PL/SQL block because that
text is not clearly delimited, but is often built up from variables and pieces of
strings. To translate these strings, you can use PL/SQL libraries to implement a
flexible message structure.

Refer to Section 4.3.1, "Translating your applications using Translation Builder" for
more information on translating strings in your application’s user interface.

You can use the attachable PL/SQL libraries to implement a flexible message
function for messages that are displayed programmatically by the built-in routines
MESSAGE or CHANGE_ALERT_MESSAGE, or by assigning a message to a display
item from a trigger or procedure. The library can be stored on the host and
dynamically attached at runtime. At runtime, based on a search path, you can pull
in the library attached to the form. For example, a library might hold only the
Italian messages:

FUNCTI ON nl s_appl _nesg(i ndex_no NUMBER)
RETURN CHAR
IS

nsg CHAR(80);

4-20 Guidelines for Building Applications

4.3 Translating Your Applications

BEG N
IF i ndex_no = 1001 THEN
msg = ‘L"impiegato che Voi cercate non esiste...’
ELSIF index no=1002 THEN
msg = ‘Lo stipendio non puo essere minore di zero.,
ELSIF ..

ELSE
msg = ‘ERRORE: Indice messaggio inesistente.’;
ENDIF;

RETURN msg;
END;

A routine like this could be used anywhere a character expression would normally
be valid. For example, to display an alert with the appropriately translated
application message, you might include the following code in your form:

Change_Alert Message(My_Error_Alert, nis_appl mesg(1001));
n :=Show_Alert(My_Error_Alert);

To change the application to another language, simply replace the PL/SQL library
containing the nls_appl_msg function with a library of the same name containing
the nls_appl_mesg function with translated text.

4.3.4 Screen design considerations

When you are designing multilingual applications, remember to leave extra space
in the base screen design for widgets and boilerplate labels. To accommodate
multiple character sets and allow for expansion caused by translation, a
rule-of-thumb is to leave 30% white space around fields, borders, and boilerplate
text.

Specifically:

« Prompt on left of field: Allow for 30% expansion to the left of the prompt.

« Prompt above field: Allow for 30% expansion to the right of the prompt.

= Buttons, checkboxes, radio groups, and poplists: Allow for 30% expansion.

« Formtitles: Size any bounding box so the title can expand to the right by 30%.
« Display-only fields: Size 30% wider than needed for base language.

« All widgets: Make widgets large enough to accommodate translation. For
example, buttons should be large enough to hold translated labels. Check

Designing Multilingual Applications 4-21

button height as well as length to be sure the height of the button will
accommodate the tallest character you need to use. Calculate pixels needed to
render Kanji characters.

4-22 Guidelines for Building Applications

D

Designing Portable Applications

With both Forms Developer and Reports Developer, deploying a single application
on multiple platforms—Windows, Motif, the Web, even character-mode—is simply
a matter of re-compiling. Both Forms Developer and Reports Developer
automatically translate the standard control objects (buttons, check boxes, radio
buttons, and so on) to the appropriate format for your target platforms. With
careful pre-development planning, you can create a single application that satisfies
users across environments, providing each with the native look and feel they
expect.

This chapter helps you anticipate the issues you will face when developing portable
applications and provides suggestions for ensuring that you can move your
application across platforms with ease.

Section Description

Section 5.1, "Before You Presents some high-level questions you should answer before
Begin" developing a portable application.

Section 5.2, "Designing Addresses issues of portability with respect to the GUI and the
Portable Forms" operating system. Also discusses an approach for

cross-platform development, as well as considerations unique
to the character-mode environment.

Section 5.3, "Designing Discusses developing a report for maximum portability.
Portable Reports"

Section 5.4, "Designing Discusses developing a display for maximum portability.
Portable Displays"

If you’re using Project Builder to manage your application, see Section 1.2.4,
"Managing projects and project documents across multiple platforms" in Chapter 1.

Designing Portable Applications 5-1

5.1 Before You Begin

Before you begin designing any application—not just those you intend to port—it’s
important that you take time to think about the needs you are trying to address
with your application. At a minimum, you should have answers to the following
questions:

= Which platforms are you supporting? If you plan to deploy on more than one
platform, you must consider issues such as fonts, colors, layout, screen size, and
screen resolution, to name a few. Section 5.2.1, "Considering the GUI" helps you
tackle these issues.

« Is character-mode support required? If so, your options are considerably
limited. Consult Section 5.2.4, "Designing forms for character-mode" or
Section 5.3.1, "Designing a report for character-mode environments" for some
recommendations.

« What displays must you accommodate? Displays can vary a great deal, even on
the same deployment platform. See Section 5.2.1.2, "Considering monitors" for
a discussion on the limitations monitors can impose.

= Will your application rely on user exits or foreign functions? You’ll probably
have to rewrite them for each of your target platforms. Section 5.2.2.1,
"Including user exits" offers some suggestions and workarounds.

5.2 Designing Portable Forms

Whether you’re designing a new form for multiple platforms or preparing an
existing form for a new environment, the issues you face fall into the same two key
areas, described in the following sections:

« Section 5.2.1, "Considering the GUI"
= Section 5.2.2, "Considering the operating system"

If you’ve never developed for multiple platforms before, you may also wish to read
Section 5.2.3, "Strategies for developing cross-platform forms" for some
recommendations on how to approach cross-platform development. If you're
developing for character-mode, see Section 5.2.4, "Designing forms for
character-mode" for considerations unique to that environment.

5.2.1 Considering the GUI

When developing a portable application, the first thing you must decide is whether
the GUI should look the same across all platforms, or if your users expect the

5-2 Guidelines for Building Applications

5.2 Designing Portable Forms

application to inherit the native look-and-feel of their own environment. In most
cases, you’ll probably opt for the latter approach. However, if users are likely to use
the application on multiple platforms, they’ll probably want it to look the same on
all of them, ignoring local conventions. The only way to determine this is to
interview your users, paying close attention to how they work and which tasks
they’re trying to perform. (See Section 2.1.2, "Defining user requirements" for
suggestions on how to determine users’ needs.)

Once you’ve made your decision, the next step is to create an object library for each
platform you’re supporting. An object library is a set of objects and standards that
you create; each object or standard can determine the appearance and layout of an
entire frame, window, or region. When housed in an object library, these objects
become available to all the developers on your project or site, thus ensuring that
even developers working at different locations can produce an application—or
different modules within the same application—with a common look and feel.

To fully exploit the power of the object library, it’s a good idea to create one library
for each of your target platforms. To help you populate your libraries, Form Builder
provides the Oracle Applications Object Library, a set of layouts and items that
function well in all of Forms Developer’s GUI deployment environments (Windows
95, Motif), as well as character-mode. Test these items and objects one by one on
each of your platforms. You should be able to add most of the objects to your
libraries without modification, although some may need slight adjustment to meet
platform-specific requirements.

Section 5.2.3, "Strategies for developing cross-platform forms" provides more details
on how to incorporate your object libraries into an overall development strategy.

5.2.1.1 Choosing a coordinate system

For GUI terminals, use the Real Inch, Real Centimeter, or Real Point coordinate
systems. These systems allows you to size your objects to the exact shape you want
instead of being snapped to the nearest character cell size.

If you're designing for character-mode, use the Character coordinate system and
turn on the grid snap. This will ensure that your objects’ sizes are in multiples of the
character cell size. See Section 5.2.4, "Designing forms for character-mode" for more
information on designing character-mode applications.

5.2.1.2 Considering monitors

Even on the same platform, monitors of different sizes and resolutions can greatly
impact the usability of your application. For example, while a 6 pt. font on a laptop
running Windows 95 is unreadable, the same font on a 17-inch monitor is perfectly

Designing Portable Applications 5-3

acceptable. The only way to be certain your application is truly portable is to
thoroughly test your application on each of the monitors in the deployment
environment.

If there are several different sized monitors in your deployment environment,
design for the smallest size. Taking the time to find out which monitors your users
have—and how many use each size—can help you plan your application more
effectively. For example, if your mobile sales force uses laptops for lead tracking
and sales management applications, but everyone else uses 17-inch SVGA
terminals, you can simplify your task by restricting the window size of only the two
critical laptop applications.

Table 5-1 Platform restrictions: Monitors

Platform Monitor Restrictions

Windows Size is determined by screen resolution, not by absolute
measurement. For example, widgets developed on a 96 dots
per inch (dpi) 17-inch monitor appear smaller than the same
widgets displayed on a 20-inch 96 dpi monitor, even though
the measurement systems appear to be the same. In other
words, an inch is not always an inch on Windows.

Motif Many Motif users are limited to gray-scale monitors, so you
can’t rely on color for those users.

5.2.1.3 Using color

Restrain your use of color to three or four basic colors that work well together.
Colors that are typically available on many platforms include blue, red, magenta,
cyan, green and yellow.

Using too many colors can exceed the system’s maximum color limit and cause
background objects to snap to strange colors, leaving only the foreground color
intact. Be sure to test your color combination on all target systems, including
monochrome, gray-scale monitors, to make sure they work as expected.

Table 5-2 Platform restrictions: Color

Platform Color Restrictions

Windows Widgets can be one of 16 colors defined in the system color
palette. If you assign another color, the widget snaps to the
closest of the sixteen.

Motif Many Motif users are limited to gray-scale monitors; do not
use color to make important distinctions.

5-4 Guidelines for Building Applications

5.2 Designing Portable Forms

5.2.1.4 Resolving fontissues

Fonts play a fundamental role in the user’s sense of familiarity and comfort with a
GUI system. Table 5-3 lists the recommended font for each GUI platform:

Table 5-3 Platform recommendations: Fonts

Platform Font
Windows MS Sans Serif
Motif Helvetica

When developing a portable application, decide early how you’ll use font styles
such as boldface, italics, and underlining. (In general, you shouldn’t need either
underlining or italics; use boldface sparingly, and only for emphasis.) You should
also standardize the type size of different display objects. For example, making all
labels 10 points will help if you need to translate a font on a different platform.

To meet users’ expectations, a ported application must be rendered in the expected
font on each platform. To achieve this, you must translate the fonts between
platforms using either of these methods:

« Defining aliases for fonts on each deployment platform
« Defining port-specific classes
The next two sections briefly outline these processes.

Note: On Motif, each different size of a given font is considered a separate entity
that must be explicitly installed from the font file. For example, suppose you want
to port a Windows-based form containing 10, 12, and 28 point Arial fonts to Motif.
Rather than simply verifying that Arial has been installed on Motif, you must
ensure that each of the desired point sizes—10, 12, and 28—have been installed as
well. If Forms Developer can’t find the font it needs on the target platform, it
substitutes another font using a platform-specific "closest match" algorithm.

5.2.1.4.1 Defining font aliases

Forms Developer provides a font alias file for each platform (Ul FONT. ALI , in the
ORACLEHOVE\ TOOLS\ COMMONGO directory). In most cases, the file ensures that
fonts appear consistently across platforms. However, if you employ custom or
non-standard fonts in your applications, some of them may not be recognized on all
target platforms. You can tailor the font alias file to define substitutions for the fonts
that are not recognized.

Enter each line in the file in this format:

Designing Portable Applications 5-5

source font = destination font

For each font, you can specify these attributes:

<f ace>. <si ze>. <styl e>. <wei ght >. <wi dt h>. <char act er _set >

Example:

When porting from MS Windows to Motif, change all MS Sans Serif fonts to
Helvetica:

"MB Sans Serif"=Hel vetica

See the Form Builder online help for more information and examples of font
mapping.

5.2.1.4.2 Using classes

When you require greater control over your font aliasing, use classes. For example,
suppose you want your poplists and text items to have different fonts on Motif,
rather than just imposing a strict conversion of MS Sans Serif to Helvetica. To
achieve this:

1. Create two classes, one for poplists and the other for text items.

2. On MS Windows, specify that both classes use MS Sans Serif as the font in
W ndow. ol b. (See Section 5.2.3.1, "Creating a single source" for information on
W ndow. ol b.)

3. In Motif.olb, specify that the poplist class uses the Helvetica 9-point font;
specify that the text item class uses Helvetica 11-point.

This approach allows you to customize the font used for each class of objects in
your application, thus providing a higher level of flexibility.

5.2.1.5 Usingicons

Icons are platform-specific. If you use iconic buttons in your application, create a
separate icon directory for each platform. Use the same names for the icons on each
platform and set the respective environment variable to point to the icon directory.
On MS Windows and Motif, this variable is TK25 | CON.

If you include icons in your application, keep the following in mind:
« Icons rendered on small monitors (like laptops) can be too small to read.

« Certain icons have special meanings on certain platforms.

5-6 Guidelines for Building Applications

5.2 Designing Portable Forms

5.2.1.6 Using buttons

In MS Windows, a button’s moat (the emphatic border around a button to designate
a default) is very small compared to that on Motif. Therefore, buttons appear to
shrink when run on Motif. On Motif, you can avoid this by modifying the Motif
resource file, Tk2Mot i f in ORACLE_HOVE/ BI N. (Oracle uses Motif resource files to
control the visual appearance of UNIX-based applications.)

1. Locate the Tk2Moti f file for your display type:
« .gs (gray scale)
« .bw(black and white)
« .rgb(color)

2. Editthe Tk2Moti f file and setthe Tk2Mbti f expandNonDef aul t But t ons
property to True.

In general, always provide enough space in your Windows buttons to accommodate
the larger button size in Motif.

To maximize portability, make all buttons non-navigable. In Windows and Motif,
clicking a button means the user actually navigates to the button. Because triggers
are often dependent upon button navigation, this difference across platforms can
create significant behavioral differences in your application.

Note: Making Windows and Motif buttons non-navigable is an excellent example of
the kind of trade-off you might have to make if consistency across platforms is more
important than adhering to standard platform behavior.

5.2.1.7 Creating menus

The placement and behavior of menus varies across platforms, as shown in
Table 5-4:

Table 5-4 Platform restrictions: Menus

Platform Menu Restrictions

Windows Supports Multiple Document Interface (MDI) and Single
Document Interface (SDI). In MDI, all windows belonging to
an application are contained in a single window, and there is
only one menu for the entire application. SDI is similar to Motif
in that each window has its own menu.

Motif Every window has a menu attached. The menu on a parent
window may or may not be repeated on child windows.

Designing Portable Applications 5-7

If you are using a version of Windows that supports MDI and you want your
applications to look the same across all platforms, specify in Motif that you do not
want to repeat the parent window menu on child windows. Then you can design
the parent window menu to look exactly like that on MS Windows.

Note: To prevent the screen from flashing when switching between form module
windows, combine all the menu options into one single menu application and use
the SET_MENU | TEM PROPERTY built-in to dynamically enable/disable the
respective menu items accordingly.

5.2.1.8 Creating the console

Like menus, the placement and behavior of the console also varies across platforms,
as shown in Table 5-5:

Table 5-5 Platform restrictions: Console

Platform Console Restrictions
Windows Appears at the bottom of the MDI window only.
Motif Appears on the user-specified window.

To achieve consistency across platforms, place the console on the parent window in
your Motif application to emulate the behavior of MDI Windows applications.

5.2.1.9 Miscellaneous

=« When building a form for multiple platforms, right-align all prompts. Text often
expands when ported to other platforms, and left-aligned prompts can cause
fields to shift, creating a ragged margin.

« To provide complex functionality that is completely portable across platforms,
employ one or more reusable components in your application. These reusable
components are provided in the Demos and Add-ons, to help you build
applications upon such powerful features as:

« Navigator (Explorer) style interface

« Wizard style interface that mimics the Wizards in Forms Developer and
other Windows 95 products

« Calendar window that automatically displays the calendar according to the
NLS settings currently in effect

« Image and icon files

5-8 Guidelines for Building Applications

5.2 Designing Portable Forms

« Standard menu in the Windows style

Refer to "Reusable Components" (under Forms Developer Demos) in the Form
Builder online help for more information.

Table 5-6 lists other miscellaneous issues related to porting GUIs:

Table 5-6 Platform restrictions: General

Platform General Restrictions

Windows A known positioning problem causes two lines forming a right

angle on VGA screens to actually overlap on SVGA. Use
bevels to avoid this problem.

Motif (none)

5.2.2 Considering the operating system

No application is truly portable if it depends on functionality unique to a particular
operating system. Here are some general rules to keep in mind:

Avoid port-specific terminology when writing messages. For example, a
message like "Press F1 for help" is not portable.

Do not hardcode path names; path names vary across platforms. Instead, use
environment variables to enable Form Builder to find your files during runtime.

Suppose you need to read an image file called OPEN. BVP from your form. In a
Windows-only application, you could simply code the path name in the call to
READ_| MAGE_FI LE:

Read Image_File(‘c:\orawin95\myapp\open.omp’, ' BMP’, ‘blockl.image3);

If you want the application to be portable, however, hardcoding won’t work,
since the name of the path is different on each platform. Instead, you can use an
external variable to represent the path name.

For example, in Windows95 or WindowsNT:;

1. Create a registry entry called pat h_var under the ORACLE key; in UNIX,
create a shell variable also named pat h_var.

2. Use the GETVAR procedure in the TOOL_ENYV package to retrieve the
value pat h_var using this platform-independent method:

pat h_var varchar2(255);

Tool_env.getvar(MYPATH;, path_var);
Read Image_File(path_var|/open.bmp’, BMP’,blockl.image3’y

Designing Portable Applications 5-9

The platform-specific path name, represented by the variable pat h_var, is
appended to the name of the image file, OPEN. BMP. On Window?95, pat h_
var resolves to the path name C. \ ORAW N95\ MYAPP\ . On UNIX, pat h_
var issomething like/ or acl e_hone/ nyapp/ .

= Anything called through the HOST built-in procedure. Host commands execute
port-specific operating system commands. To make your application easier to
port:

1. Create a separate procedure library (. PLL) for each platform.

2. Place all operating system commands in the appropriate procedure library.
3. Create a generic procedure library.
4

Rewrite the script file for each platform, ensuring that each script has the
same name.

5. Inyour form module, make sure all calls refer to the generic procedure
library.

6. Before compiling on a given platform, copy that platform’s . PLL to the
generic procedure library.

7. Compile.

Section 5.2.3, "Strategies for developing cross-platform forms" explains how this
handling of procedure libraries fits into the recommended development
strategy for portable applications.

« Context-sensitive help is not portable. If your application uses native
context-sensitive help, replace it with Forms Developer’s portable help
component, the Online Help Class. This component enables you provide
context-sensitive help in your application similar to Windows 95 help.

The component is built using Form Builder and PL/SQL native capabilities, so
it is portable to all Forms-supported platforms. Because the help text you create
is stored in the database, it is accessible to all users, and updates are
immediately available to everyone.

To use the Online Help Class in your application:
1. Install the database objects.
2. Create the help text for your application.

3. Attach a PL/SQL library and add code in your key-help trigger to call the
help as required.

5-10 Guidelines for Building Applications

5.2 Designing Portable Forms

Refer to the help topic About the Online Help Class" under Forms Developer
Demos in the Form Builder online help for step-by-step instructions.

« Avoid including the platform-specific methods listed in Table 5-7.
Table 5-7 Platform-specific methods to avoid

Platform Method

Windows « VBXcontrols
« OLE containers
« ActiveX (OCX)
« DLLs (ORA_FFI)

Motif Calls to loadable libraries (ORA_FFI)

These objects leave placeholders (empty spaces) on the platforms that do not
support them. If you must include these objects in your application, see
Section 5.2.3.4, "Hiding objects" for information on how to prevent the
placeholders from appearing.

5.2.2.1 Including user exits

A user exit is a 3GL program you write yourself and then link into a form at compile
time. User exits are always port-specific.

Before calling a 3GL program from your portable form, verify that the information
and processes on which the program relies are available on all platforms. For
example, a program that depends on information from the Windows registry can’t
access this information on other platforms, which means you may have to re-design
the program or abandon it entirely.

Rather than accessing a 3GL program through the user interface exit, consider the
use of the ORA_FFI built-in package (Oracle Foreign Function Interface). If you use
the user exit interface to access your foreign functions, you must re-link the user
exits or replace the DLL for each platform each time a 3GL program changes.
Because ORA_FFI allows you to call foreign functions through a PL/SQL interface
using PL/SQL language conventions, re-linking isn’t required when you modify a
program. For this reason, ORA_FFlI is the preferred method for accessing 3GL
programs from your forms.

5.2.3 Strategies for developing cross-platform forms
This section introduces some techniques you can use to develop portable forms:

Designing Portable Applications 5-11

« Section 5.2.3.1, "Creating a single source" describes an architecture for creating a
single source that delivers maximum functionality on each of your deployment
platforms.

« Section 5.2.3.2, "Subclassing visual attributes" discusses the importance of
explicitly subclassing the visual attributes stored in your object libraries.

« Section 5.2.3.3, "Using the get_application_property built-in" discusses the use
of this Form Builder built-in when developing portable applications.

« Section 5.2.3.4, "Hiding objects" provides sample code for removing the
placeholders that appear when an object is not valid on a particular platform.

5.2.3.1 Creating a single source

While it may be tempting to consider creating a single source that aims at the lowest
common denominator for all deployment platforms, this strategy severely limits the
aesthetics you can provide in your application. A more effective strategy is to create
a single source that delivers applications in each platform’s native look-and-feel.
The architecture depicted in illustrates how you might accomplish this:

| Application |
* *
Porting. olb Porting. pII
|W|ndow olb | I| Mac.olb | I |W|ndow pll | I| Mac.pll | I
| Motif.olb | |Charmode.o|b| | Motif.pll | |Charmode.pl| |

Figure 5-1 Port-specific implementation

To model your application on this architecture:

1. Create an object library for all standards and objects (Por ti ng. ol b). Referto
Section 2.2.2.1, "Using object libraries" in Chapter 2 for information on using
object libraries.

2. Create separate object libraries for each deployment platform (W ndow. ol b,
Mot i f. ol b, Mac. ol b, Char node. ol b).

3. Create acommon library for port-specific code (Porti ng. pl I).

5-12 Guidelines for Building Applications

5.2 Designing Portable Forms

4. Create separate libraries for each platform’s port-specific code (W ndow. pl | ,
Motif.pll, Mac.pll, Charnode.pll).

5. Ineach platform’s Ul repository (. OLB) and library (.PLL), develop code to
handle the application objects in the manner ideal for that particular platform.
Use the same name for a given object in each Ul repository and library.

6. Write your application, referring to the standards and objects in the repository
and to the port-specific code in the library.

7. When you're ready to compile your application for a particular platform, copy
that UI’s repository and library to Por ti ng. ol b and Porti ng. pl | and
compile.

5.2.3.2 Subclassing visual attributes

Visual attributes are the font, color, and pattern properties you set for form and
menu objects. By carefully defining the visual attributes of your form objects, you
can ensure that users on each platform enjoy the native look-and-feel unique to that
environment.

Many Form Builder objects, such as items and canvases, refer to visual attributes to
define their appearance. Visual attributes must be defined in the same module as
the object that refers to them.

Visual attributes are usually stored in an object library. It’s a good idea to create
subclasses of these visual attributes in each module. When you subclass an object
from an object library in your form, any changes made to the library object are
automatically applied to the form object. However, this does not apply to changes
made to the library object’s visual attributes. So, by subclassing, rather than coping
the visual attributes, you ensure that your modules always reflect the latest
definition of the visual attributes.

5.2.3.3 Using the get_application_property built-in

The GET_APPLI CATI ON_PROPERTY built-in function returns information about
your application, allowing you to react dynamically at runtime based on the
settings of one or more of these variables:

« DISPLAY_HEIGHT and DISPLAY_WIDTH. Specifies how big the current
display is. The unit depends on how you have set up the form coordinate
system.

Designing Portable Applications 5-13

« OPERATING_SYSTEM. Specifies the name of the platform on which the
application currently is running (MSWINDOWS, WIN32COMMON, SunQOS,
VMS, UNIX, or HP-UX).

« USER_INTERFACE: Specifies the name of the user interface technology on
which the application is currently running (WEB, MOTIF, MSWINDOWS,
MSWINDOWS32, PM, X, VARCHAR2MODE, BLOCKMODE, or UNKNOWN).

Depending on the value of a variable, you can dynamically hide objects that are not
available on that deployment platform, reposition other objects to take up that
space and, if necessary, alter the attributes of an object to suit the standards on that
deployment platform. See Section 5.2.3.4, "Hiding objects" for more information.

5.2.3.4 Hiding objects

To prevent users from seeing placeholders on platforms that do not support OLE,
VBX, and ActiveX objects, you can put these objects in a separate window invoked
from the menu or a button and dynamically enable/disable the menu item or
button. Or you can use this code fragment to hide/show the port-specific objects
and reposition other objects to take their place:

WHEN NEW FCRM | NSTANCE tri gger :

decl are

ui varchar2(15) ;

begi n

ui = get_application property (user_interface);

if ui = ‘CHARMODE ' or ui ='MOTIF then
set item_propenty (VBXOBJECTY', displayed, property_false);
set_item_property (OLEOBJECTY’, displayed, property_false);
set_item_property (TEXTITEMY', position, 43, 4);

end if;

end;

Note: Item prompts are automatically hidden when you hide the associated item.

5.2.4 Designing forms for character-mode

If you are creating an application for both character-mode and bit-mapped
environments, single-sourcing is probably not the best approach. Developing for the
lowest common denominator, character-mode, deprives your GUI users of the ease

5-14 Guidelines for Building Applications

5.2 Designing Portable Forms

of use associated with bit-mapped controls. The "Bit-map Only" column in Table 5-8
lists the functions you’d have to avoid:

Table 5-8 Character-mode vs. bit-mapped environments

Character Mode Bit-map Only

» Boxes . Images

« Horizontal lines « Color

« \ertical lines « Drawings

« ASCII text « Ellipses

« Boldface text « Drill-down buttons (reports)
« Underlines . Italicized text

« Bit-map patterns
« Diagonal lines
« Multimedia support

While there are methods for disabling these GUI functions in a character-mode
environment, this task can be extremely time-consuming and frustrating for you.
So, if you know from the beginning that you have to support these two widely
disparate sets of users, it’s best for everyone—you and your users—to simply create
two entirely separate applications.

It’'s much easier to develop for character-mode if you make Form Builder look like
character-mode as much as possible. Table 5-9 lists some recommended property
settings:

Table 5-9 Property settings that resemble character-mode

Property Recommendations/Notes
Boilerplate font « Windows: FixedSys, Regular, 9 pt
« Motif: Font=Fixed, Size=12.0, Weight=Medium,
Style=Plain

Coordinate information . Coordinate system: Real*

. Real Unit: Point
« Character Cell Width: 6
« Character Cell Height: 14

Designing Portable Applications 5-15

Table 5-9 Property settings that resemble character-mode

Property Recommendations/Notes

View « Grid:on
« Grid Snap: on
« Show Canvas: off

View —Settings —Ruler « Units: Character cells
« Character Cell Size Horizontal: 6
« Character Cell Size Vertical: 14
« Grid Spacing: 1
« Snap Points per Grid Spacing: 2

1 Improves portability of the form from character-mode to bit-mapped environments. If the form will be
deployed in character-mode only, use the Character coordinate system.

As you develop your application strictly for character-mode, keep the following in
mind:

Table 5-10 Recommendations for character-mode applications

Topic Recommendations/Notes

General =« Remember that everything is in monospace font.

« Create keyboard equivalents for each widget, even when the
widget does not have the current focus.

=« Avoid scrolling, as it is very hard to use.

« Hide OLE, VBX, and ActiveX objects if you do not want users
to see their placeholders.

« Be sure that widgets have sufficient space to display
themselves entirely, as all Ul widgets are rendered in their
character-mode equivalents.

« Because users cannot move an LOV with a mouse, use the
set _| ov_property built-in to dynamically position the
LOV.

5-16 Guidelines for Building Applications

5.2 Designing Portable Forms

Table 5-10 Recommendations for character-mode applications

Topic

Recommendations/Notes

Navigation

Since the user does not have a mouse, users cannot navigate
between windows or forms from within the application.
Provide buttons or menu options for navigating between
forms.

Since windows cannot be repositioned with a mouse, ensure
that a displayed window does not obscure the context required
for that window. When the user is done with a window,
disable the window programmatically, or set the window’s
Remove On Exit property to true.

Layout

There are only 80x24 character cells on the screen. The first line
is used for the menu; the last two at the bottom for the console
display and the message and status lines. Plan your screens
carefully to fully utilize the remaining space.

Fonts are monospaced and thus consume much more space on
average than proportional fonts. Design your screens so that
boilerplate and textual widgets can be rendered with one
character per cell.

Coordinate system

Use the Character coordinate system and turn on the grid snap.
This will ensure that your objects’ sizes are in multiples of the
character cell size.

Menus

Menus are displayed on the first line of the screen.
Common menu items like Cut, Copy, and Paste not available.

Define hot keys for commonly used menu items to reduce
cumbersome navigation to the first line of the screen.

Bevels

Not available.

Buttons

Avoid use of button palettes; make all actions available from
the menu instead. Because character-mode does not allow the
user to retain context when navigating to a button, buttons do
not work well in this mode.

Icons

Not available. Make sure that all iconic buttons in the GUI
environment are also represented by menu options.

Iconic buttons display with just the buttons’ labels. Make sure
the labels are meaningful and that there is sufficient space to
display them.

Designing Portable Applications 5-17

Table 5-10 Recommendations for character-mode applications

Topic Recommendations/Notes
Color « Precede negative numbers with a minus sign since color is not
available.

« On monochrome displays, colors snap to black or white. Avoid
using dark colors for both background and foreground, as both
are snapped to black.

5.3 Designing Portable Reports

When preparing a report to run on multiple platforms, consider the following:

Fonts. Not all font types, styles, and sizes are available on all target GUIs. You
can handle this in one of two ways:

« Use afont that you know exists on the target GUI or one that maps well to
the default font of the target GUI.

« Modify the font mapping file, Ul FONT. ALl , to ensure that the fonts map
correctly. See Section 5.2.1.4.1, "Defining font aliases" for more details on
using the Ul FONT. ALI file.

Note: Because screen font and printer font metrics are not always the same,
your printed report may not look the same as it did on the screen. In particular,
text fields can expand on the printed page, causing adjacent fields to shift and
possibly creating new and unpredictable page breaks. To avoid this, use
expand-only fields and be sure each field is large enough to accommodate the
largest font reasonably possible.

Colors. If possible, use a color that you know exists on the target GUI,
otherwise, use one that maps well to the default color of the target GUI. The
following colors are typically available on many platforms: blue, magenta, red,
cyan, green, yellow. See Section 5.2.1.3, "Using color" for some
recommendations on including color in portable reports.

DPI. The dots-per-inch (DPI) that your monitor uses may not be the same as the
DPI used by the person who runs the report. The DPI only affects how
alpha-numeric characters word-wrap on the screen. If you design a report that
may be displayed in the Previewer view, try to use the same DPI as the people
who will run it.

Buttons. If you provide buttons in a report, users viewing the report through
the Previewer can press the buttons to display a multimedia object (sound,
video, image) or to perform an action through PL/SQL code, such as drilling

5-18 Guidelines for Building Applications

5.4 Designing Portable Displays

down to another report. See Section 5.2.1.6, "Using buttons" for some guidelines
on creating portable buttons. Note that if you run a report containing buttons in
character-mode, the buttons are simply ignored; they do not create a
placeholder.

5.3.1 Designing areport for character-mode environments

Character-mode reports are often needed in environments where users need to send
their report output to bulletin boards, spreadsheets, dump files, or to character-only
printers. Character-mode output also provides a number of advantages:

« Portability. Because they are strictly ASCII or EBCDIC files, character-mode
reports can be printed or exported anywhere.

« Protecting printer investment. Character-mode reports require no special
formatting—unlike complicated postscript output—thus protecting your
investment in older printers.

« Printer code support. Reports Developer provides support for printer escape
codes, which enable users to exploit printer-specific features at runtime, such as
special font sizes, highlighting, and more. Refer to the Report Builder online
help for information on printer definition files and printer codes.

« Performance. Character-mode reports run much faster than an equivalent
bit-mapped report. Bit-mapped reports typically require more formatting time
and have larger (Postscript, PCL5) output files.

5.3.1.1 Design considerations

Reports built for bit-mapped environments cannot easily be adapted to
character-mode. If you know you will need to run a report in a character-mode
environment, it is best to build the report as a character-mode report. However, if
you must convert a bit-mapped report to character mode, refer to the Report
Builder online help, index entry: ASCII report, creating. You will also find
step-by-step instructions there for building a character-mode report.

5.4 Designing Portable Displays

If you have standalone graphics—graphics that are not part of a container
application such as a form or report—porting is fairly straightforward. Most
graphics, however, are embedded within forms and reports, which can introduce
problems when moving across platforms. When developing graphics for multiple
environments, observe the following guidelines:

Designing Portable Applications 5-19

« To ensure that text scales uniformly—especially when the graphic is embedded
in a form or report—use a scalable truetype font and set the Scalable Fonts flag
to true for all text objects except chart labels. The Scalable Fonts flag is not
available for text labels in a chart. As soon as a chart is updated, fonts are re-set
to their original size. Thus, choose a font and size for chart labels that is legible
at the greatest range of chart sizes. A good bet is small, sharp fonts that display
well at 8-10 point sizes. Anything larger may cause your chart to become
unreadable when embedded in a small chart area of a form or report.

« Timers and drag-and-drop code are supported only in standalone Graphics
applications. If you include these functions in a form or report, they are
ignored.

= Limit your use of colors to the core 16, which are available in the Designer
(upper-left corner of the palette), as well as through their mnemonic names
(red, green, blue, yellow, magenta, cyan, black, white, gray, darkgray,
darkyellow, darkcyan, darkmagenta, darkblue, darkgreen, and darkred).

= Set colors through the layout editor, rather than through PL/SQL. Colors
chosen in the layout editor are automatically adjusted to the nearest available
color. Colors set through code can result in an error if the color is not available
on your system at the current resolution.

« Isolate platform-dependent code with calls to the application property og_
get _ap_pl at f or m and to the built-in subprograms og_append_di rect ory
and og_append_fi | e. Refer to the Graphics Builder online help for more
information.

5-20 Guidelines for Building Applications

S

Taking Advantage of Open Architecture

This chapter offers guidelines to help you take advantage of the open and extensible
development environment available in both Forms Developer and Reports

Developer.

Section

Description

Section 6.1, "Working with
OLE Objects and ActiveX
Controls"

Describes support for component technologies and provides
steps and guidelines for creating applications that include OLE
objects and ActiveX controls.

Section 6.2, "Using Foreign
Functions to Customize
Your Applications”

Describes how to customize and extend your applications with
3GL foreign functions.

Section 6.3, "Using the
Open API to Build and
Modify Form Builder
Applications"

Introduces the Open API and explains how to use the Open
API to build and modify Form Builder applications.

Section 6.4, "Designing
Applications to Run
against ODBC
Datasources"

Discusses ODBC support and provides detailed steps and
guidelines that describe how to run applications against ODBC
datasources.

Taking Advantage of Open Architecture 6-1

6.1 Working with OLE Objects and ActiveX Controls

This section describes what OLE and ActiveX are, and how you can exploit this
technology. This section includes these topics:

« Section 6.1.1, "What is OLE?"
« Section 6.1.1.1, "When should | use OLE?"
« Section 6.1.1.9, "Adding an OLE object to your application”
« Section 6.1.1.10, "Manipulating OLE objects"
« Section 6.1.1.11, "OLE examples"
= Section 6.1.2, "What are ActiveX controls?"
= Section 6.1.2.1, "When should | use ActiveX controls?"
« Section 6.1.2.2, "Manipulating ActiveX controls"
« Section 6.1.2.7, "Adding an ActiveX control to your application”
« Section 6.1.2.8, "ActiveX examples"

Note: Support for OLE and ActiveX is limited to the Windows platform.

6.1.1 What is OLE?

Object Linking and Embedding (OLE) is a Microsoft standard that allows you to
integrate and reuse different software components within a single application.

Integrating an application with a Microsoft Excel document, for example, enables
you to offer both Forms Developer (or Reports Developer) and Microsoft Excel
features. Your users can format a Microsoft Excel document with any of the text
processing features provided by Microsoft Excel, while using Forms Developer or
Reports Developer features for displaying and manipulating data from the
database.

By incorporating OLE objects within your application, you can seamlessly integrate
a diverse group of specialized components to build full-fledged applications. You
no longer have to build entire applications from the ground up. You can deliver
applications in a shorter amount of time and at a lower cost.

6.1.1.1 When should | use OLE?
Use OLE when:

6-2 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

You want to leverage an existing OLE-compliant application within your
application.

For example, you can enhance your application’s capabilities with word
processor documents, spreadsheet documents, knob controls, video clips,
sound, and so on.

You want to provide your application users with a familiar interface.

On Microsoft Windows, most users are familiar with Microsoft Word and
Microsoft Excel. Rather than creating word processing or spreadsheet
functionality to your application, you could leverage and embed a Word or
Excel document within your application.

Your applications are primarily deployed on the Windows platform.

6.1.1.2 About OLE servers and containers

OLE uses the concept of client and server. The client is an application that requests
and uses the services of another application. The server is the one that provides
these services.

OLE Server Application

An OLE server application creates OLE objects that are embedded or linked in
OLE containers. The server application is responsible for the creation, storage,
and manipulation of OLE objects. For example, the server decides how to
repaint the object when certain portions are exposed.

Graphics Builder and Microsoft Word are examples of OLE servers.
OLE Container Application

Unlike OLE server applications, OLE container applications do not create
documents for embedding and linking. Instead, OLE container applications
provide a place to store and display objects that are created by OLE server
applications.

Form Builder and Report Builder are examples of OLE container applications.

6.1.1.3 About embedded and linked objects
You can link or embed OLE objects within your application.

Embedded Object. An embedded object has both its presentation and native
data stored within your application, or as a LONG RAW column in the
database.

Taking Advantage of Open Architecture 6-3

« Linked Obiject. A linked object only contains presentation information and a
reference to its native data. The content of the linked object is not stored within
your application or as a LONG RAW column in a database; it is stored in a
separate, linked file.

There is no functional difference between linking and embedding. The OLE
container treats the objects equally, by executing the same code, whether they are
linked or embedded. The only difference is that embedding an OLE object increases
the size of your application. This could eventually lead to performance
considerations (particularly on a file server), because the larger the application, the
longer it will take to open and load into memory.

6.1.1.4 About the registration database

Each client machine contains an OLE registration database. The registration
database stores a set of classes that categorize OLE objects. The information in the
registration database determines the object classes that are available for embedding
and linking in OLE containers.

OLE server applications export a set of classes that become members of the
registration database. Each computer has a single registration database. If the
registration database does not already exist when an OLE server application is
installed, one is created.

A single OLE server application can add many OLE classes to the registration
database. The process of adding classes to the registration database is transparent
and occurs during the installation of an OLE server application. For example, when
you install Microsoft Excel, several classes are added to the registration database;
some of the classes that are installed in the registration database include Excel
Application, Excel Application 5, Excel Chart, Excel Sheet, ExcelMacrosheet, and
ExcelWorkSheet.

6.1.1.5 About OLE activation styles

Activating an OLE object enables you to access features from the OLE server
application. There are two ways to activate an OLE object: in-place activation or
external activation.

« In-place Activation. In-place activation enables your users to manipulate the
OLE object within your application without switching to a different window.

During in-place activation, the activated object appears within a hatched
border, and the toolbar, menu and other controls of the activated object
temporarily replace standard menu options. The replacement menu options and
toolbars provide access to features that are available from the OLE server

6-4 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

application. Standard menu options and toolbars re-appear when you
deactivate in-place activation. To deactivate in-place activation, you click
anywhere outside the hatched border.

Note: In-place activation is available for embedded objects, but it is not
available for linked objects.

« External Activation. External activation enables your users to manipulate the
OLE object in a separate window. When an OLE object is activated, the object’s
OLE server application is launched, and the OLE object appears in a separate
OLE server application window. The separate window has the menu options
and toolbars of the OLE server application. To deactivate external activation,
you must explicitly exit the OLE server application.

External activation is available for both embedded and linked objects.

When the contents of a linked source file is modified with external activation, a
linked object can be updated manually or automatically. Manual updates
require an explicit instruction for an object to reflect changes from a linked
source file. Automatic updates occur as soon as you modify a linked source file.

Note: Both in-place activation and external activation are dependent on the
OLE activation property settings of the OLE container. If the OLE server
application is accessible, the activation property settings of the OLE container
determine whether in-place activation or external activation occurs when an
embedded OLE object is activated. Linked objects can only be activated with
external activation; in-place activation does not apply to linked objects, even if
the in-place activation property is set to Yes.

6.1.1.6 About OLE automation

Occasionally, you may want to interact with or manipulate the data within an OLE
object. To do so, you use PL/SQL and OLE automation.

OLE automation enables the server application to expose a set of commands and
functions that can be invoked from an OLE container application. By using these
commands and functions, you can manipulate OLE objects from the OLE container
environment.

In both Forms Developer and Reports Developer, you use PL/SQL to access any
command or function that is exposed by an OLE server application. Built-ins
provide a PL/SQL Application Programming Interface for creating, manipulating,
and accessing OLE commands and functions.

Taking Advantage of Open Architecture 6-5

Note: Many of the options available for manipulating an OLE object in an OLE
container application are determined by the OLE server application. For instance,
options from the OLE popup menu, also known as OLE verbs, are exposed by the
OLE server application. The information contained in the registration database,
such as object classes, is also dependent on the OLE server application.

6.1.1.7 OLE support

Both Forms Developer and Reports Developer provide OLE server and container
support as well as support for OLE automation.

Component Container Server Application OLE2 Automation
Form Builder Yes No Yes
Graphics Builder No Yes Yes
Procedure Builder No No No
Project Builder No No No
Query Builder No No No
Report Builder Yes No Yes
Schema Builder No No No
Translation Builder No No No

6.1.1.7.1 OLE container support

As OLE container applications, Form Builder and Report Builder support the
following:

« Embedding and linking of OLE server objects into OLE containers.

« In-place activation of embedded contents in OLE containers (Form Builder
only).

In-place activation enables you to access menus and toolbars from OLE server
applications to edit embedded OLE objects while you are in Form Builder.

« Programmatic access to OLE objects, properties, and methods through OLE
automation support from PL/SQL.

Using PL/SQL, you can invoke commands and functions that are exposed by
OLE servers.

« Seamless storage of OLE objects in a database in LONG RAW columns.

6-6 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

You can save OLE objects to a database, as well as query OLE objects from a
database. When linked objects are saved, only the image and the link
information are retained in the database. The contents of a linked object remains
in a linked source file. Saving an embedded object retains all the contents of an
embedded object in the database.

6.1.1.7.2 OLE server support

Graphics Builder is an OLE server application. You can embed or link Graphics
Builder displays within your Forms Developer or Reports Developer application.

Recommendation: If you want to add a Graphics Builder display to your
application, don’t embed or link it as an OLE object. Instead, use the Chart Wizard
to add graphical displays to your applications.

6.1.1.7.3 OLE container properties

OLE container properties determine OLE display attributes, OLE container
interaction with the server, container storage, and so on.

Note: In addition to container properties, you can also set OLE object properties.
Each OLE object can expose several properties. You access OLE object properties by
clicking the right mouse button to display the popup menu.

This section lists the OLE container properties supported by both Forms Developer
and Reports Developer.

Component Property Description

Form Builder « OLE Activation Style Specifies the event that will
activate the OLE containing item,
either double-click, focus-in, or
manual.

. OLE Class Determines what class of OLE
objects can reside in an OLE
container.

« OLE In-place Activation Specifies if OLE in-place
activation is used for editing
embedded OLE obijects.

Taking Advantage of Open Architecture 6-7

Component Property

Description

« OLE Inside-Out Support

Specifies if the OLE server of the
embedded object enables
inside-out object support during
in-place activation. Inside-out
activation enables for more than
one embedded object to have an
active editing window within an
OLE container.

» OLE Popup Menu Items

Determines which OLE popup
menu commands are displayed
and enabled when the mouse
cursor is on the OLE object and
the right mouse button is pressed.
The OLE popup menu commands
manipulate OLE objects.

« OLE Resize Style

Determines how an OLE object is
displayed in an OLE container.

« OLE Tenant Aspect

Determines how an OLE object
appears in an OLE container,
either content, icon, or thumbnail.

« OLE Tenant Types

Specifies the type of OLE objects
that can be tenants of the OLE
container, either embedded,
linked, any;, static, or none.

« Show OLE Popup Menu

Determines whether the right
mouse button displays a popup
menu of commands for interacting
with the OLE object.

« Show OLE Tenant Type

Determines whether a border
defining the OLE object type
surrounds the OLE container.

Report Builder Create New

Specifies that you want to embed
your OLE object within your
report application.

Create from File

Specifies that you want to link
your OLE object within your
report application.

Display as Icon

Specifies whether the OLE object
should appear as an icon. By
default, the OLE object appears as
an empty container.

6-8 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

6.1.1.7.4 OLE/ActiveX built-ins

This section lists the OLE and ActiveX built-ins supported by different components.

Component

Built-in

Description

Form Builder

ACTI VATE_SERVER

Activates an OLE server
associated with an OLE container
and prepares the OLE server to
receive OLE automation events
from the OLE container.

« ADD COLEARGS Establishes the type and value of
an argument that will be passed to
the OLE object’s method.

« CALL_ QE Passes control to the identified

OLE object’s method.

CALL_CLE <return type>

Passes control to the identified
OLE object’s method. Receives a
return value of the specified type.

There are five versions of the
function (denoted by the value in
returntype), one for each of the
argument types CHAR, NUM,
OBJ, RAW, and VAR.

CLOSE_SERVER

Deactivates the OLE server
associated with an OLE container.
Terminates the connection
between an OLE server and the
OLE container.

CREATE_OLEOBJ

In its first form, creates an OLE
object, and establishes the object’s
persistence. In its second form,
alters the persistence of a
previously-instantiated OLE
object.

CREATE_VAR

Creates an empty, unnamed
variant.

There are two versions of the
function, one for scalars and the
other for arrays.

DESTROY_VARI ANT

Destroys a variant that was
created by the CREATE_VAR
function.

Taking Advantage of Open Architecture 6-9

Component Built-in

Description

EXEC_VERB

Causes the OLE server to execute
the verb identified by the verb
name or the verb index. An OLE
verb specifies the action that you
can perform on an OLE object.

FI ND_OLE_VERB

Returns an OLE verb index. An
OLE verb specifies the action that
you can perform on an OLE
object, and each OLE verb has a
corresponding OLE verb index.

GET_I NTERFACE_PO NTER

Returns a handle to an OLE2
automation object.

CET_OLEARG <t ype>

Obtains the nth argument from
the OLE argument stack.

There are five versions of the
function (denoted by the value in
type), one for each of the
argument types CHAR, NUM,
OBJ, RAW, and VAR.

GET_OLE_MEMBERI D

Obtains the member ID of a
named method or property of an
OLE object.

GET_VAR_BOUNDS

Obtains the bounds of an OLE
variant’s array.

GET_VAR DI MB

Determines if an OLE variant is an
array, and if so, obtains the
number of dimensions in that
array.

GET_VAR TYPE

Obtains the type of an OLE
variant.

GET_VERB_COUNT

Returns the number of verbs that
an OLE server recognizes. An
OLE verb specifies the action that
you can perform on an OLE
object, and the number of verbs
available depends on the OLE
server.

6-10 Guidelines for Building Applications

GET_VERB_NAME

Returns the name of the verb that
is associated with the given verb
index.

6.1 Working with OLE Objects and ActiveX Controls

Component Built-in Description

« | NITI ALI ZE_CONTAI NER Inserts an OLE object from a
server-compatible file into an OLE
container.

« |INIT_OLE_ARGS Establishes how many arguments
are going to be defined and
passed to the OLE object’s

method.

« LAST_OLE_ERROR Returns the identifying number of
the most recent OLE error
condition.

« LAST_OLE_EXCEPTI ON Returns the identifying number of

the most recent OLE exception
that occurred in the called object.

« OLEVAR EMPTY An OLE variant of type VT_
EMPTY.
« PTR_TO VAR First, creates an OLE variant of

type VT_PTR that contains the
supplied address. Then, passes
that variant and type through the
function VARPTR_TO_VAR.

« RELEASE OBJ Shuts down the connection to the
OLE object.
« SERVER _ACTI VE Indicates whether or not the

server associated with a given
container is running.

« SET_OLE Changes the value of an OLE
property.
There are three versions of the
procedure, one for each of the
new-value types: NUMBER,
VARCHAR, and OLEVAR.

« SET_VAR Sets a newly-created OLE variant
to its initial value. Or, resets an
existing OLE variant to a new
value.

There are four versions of the
procedure, one for each of the new
value types CHAR, NUMBER,
OLEVAR, and table.

Taking Advantage of Open Architecture 6-11

Component

Built-in

Description

TABLE_FROM BLOCK

Populates a table from a block.

TO VAR ANT

Creates an OLE variant and
assigns it a value.

There are four versions of the
function.

VARPTR_TO VAR

Changes a variant pointer into a
simple variant.

VAR TO TABLE

Reads an OLE array variant and
populates a PL/SQL table from it.

VAR _TO <type>

Reads an OLE variant and
transforms its value into an
equivalent PL/SQL type.

There are six versions of the
function (denoted by the value in
type), one for each for of the types
CHAR, NUM, OBJ, RAW, TABLE,
and VARPTR.

VAR TO VARPTR

Creates an OLE variant that points
to an existing variant.

Developer OLE2 .
Package

ADD_ARG

Adds an argument to a given
argument list.

CREATE_ARGLI ST

Creates an argument list to be
passed to an OLE server.

CREATE_OBJ

Returns a handle to a newly
created OLE object. This is usually
used for OLE objects that do not
have a user interface, such as a
spell-checker.

DESTROY_ARGLI ST

Destroys the specified argument
list.

GET_CHAR_PROPERTY

Returns a character property of
the OLE object.

GET_NUM_PROPERTY

Returns a number property of the
OLE object.

6-12 Guidelines for Building Applications

GET_OBJ_PROPERTY

Returns an object type property of
the OLE object.

6.1 Working with OLE Objects and ActiveX Controls

Component Built-in

Description

« | NVOKE

Executes the specified OLE server
procedure.

« | NVOKE_CHAR

Executes the specified OLE server
function. This function returns a
character value.

« | NVOKE_NUM

Executes the specified OLE server
function. This function returns a
number value.

. | NVOKE_OBJ

Executes the specified OLE server
function. This function returns an
object type value.

=« LAST_EXCEPTI ON

Returns an OLE error.

. SET_PROPERTY

Sets the OLE property with the
specified value.

« RELEASE (OBJ

Deallocates all resources for the
specified OLE object.

6.1.1.8 OLE guidelines

When working with OLE objects, consider these guidelines:

Iltem

Recommendation

Embedding or Linkingan You

OLE object

should link an OLE object when:

Your users prefer to work with the OLE object within the
OLE server environment (your users prefer external
activation). You link your OLE object when your users are
more comfortable editing a spreadsheet, for example,
within Microsoft Excel, rather than within your
application.

The OLE object is used in multiple applications.
The size of your application is a concern.
should embed an OLE object when:

Your users can work with OLE objects within your
application; your users prefer in-place activation.

You prefer to maintain a single application, rather than
maintaining an application with multiple OLE source files.

You are not concerned about the size of your application.

Taking Advantage of Open Architecture 6-13

Iltem

Recommendation

OLE Activation Style

You should use external activation. Linked objects can only be
activated with external activation.

Display Style

for optimum performance, set the Display Style property for
your OLE object to Icon.

Creating OLE objects at
design-time or runtime?

You should create your OLE objects at design-time.

When you create an OLE container in a Form, Form Builder
automatically initializes the OLE object.

In contrast, if you insert an OLE object at runtime, you must
initialize the OLE object manually.

Note: If you manually insert an OLE object during Forms
Runtime, the OLE object appears in the OLE container until the
next record query. For any subsequent record queries, the OLE
container appears in a state as defined in the Form Builder or
populated with an OLE object from the database.

Portability

OLE objects are only supported on Microsoft Windows. If
portability is an issue, you should not incorporate OLE objects
within your application. Instead, consider developing the
features within Forms Developer (or Reports Developer), or
consider developing a 3GL foreign function.

Setting OLE properties
within Report Builder

Report Builder OLE container properties are only available in
the Create OLE Object dialog; Report Builder does not expose
OLE container properties within the Property Palette. When
working within Report Builder, set OLE properties within the
Create OLE Obiject dialog.

6.1.1.9 Adding an OLE object to your application
For detailed steps about how to add an OLE object to your application, refer to the

online help.

6.1.1.10 Manipulating OLE objects

OLE server applications expose a set of commands that allow you to manipulate an
OLE object programmatically.

You can manipulate OLE objects by:

« Getting and setting OLE properties.

« Calling OLE methods to perform special commands.

6-14 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

Note: Before you can call an OLE method, you must first import the OLE
object’s methods and properties into Forms Developer or Reports Developer.
Importing OLE methods and properties enables you to interact with the OLE
object within the native environment.

You can access OLE methods from your application by using the STANDARD
(Form Builder only) and OLE2 built-in packages.

6.1.1.11 OLE examples
This section provides several examples to help you get started with OLE.

6.1.1.11.1 Example 1: setting an OLE property using bind variable syntax
Within your form applications, you can use the :item(‘item_name').ocx.server_
name.property bind variable syntax to assign or retrieve property values.

For example:
diten{’ LB tem) . ACX SpreadSheet . Cel | Fore@ oundol or : =
citen{’ QLB tem) . ACX SpreadSheet . Cel | Fore@ ound®ol or + 1;

OLEitem is the name of the item, SpreadSheet is the name of the OLE control server,
and CellForeGroundColor is the name of the property.

6.1.1.11.2 Example 2: setting an OLE property using property assessors

Within your form applications, you can also use property assessor functions and
procedures to get and set property values.

For example:

Variant Q eVar;
Variant := EXCH._WRKSHEET. ol e_Range(: CTRL. i nterf ace,
To variant('Al'));

EXCEL_WORKSHEET is the name of the program unit created from the OLE
Importer. OLE_RANGE is the name of the property accessor.

6.1.1.11.3 Example 3: modifying cells in an Excel spreadsheet

This example gets and sets cell values in an Excel spreadsheet.

PACKAGE spreadsheet |'S

procedure setcel | (trow nunber, col nunber, val nunber);
function getcell (trow nunber, col nunber) return nunber;
BEND

Taking Advantage of Open Architecture 6-15

PACKAGE BODY spreadsheet 1S
obj _hnd ol e2. obj _type;/* store the object handl e */
FUNCTI ON get _obj ect_handl e return ol e2.obj _type IS
BEA N
/* |f the server is not active, activate the server
and get the object handl e.
*/
if not forns_ol e. server_active (' spreadsheet’) then
forns_ol e. acti vat e_server (' spreadsheet’);
obj _hnd := forns_ol e. get_i nterface_poi nter (' spreadsheet’);

end if;
return obj _hnd;
END,
/*

Excel cells are accessed with the follow ng syntax in MVisual Basic:
ActiveSheet. Cell s(row, col umm). Val ue

In PL/SQ, we need to first get the active sheet using the

forns_ol e.get _interface pointer built-in. Ve can then use that to call the
Cells nethod with the row and colum in an argunent list to get a handle to
that specific cell. Lastly, we access the value of that cell.

*/

PROCEDURE SETCHLL (trow nunber, col nunber, val nunber) IS

d ol e2. obj _type;

c ol e2. obj _type;

n nunber ;

Ist ole2 list_type;

BEA N

/* Activate the server and get the object handl e
to the spreadsheet.

*/

d : = get_obj ect_handl €;

/* Geate an argunent list and insert the specified
row and columm into the argunent |ist.

*/

Ist :=ole2. create arglist;

ol e2.add_arg(l st,trow;

ol e2. add_arg(l st, col);

/* Call the Cells nethod to get a handle to the
speci fied cell.

*/

c :=ole2.invoke obj(d,” CGlls’,Ist);

/* Set the value of that cell. */

ol e2.set_property(c,’ Value',val);

6-16 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

/* Destroy the argunent list and the cell object
handl e.

*/

ol e2.destroy_arglist(lst);

ol e2.rel ease_obj (c);

BEND,

FUNCTI ON GETCELL(t r ow nuniber, col nunber) return nunber IS
c ol e2. obj _type;
d ol e2. obj _type;
n nunier ;
Ist ole2 list_type;
BEG N
/* Activate the server and get the object handl e
to the spreadsheet.
*/
d : = get_obj ect_handl €;
/* Geate an argunent list and insert the specified
row and col umm into the argunent |ist.
*/
Ist :=ole2. create arglist;
ole2.add_arg(lst,trow;
ol e2.add_arg(l st,col);
/* Gl the Cells nethod to get the value in the
specified cell .
*/
c :=ole2.invoke obj (d,”Cells',Ist);
n :=ole2. get_numproperty (c, 'Value');
/* Destroy the argunent list. */
ol e2.destroy_arglist(lst);
ol e2.rel ease_obj (c);
return n;
BEND
END,

To access a cell, use the following code:

spreadsheet . setcel 1 (3, 5, 91.73);
‘bl ockl.iteml : = spreadsheet.getcell (2, 4);

6.1.2 What are ActiveX controls?

ActiveX controls (originally known as OLE or OCX controls) are stand-alone
software components that you embed within your application to provide
light-weight user interface controls.

Taking Advantage of Open Architecture 6-17

ActiveX controls differ from OLE objects in several ways:

« An ActiveX control is not a separate application, but a server that plugs into an
ActiveX container—ActiveX controls are self-contained.

« Each ActiveX control exposes a set of properties, methods, and events.
Properties define the ActiveX control's physical and logical attributes, methods
define actions that the ActiveX control can perform, and events denote some
change in status in the ActiveX control.

« ActiveX controls must be deployed and installed with your applications.

6.1.2.1 When should I use ActiveX controls?
ActiveX controls are typically used to enhance an application by providing some
additional, self-contained functionality.

For example, you can enhance your application with a tabbed property sheet, a spin
control, a calendar control, a help control, and so on.

A significant amount of effort is required to develop your own ActiveX controls or
OLE servers. It is recommended that you use ActiveX controls and OLE servers
developed and distributed by third party vendors.

6.1.2.2 Manipulating ActiveX controls

Each ActiveX control exposes a set of properties, methods, and events. Properties
define the ActiveX control's physical and logical attributes, methods define actions
that the ActiveX control can perform, and events denote some change in status in
the ActiveX control.

You can manipulate an ActiveX control by:
= Setting and getting ActiveX control properties.
« Calling ActiveX control methods.

Note: Before you can invoke an ActiveX control method, you must first
import its methods and events into Forms Developer. Importing ActiveX
methods and events enables you to interact with the ActiveX control within
the native Forms Developer environment.

« Responding to ActiveX control events.

To manipulate an ActiveX control, you use the STANDARD and OLE2 (both within
Forms Developer) built-in packages.

6-18 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

6.1.2.3 Responding to ActiveX events

You can respond to an ActiveX event by writing your own code within an ActiveX
event package or within the On-Dispatch-Event trigger.

Each ActiveX event is associated with a PL/SQL procedure defined in the events’
package. When the control fires an event, the code in the procedure is automatically
executed.

Procedure names are determined by an internal number that represents the
corresponding event. The restricted procedure produced by an event has an
application programming interface similar to the following:

PROCEDURE /*A i ck*/ event 4294966696(i nterface Qej);

Note: ActiveX procedures run in restricted mode. When calling the event procedure
within an On-Dispatch-Event trigger, you can explicitly define whether the
procedure is run in restricted or unrestricted mode by using the

FORVBAW DI SPATCH_EVENT call. When defining a restricted procedure, OUT
parameters are not observed.

6.1.2.4 Deploying your ActiveX control

Deploying an application that contains an ActiveX control requires that you deploy
the ActiveX control.

To deploy an ActiveX control, you must:
« Register the ActiveX control on the client-machine.

If you install an ActiveX control by using the installation program supplied
with the ActiveX control, registration occurs automatically.

For manual registration, use r egAct i veX32. exe or r egsvr 32. exe; both are
available with Microsoft development tools and from ActiveX control vendors.

« Copy ActiveX DLLs to the client-machine (for example,
C: \ W NDOWB\ SYSTEM.

Most ActiveX controls require a supporting DLL, such as the Microsoft
Foundation Class runtime library (MFC40. DLL). The DLL must be in the

\ W NDOWB\ SYSTEMdirectory or in the search path. If the DLL is out of date or
missing, your ActiveX control will not register properly.

Note: ActiveX controls, whether distributed by third party ActiveX control vendors
or bundled with application development tools, may require that you pay

Taking Advantage of Open Architecture 6-19

additional fees or obtain additional licenses prior to distributing the ActiveX

control.

6.1.2.5 ActiveX support

Support means the ability to create, manipulate, and communicate with ActiveX

controls.

Component Container
Form Builder Yes
Graphics Builder No
Procedure Builder No
Project Builder No

Query Builder No
Report Builder No
Schema Builder No
Translation Builder No

6.1.2.5.1 ActiveX properties

This section lists the ActiveX properties supported by Forms Developer.

Component Property

Description

Form Builder OLE Class

Determines what class of OLE
objects can reside in an OLE
container.

Control Properties

Allows you to set ActiveX control
properties.

You can access the ActiveX
properties dialog through the
Property Palette or by clicking the
ActiveX control, then clicking the
right mouse button.

About Control

Displays information about the
ActiveX control

Control Help

Displays control-specific help (if
available).

6-20 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

6.1.2.5.2 ActiveX/OLE built-ins

Refer to Section 6.1.1.7.4 for a list of the ActiveX and OLE built-ins supported by
different components.

6.1.2.6 ActiveX guidelines
This section provides guidelines for working with ActiveX controls.

Item Recommendation
Creating your own A significant amount of effort is required to develop your own
ActiveX Control ActiveX controls or OLE servers. It is recommended that you

use ActiveX controls and OLE servers developed and
distributed by third party vendors.

Initializing an ActiveX Use ActiveX controls in blocks with the Single Record property
Control set to Yes, because single records are immediately initialized
when Forms Runtime starts up.

For multiple records, each record is not initialized until you
navigate to the record.

Without initialization, the ActiveX control item is empty,
giving the impression that no ActiveX control is available.

Managing OLE Variant « Some OLE servers such as Microsoft Excel use variant
Types types. Use the STANDARD built-in package to do the
necessary conversion to and from variant types.

« The lifetime and scope of a variant type is limited to a
trigger (variant memory space is released when a trigger
exits). To extend the lifetime and scope of a variant type,
set the persistent parameter in To_Variant() to TRUE and
assign the results to a global variable.

Note: Global variants must be explicitly destroyed using

Dest roy_Vari ant (). Similarly, OLE objects created with
Create_OleObj() are global in scope (the persistent parameter
defaults to TRUE). You must explicitly call Rel ease_(bj () to
release global objects.

Taking Advantage of Open Architecture 6-21

Iltem

Recommendation

Moving ActiveX Files

You should maintain your ActiveX files within the “install”
directory; do not move your ActiveX files to a different
directory.

At installation, the directories in which the ActiveX control is
installed are registered in the Windows Registration Database
in Windows 95 and Windows NT, making the ActiveX Control
visible to your development environment.

When you move an ActiveX Control to a different directory, or
rename the directory, you invalidate the information in the
registry.

If you find it necessary to move the ActiveX Control or rename
its directory, use r egsrv32. exe orr egActi veX32. exe
utilities provided with most Microsoft development products
to re-register the ActiveX in its new location.

Portability Issues

6-22 Guidelines for Building Applications

We support ActiveX on the Windows platform only. ActiveX
controls cannot be used on the Web or on UNIX. If portability
is an issue, do not use an ActiveX control.

6.1 Working with OLE Objects and ActiveX Controls

Iltem

Recommendation

Debugging ActiveX Calls

Given that object types cannot be checked at compile time, it is
possible to call a function on an object which is not defined for
the class of that object. Because the functions are bound by ID
rather than by name, a different function may be called than
expected, leading to unusual errors.

One way to guarantee that you are calling the correct method
is to change the generated function, replacing the hardcoded
constant with a call to GET_OLE_MEMBERID. For example:

Procedure O e_Add(interface O eQbj, TineBegin
VARCHAR2, Ti meEnd VARCHAR2, Text VARCHARZ,
BackCol or D eVar := AeVar_Null) IS

BEG N
Init_OeArgs (4);
Add_Qd eArg (Ti meBegin);
Add_d eArg (Ti meEnd);
Add_O earg (Text);
Add_d eArg (BackCol or);
Call _QOe (interface, 2);
END;

Replacethe Cal | _ol e() with:Call _O e (interface,
Get_Ole_MemberlID(interface, ‘Add"));

You can check for FORM_SUCCESSter the GET_OLE_
MEMBERIzall.

Restrictions

« ActiveX event procedures are restricted. In general, GO_
ITEM cannot be called within ActiveX procedure code,
unless the same event applies to multiple items and a GO_
ITEM is necessary. In this case, you can use the GO_ITEM
built-in by doing the following: in the
On-Dispatch-Trigger (block or form level), call
DISPATCH_EVENT(RESTRICTED_ALLOWED)ote: You
do not have to explicitly call the event procedure because
it will automatically be called following the On-Dispatch
trigger code.

. Initialization events for ActiveX controls do not fire in
Forms Runtime. These initialization events are
intentionally disabled. Instead, you can use
When-New-Item-Instance or When-New-Record-Instance
in place of the control’s native initialization events.

Taking Advantage of Open Architecture 6-23

6.1.2.7 Adding an ActiveX control to your application

For information about how to add an ActiveX control to your application, refer to
the online help.

6.1.2.8 ActiveX examples
This section provides several examples to help you get started with ActiveX

controls.
6.1.2.8.1 Example 1: setting ActiveX control properties

In Form Builder, you can usethe:iten{’item nane’). ocx.server _
nane. property bind variable syntax to assign or retrieve ActiveX property
values.

For example:

diten{’ ActXitem). QCX Spindial . spindialctrl. 1. Needl eposition: =
diten{’ ActXitem). QCX Spindial . spindialctrl. 1 Needl eposition + 1;

Act Xi t emis the name of the item, Spi ndi al . spi ndi al ctrl . 1 isthe name of
the ActiveX control server, and Needl eposi ti on is the name of the property.

The following code also works if your syst em cur sor _i t emis an ActiveX
control:

:formcursor_itemQCX spindial.spindialctrl.1 Needl position :=
:formcursor_item QCX spindial . spindialctrl. 1 Needl position + 1;
6.1.2.8.2 Example 2: getting ActiveX control properties

In Form Builder, you can use the property accessor functions and procedures to get
and set ActiveX properties.

For example:

t bl nane var char 2;
tbl name : = tabl e_pkg. Tabl eNane(:iten{’ bl k.Gtm).interface);

Tabl e_pkg is the name of the program unit created from the OLE Importer.

Tabl eNane is the name of the property accessor. Gbl k is the name of the block and
G t mis the name of the item.

6.1.2.8.3 Example 3: calling ActiveX control methods

This example gets a cell value from a Spread Table ActiveX control by using the
CGet Cel | ByCol Row method, which is provided in the SpreadTable package.

6-24 Guidelines for Building Applications

6.1 Working with OLE Objects and ActiveX Controls

DEQLARE
Qur_Row nunier ;
Qur_l nunier;
The QA E (bj QeQj;
BEG N
Qur_Row =SpreadTabl e. Qurrent Row(: | TEM' BLK | TM) . i nterf ace) ;
Qur_Qol : =SpreadTabl e. Qurrent Gol (: 1 TEM' BLK | TM) . i nterface);
The_QLE (j : =SpreadTabl e. Get Cel | ByGol RFow(: | TEM' BLK | TM) . i nterf ace,
Qr_Gl, Qr_Rw;
END,

Taking Advantage of Open Architecture 6-25

6.2 Using Foreign Functions to Customize Your Applications

You can customize and supplement your applications with foreign functions.

This section addresses:

= Section 6.2.1, "What are foreign functions?"
= Section 6.2.2, "The foreign function interface"
« Section 6.2.3, "Foreign function guidelines"
« Section 6.2.4, "Creating a foreign function”

« Section 6.2.5, "Foreign function examples"

6.2.1 What are foreign functions?

Foreign functions are subprograms written in a 3GL programming language that
allow you to customize your applications to meet the unique requirements of your
users.

Foreign functions can interact with Oracle databases, and both Forms Developer
and Reports Developer variables, items, columns, and parameters. You can also call
any external function, such as Windows DLLs or APIs.

6.2.1.1 When should I use a foreign function?
Foreign functions are often used to perform the following tasks:

Perform complex data manipulation.

Pass data to Forms Developer or Reports Developer from operating system text
files.

Manipulate LONG RAW data.

Pass entire PL/SQL blocks for processing by the server.
Set font and color attributes for applications.

Send mail directly from an application.

Display Windows help as part of your application.
Access the Microsoft Windows SDK.

Leverage low-level system services, such as pipes.

Control real time devices, such as a printer or a robot.

6-26 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

6.2.1.2 Foreign function types
You can develop three types of foreign functions:

6.2.1.2.1 Oracle Precompiler foreign functions An Oracle Precompiler foreign function
is the most common foreign function. Using the Oracle Precompiler, you can create
foreign functions that access Oracle databases as well as Forms Developer or
Reports Developer variables, items, columns, and parameters.

An Oracle Precompiler foreign function incorporates the Oracle Precompiler
interface. This interface enables you to write a subprogram in one of the following
supported host languages with embedded SQL commands: Ada, C, COBOL,
FORTRAN, Pascal, and PL/1I.

An Oracle Precompiler foreign function source file includes host programming
language statements and Oracle Precompiler statements with embedded SQL
statements. Precompiling an Oracle Precompiler foreign function replaces the
embedded SQL statements with equivalent host programming language statements.
After precompiling, you have a source file that you can compile with a host
language compiler.

6.2.1.2.2 Oracle Call Interface (OCI) foreign functions An OCI foreign function
incorporates the Oracle Call Interface. This interface enables you to write a
subprogram that contains calls to Oracle databases. A foreign function that
incorporates only the OCI (and not the Oracle Precompiler interface) cannot access
Forms Developer or Reports Developer variables, items, columns, and parameters.

Note: You can also develop foreign functions that combine both the ORACLE
Precompiler interface and the OCI.

6.2.1.2.3 Non-Oracle foreign functions A non-Oracle foreign function does not
incorporate either the Oracle Precompiler interface or the OCI. For example, a
non-Oracle foreign function might be written entirely in the C language. A
non-Oracle foreign function cannot access Oracle databases, or Forms Developer or
Reports Developer variables, items, columns, and parameters.

6.2.2 The foreign function interface

Both Forms Developer and Reports Developer use PL/SQL as their programming
language. In order to call a foreign function, such as a C function in a Windows
DLL, PL/SQL must have an interface to communicate with the foreign function.

You can communicate with your foreign function through two distinct interfaces,
either the Oracle Foreign Function Interface (ORA_FFI) or the user exit interface.

Taking Advantage of Open Architecture 6-27

6.2.2.1 The Oracle Foreign Function Interface (ORA_FFI)

ORA_FFI is a portable and generic mechanism for enabling Forms Developer or
Reports Developer to call 3GL routines from PL/SQL subprograms.

Foreign functions that are invoked from a PL/SQL interface must be contained in a
dynamic library. Examples of dynamic libraries include dynamic link libraries on
Microsoft Windows and shared libraries on UNIX systems.

6.2.2.2 User exit interface to foreign functions

The user exit interface is a platform-specific mechanism for enabling Forms
Developer or Reports Developer to call 3GL routines from PL/SQL subprograms.

The foreign functions that you invoke from a user exit interface must be contained
in a dynamic link library (. DLL) or linked with an application executable.

6.2.2.3 Comparing ORA_FFI and user exits

This section describes the advantages and disadvantages of using ORA_FFI and

user exits.

Foreign Function Advantage Disadvantage

User Exit « Userexits are linked to an « The most significant
executable. This “tight disadvantage to using user
binding” allows you to use exits is the maintenance
and take advantage of the burden. You must relink your
current database connection. user exit whenever you

modify your user exit or
upgrade Forms Developer or
Reports Developer.

« User exits are not generic;
they are platform-specific.

6-28 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

Foreign Function

Advantage

Disadvantage

ORA_FFI .

ORA_FFI isapure PL/SQL
specification. The ORA_FFI
specification exists within a
library (. PLL file), not within
a component of Forms or
Reports. When you upgrade
to a higher version of Forms
or Reports or modify the
foreign function, you don’t
have to modify or regenerate
the PLL file.

ORA_FFI is generic.

Both Forms and Reports
provide several ORA_FFI
packages (D2KWUTI L. PLL)
that allow you to access
libraries that are already
available (Windows API
functions).

If you are using ORA_FFI and
you are writing your own
external code modules with
Pro*C, you cannot use the
current open database
connection. You must open a
second connection.

You cannot pass complex
datatypes, such as structures
or arrays. For example, you
cannot use EXEC TOCLS
GET or EXEC TOOLS PUT to
interface with Forms
Developer or Reports
Developer.

6.2.3 Foreign function guidelines

This section provides guidelines for working with foreign functions.

Iltem

Recommendation

Which foreign function
interface should | use?

Use the Oracle Foreign Function Interface (ORA_FFI). ORA
FFI is a portable, generic, and requires only minor or no

maintenance

Can | perform screen 1/0
from a foreign function?

You should not perform host language screen 1/0 from a
foreign function. This restriction exists because the runtime
routines that a host language uses to perform screen 1/0
conflict with the routines that Forms Developer and Reports
Developer use to perform screen 1/0. However, you can
perform host language file 1/0 from a foreign function.

Which host language
should | use to write my
user exit?

Your host language is a matter of preference. However, C is the

recommended language.

Note: Some C runtime functions are not available in . DLL files.
For more information, refer to your compiler documentation.

Taking Advantage of Open Architecture 6-29

Iltem

Recommendation

Which precompiler should
| use to precompile my
user exit?

You should use Pro*C version 2.2.4 and 8.0.4.

When precompiling, be sure to specify the following MSVC
compiler flags:

Large, Segnent Setup: SS != DS, DSl oads on
function entry

Assume ‘extern’ and Uninitialized Data ‘far’
is checked Yes

In Windows Prolog/Epilogue, Generate
prolog/Epilogue for None

Do | have to recompile my
user exit when | upgrade
from a previous version of
Forms Developer or
Reports Developer?

Yes. User exits can create a maintenance burden especially if
you maintain several different executables, each with a
different set of user exits.

When you modify a user exit or upgrade to a higher version of
Forms or Reports, you must relink the user exit with the Forms
or Reports executables.

Can | deploy a foreign
function on the Web?

ORA_FFIl and user exits do not function on the Web. On web
deployments, foreign functions interface with the DLLs on the
server-side, not on the browser-side.

For more information about foreign functions, refer to the following publications:

ORACLE Precompiler
interface

Programmer’s Guide to the ORACLE Precompilers

Supported host languages

The Oracle Installation Guide for your operating system

Operating system-specific
requirements when
working with foreign
functions

Online help

OCl Oracle Call Interface Programmer’s Guide
Building DLLs Online help and your compiler documentation
ORA_FFI Online help

User Exits Online help

PL/SQL PL/SQL User’s Guide or online help

6-30 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

6.2.4 Creating aforeign function

This section provides detailed steps that describe how to create a foreign function
interface:

« Creating an ORA_FFI interface to a foreign function

« Creating a user exit interface to a foreign function

6.2.4.1 Creating an ORA_FFl interface to a foreign function

The following example creates a PL/SQL package called W nSanpl e. The
W nSanpl e package includes interfaces to the foreign function
Get PrivateProfil eString inthe dynamic library KRNL386. EXE.

Note: When you create an ORA_FFI interface to a foreign function, you perform
two basic steps. First, you create and associate a subprogram with a foreign function
(the dispatcher function). By associating a PL/SQL subprogram with a foreign
function, you can invoke the foreign function each time you call the associated
PL/SQL subprogram. Associating a foreign function with a PL/SQL subprogram is
necessary because both Forms Developer and Reports Developer use PL/SQL
constructs. Second, you create a PL/SQL function which passes the arguments to
the dispatcher function. The dispatcher function invokes the foreign function.

1. Create a package specification.

Your package spec must represent the library. It must also define the PL/SQL
function that you want to invoke.

For example:

PACKACE WnSanpl e | S

FUNCTI ON Get PrivateProfileString
(Section IN VARCHAR?,

Entry IN VARGHAR?,

Defaul tStr IN VARCHARZ,
ReturnBuf IN OJT VARCHARZ,

Buf Len IN PLS | NTEGER

Filename IN VARCHAR?)
RETURN PLS | NTEGER

B\D,

In this example, you call the W nSanpl e. Get Pri vat eProfil eString
PL/SQL function to invoke the Get Pri vat eProfi | eSt ri ng foreign function
in the dynamic library KRNL386. EXE.

Taking Advantage of Open Architecture 6-31

Note: You should check the parameters for the C function

Get PrivateProfil eString, and specify the matching PL/SQL parameter
types and the PL/SQL return types. The C datatype int is equivalent to the
PL/SQL parameter | N PLS | NTEGER and the PL/SQL return type PLS

| NTEGER. The C datatype char is equivalent to the PL/SQL parameter | N
VARCHAR2.

2. Define the library and its function handles.
For example:

PACKAGE BODY WnSanpl e 1S
I h_ KRNL386 CRA FHl . LI BHANDLETYPE,
fh GetPrivateProfileString CRA FFl . FUNCHANDLETYPE,

In this step, you declare the handle types for the library and the function. Later
you will load the library and register the function using ORA _FFI . LOAD _

LI BRARY and ORA _FFI . REA STER_FUNCTI ON. Each of these functions
returns a handle (a pointer) to the specified library and the function. ORA _

FFI . LI BHANDLETYPE and ORA_FFI . FUNCHANDLETYPE are the PL/SQL
datatypes for these handles.

3. Create the dispatcher function. The dispatcher function invokes your foreign
function.

For example:

FUNCTION i _GetPrivateProfileSring

(funcHandl e IN CRA FFl . FUNCHANDLETYPE,

Section IN QJI VARCHAR2,

Entry IN QUT VARCHAR?,

DefaultStr IN QJT VARCHARZ,

ReturnBuf | N QUT VARCHAR2,

Buf Len I N PLS | NTEGER

Fil enane | N QJT VARCHAR2)

RETURN PLS | NTEEER

PRAGWA INTERFACH C i _GetPrivateProfil eString, 11265);

The first argument of the dispatcher function that calls a foreign function must
have at least one parameter, and the first parameter must be a handle to the
registered foreign function that the subprogram invokes.

When you call the dispatcher function from the PL/SQL function, you pass the
function handle as defined in step 2 (f h_Get Pri vat eProfil eStri ng).

6-32 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

When the dispatcher function gets called, the PRAGVA statement passes control

to a memory location (11265 as specified in the above code) that communicates
with the dynamic library.

Create the PL/SQL function that calls the dispatcher function. This PL/SQL
function is the function that you defined in the package spec (Step 1).

For example:

FUNCTI ON Get PrivateProfileString
(Section IN VARCHAR2,
Entry IN VARCHAR?,
DefaultStr IN VARCHAR?,
ReturnBuf IN QUT VARCHAR?,
Buf Len IN PLS | NTEGER

F lename IN VARCHAR?)
RETURN PLS INTEEER | S

Section_| VARCHAR2(512) ;= Section;
Entry_ | VARCHAR2(512) 1= Entry;
DefaultStr_| VARCHAR2(512) := DefaultSr;
ReturnBuf | VARCHAR?(512) : = RPAD(SUBSTR(NWVL
(ReturnBuf,” '), 1,512),512, R 0));
Buf Len | PLS | NTEGER ;= BufLen;
Filenane_| VARHAR2(512) := Filenang;
rc PLS | NTEGER
BEA N

rc :=i_GetPrivateProfileXtring
(fh GetPrivateProfil exring,
Section |,
Entry |,
DefaultSr_1,
Ret ur nBuf _|I,
Buf Len |,
F lenane_|);
Ret urnBuf := ReturnBuf I;
RETURN (rc);
END,

This is the PL/SQL function you call from your application. This function
passes the arguments to the dispatcher functioni _
GetPrivateProfileString,theni GetPrivateProfil eStringinvokes
the C function Get Pri vat eProfil eStri ng in KRNL386. EXE. Recall that the
first argument of a dispatcher function must be a function handle. Here f h_

Get PrivateProfil eString isused to pass the function handle declared in
Step 2.

Taking Advantage of Open Architecture 6-33

5. Build the package body.
The package body must perform four steps to initialize a foreign function:
« Load the library
« Register the functions that are in the library
« Register the parameters (if any)
« Register the return type (if any)

For example:

BEG N

/* Load the library .*/

| h_KRNL386 : = CRA FFI.LQAD LI BRARY
("location of the DLL here’,’ KR\L386. EXE);

/* Register the foreign function. */
fh GtPrivateProfileString : = CRA FFl . REQ STER FUNCTI ON(I| h_
KRN\L386, ' Get PrivateProfil eString , GQRA FH . PASCAL_STD);

/* Register the paraneters. */
CRA FFI . REQ STER PARAMETER
(fh GetPrivateProfileString, GRA FFH .C CHAR PTR; CRA FFl. REQ STER_
PARAMETER
(fh GetPrivateProfileString, GRA FFH .C CHAR PTR; CRA FFl. REQ STER_
PARAMETER
(fh GetPrivateProfileString, GRA FH .C CHAR PTR; CRA FFl. REQ STER_
PARAMETER
(fh GetPrivateProfileString, GRA FFH.C OHAR PTR);

CRA FFl . REQ STER PARAMETER
(fh_ GetPrivateProfileString, GRA FF . CINI); CRA FFl. REA STER PARAMETER
(fh GetPrivateProfileString, CGRA FH .C GHAR PTR);

/* Register the return type. */

CRA FH . REQ STER RETURN(fh_GetPrivateProfil eSring, GRA FF . C INI);
BEND WnSanpl €;

6-34 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

Recall that you declared two handles for the library and the function in Step 2.
In this step, you assign values to the handles by using the ORA FFI . LOAD _
LI BRARY and ORA_FFI . REG STER_FUNCTI ON functions.

ORA _FFI . LOAD LI BRARY takes two arguments: the location and the name of
the dynamic library. ORA_FFI . REG STER_FUNCTI ON takes three arguments:
the library handle for the library where the function resides, the function name,
and the calling standard. The calling standard can be either C_STD (for the C
calling standard) or PASCAL_ STD (for the Pascal calling standard).

After you load the library and register the function, you must register the
parameters and return types (if there are any).

ORA_FFI . REG STER_PARAMETER and OCRA_FFI . REG STER_RETURN take
two arguments each: the function handle and the argument type.

6. Within Forms Developer or Reports Developer, create a library file (. PLL) that
includes your package, then attach it to your application.

7. Call the foreign function from your application.
For example:

X 1= Wnsanpl e. Gt PrivateProfil eSring
("CGacle’, '"CRAQLE HOME , '<Not Set>', 'Value’', 100, 'oracle.ini’);

6.2.4.2 Creating a user exit interface to a foreign function

User exits are not generic; they are platform-specific. Some details of implementing
user exits are specific to each operating system. The following example describes
how to create a user exit on Windows 95.

On Microsoft Windows, a foreign function that can be invoked from a user exit is
contained in a dynamic link library (. DLL). A DLL is a library that loads into
memory only when the contained code is invoked.

6.2.4.2.1 Example: creating a user exit on Windows 95

The following example creates a foreign function that adds an ID column to the
EMP table.

This example uses several sample files, including:

« UE_SAMP.MAK is a project file that includes the | APXTB control structure.
Building this project generates UE_SAMP. DLL.

« IFXTB60.DLL is the default file containing foreign functions that can be
invoked from a user exit interface. This file is a DLL that ships with Form

Taking Advantage of Open Architecture 6-35

Builder, and does not initially contain user-defined foreign functions. This file is
placed in the ORACLE_HOVE\ Bl Ndirectory during installation. When you
create new foreign functions, replace the existing IFXTB60. DLL file with a new
IFXTB60. DLL.

« UE_XTB.C is a template source file for creating an | APXTB control structure.
UE_XTB. Ccontains an example of an entry for the | APXTB control structure.
Modify this file and add your foreign function entries.

« UE.H is a sample header file that is used to define the | APXTB control structure.

« IFXTB60.DEF contains definitions you need to build your own DLL. Use
IFXTB60. DEF to export foreign functions. IFXTB60. DEF contains several export
statements. You should not modify these export statements as they are used by
Form Builder to access the user exit interface.

« UEZ.OBJisan. OBJ file that you link to your own . OBJ files.

The user exit sample files are located in your ORACLE_HOME directory (for example,
C: \ ORAW NI95\ FORMS60\ USEREXI T).

1. Write a foreign function.

For example, create a text file called UEXI T. PC, then add the following:

I* BEXT.PCfile */
[* This foreign function adds an ID colum to the BW table. */

#i fndef LE
#i ncl ude "ue. h"
#endi f

fndef WNDLL

#defi ne SQLCA STCRAGE LASS extern

#endi f

EXEC SQ | NOLUCE sql ca. h;

void Add®l umn() {

EXEC SQL alter table BP add | D varchar(9);
}

2. Precompile the foreign function with the Pro*C precompiler.

For example, use Pro*C to precompile the UEXI T. PCfile. When you precompile
UEXI T. PC, Pro*C creates a C file called UEXI T. C.

Note: When precompiling, be sure to specify the following MSVC compiler
flags:

Large, Segnment Setup: SS != DS, DSl oads on function entry

6-36 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

Assume ‘extern’ and Uninitialized Data ‘far’ is checked Yes

In Windows Prolog/Epilogue, Generate prolog/Epilogue for
None

Create your header files.

Your header file must define your foreign function.

For example, modify the sample header file, UE.H, by adding the following:
extern void AddCol um();

Create the IAPXTB control structure.

For example, modify the sample file, UE_XTB.C, by adding an include
statement for UE.H (# include “ue.h”) , the name of the user exit (Add_
ID_Column) , the name of the foreign function (AddColumn) , and the
language type(XITCC).

#i fndef UE

#i ncl ude "ue. h"

#endi f /* LE */

#i ncl ude "ue_sanp. h"

/* Define the user exit table */

exitr iapxtb[] = { /* Holds exit routine pointers */
"Add_|I D Gol umm", Add@ol umm, X TGG
(char *) 0, 0, O /* zero entry marks the end */

}; /* end iapxtbh */

Build your DLL. The steps for building a DLL vary depending on your
particular compiler. For more information, refer to your compiler
documentation.

For example, using your compiler, create a project that contains: UE_SAMP.MAK
IFXTB60.DEF, UEZ.OBJ, UE_XTB.C, and UEXIT.C .

Before building your DLL, you must link the following files:

LIBC LI B

CQLDNAMES

C \ CRAWND5\ FCRVB60\ USEREX T\ | FRB0. LI B
C \ CRAWND5\ PRX20\ USEREXI T\ SQLLI B18. LI B
C \ CRAWNB5\ PRX20\ USEREXI T\ SQXLI B18. LI B

Taking Advantage of Open Architecture 6-37

After building the UE_SAMP. MAK project, the result isa DLL named UE_
SAMP. DLL. Add the UE_SAMP. DLL entry to the list of DLLs defined by the
FORVS60 USEREXI TS parameter in the registry.

Alternatively, you can rename UE_SAMP. DLL to IFXTB60. DLL, backup the
IFXTB60. DLL in the C: \ ORAW N95\ BI N directory, and copy the new
IFXTB60. DLL to the C: \ ORAW N95\ Bl Ndirectory.

6. Invoke the foreign function from a user exit.

For example, create a When-Button-Pressed Trigger that calls the foreign
function from a user exit.

The following statement demonstrates how to invoke the AddCol unn foreign
function by specifying the user exit name Add_I D_Col umm in the USER_EXIT
built-in:

[* Trigger: Wen-Button-Pressed */
USER EXI T(" Add_I D Gol unm’) ;

6.2.5 Foreign function examples
This section includes several examples that describe how to use foreign functions.

6.2.5.1 Using ORA_FFI to call Windows help

/* WnHel p GRA FFHI. */
/* */
/* */
[* Wsage: WnHel p. WnHel p(hel pfil e VARCHAR?, */
/* command VARCHAR?, */
/* data {VARCHAR?/ PLS | NTEGER See Bel ow}) */
/* */
/* command can be one of the fol | ow ng: */
/* */
/* " HELP_| NDEX Hel p Gontent's */
/* " HELP_GONTENTS " */
/* " HELP_GONTEXT Context Key (See bel ow) */
/* " HELP_KEY' Key Search */
/* " HELP_PARTI ALKEY' Partial Key Search */
/* "HP QT Qi t */
/* */
/* data contains a string for the key search or a nuneric context */
/* val ue if using topics. */
/* */
[* Wnhel p. Wnhel p(’ C\ CRAW N5\ TOOLS\ DAXBO0\ US\ | F60. HLP */

6-38 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

/*
/*
/*

" HELP_PARTI ALKEY ,
"CRA FFL)

*/
*/
*/

/* The conment ed sections replace the line belowif using HELP_QONTEXT keys */

PACKAGE WnHelp IS

FUNCTI ON WnHel p(hel pfile | N VARCHAR?,
command | N VARCHAR?,
data I N VARCHAR?)
RETURN PLS | NTEGER

END,

PACKAGE BADY WnHelp IS

I h_USER ora_ffi.libHandl eType;
fh WnhHel p ora ffi.funcHandl eType;

FUNCTI ON i _WnHel p(funcHandl e I N ora_ffi.funcHandl eType,

hwnd IN PLS | NTEGER
hel pfile I N QJI VARCHAR?,
command IN PLS | NTEEER
dat a IN QJT VARCHAR?2)
RETURN PLS | NTEGER

PRAGVA | NTERFACH C i _Wniel p, 11265) ;

FUNCTI ON WnHel p(hel pfile | N VARCHAR?,
command | N VARCHAR?,
data I N VARCHAR?)
RETURN PLS | NTEGER

1S
hwnd_| PLS | NTEGER
hel pfile | VARCHAR2(512) : = hel pfil e;
command | PLS | NTECGER
data | VARCHAR2(512) : = datga;
rc PLS | NTECER

FUNCTI ON Hel p_Gonvert (command | N VARCHAR?)
RETURN PLS | NTEGRR

IS
BEG N
/* The wi ndows. h definitions for command */
[* HELP_GONTEXT 0x0001 */
/[* HAP QU T 0x0002 */
[* HELP_I NDEX 0x0003 */

Taking Advantage of Open Architecture

6-39

/* HELP_GONTENTS 0x0003 */
/* HELP_HELPONHELP 0x0004 */
/* HELP_SETI NDEX 0x0005 */
/* HELP_SETGONTENTS 0x0005 */
/* HELP_GONTEXTPCPUP 0x0008 */
/* HELP_FCRCEFI LE 0x0009 */
/* HELP_KEY 0x0101 */
/* HELP_GOMVAND 0x0102 */
/* HELP_PARTI ALKEY 0x0105 */
/* HELP_MULTI KEY 0x0201 */
/* HELP_SETWNPCB 0x0203 */

if command = ' HELP_QONTEXT then return(l); end if;
if coomand = ' HELP_KEY then return(257); end if;
if coomand = ' HELP_PARTI ALKEY' then return(261); end if;
if comand =" HELP QU T then return(2); end if;
/* If nothing el se go to the contents page */
return(3);
END,
BEA N
hwnd_| :=
TO PLS | NTEGER Get _I tem Property(nane_i n(’ SYSTEM ORSCR | TEM) , WNDON.
HANDLE)) ;
command_| := Hel p_Convert (comand) ;
rc :=i_WnHel p(fh WnHel p,
hwnd_1 ,
hel pfile |,
command_| ,
data l);
RETURN (rc);
BEND ;
BEA N
BEA N

Ih_USER :=ora ffi.find library(’ USER EXE);

EXCEPTI ON WEN ora ffi. FFl_ERROR THEN

Ih_USER := ora ffi.load |ibrary(NLL,’ USER EXE);
BEND ;

fh WnHelp : =
ora ffi.register_function(lh USER'WnhHel p',ora ffi.PASCAL _STD);

6-40 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

ora ffi.register_paraneter(fh_WnHel p, GRA FF . CINI); [* WD */

ora ffi.register_paraneter(fh_ WnHel p, (RA FH.C HAR PTR); /* LPCSIR */

ora ffi.register_paraneter(fh_WnHel p, GRA FFH . CINI); /[* UNT */

ora_ffi.register_paraneter(fh_WnHel p, (RA FH .C (HAR PTR); /* DICRD */

ora_ffi.register_return(fh_WnHel p, GRA FH .CINI); /* BOOL */
BEND WnHel p;

6.2.5.2 Using ORA_FFI to open the File Open dialog on Windows

PAOKAZE QaDg IS
FUNCTITON OaMiltiF leD g
(Title IN VARCHAR?,
Filter IN VARCHAR?,
Dr IN VARCHAR?,
FileSring IN QJI VARHAR?)
RETURN PLS | NTEGER
FUNCTION O aS ngleFi | eD g
(Title IN VARCHAR?,
Filter IN VARCHAR?,
Or IN VARCHAR?,
FileSring IN QJI VARHAR?)
RETURN PLS | NTEGER
BEND O al g;
PACKAGE BDDY QabDg IS

Ih_RADLG ora ffi.libHandl eType;
fh GaMiltiFleD g ora ffi.funcHandl eType;
fh GaSngleFiledg ora ffi.funcHandl eType;
FINCTITON i _QaMiltiFileOg
(funcHandl e IN ora_ffi.funcHandl eType,
Title IN QJT VARCHAR?,
Filter IN QJI VARCHAR?,
Dr INQJ VARCHAR?,
FileSring IN QJI VARHAR?)
RETURN PLS | NTEGER
PRAGVA | NTERFACE(C i _QaMil tiFiled g, 11265);
FUNCTITON OQaMiltiF leD g
(Title IN VARCHAR?,
Filter IN VARCHARZ,
Or IN VARCHAR?,
FileSring IN QJI VARHAR?)
RETURN PLS INTEGER | S

Taking Advantage of Open Architecture 6-41

Title | VARGHAR2(128) := RPAD(SUBSTRNVL(Title,’ Qpen’),1,128),128 GHR0));

Filter_| VARCHAR2(128) := RPAD(SUBSTR NVL
(Flter,” Al Fles (*.*)|*.*|"),1,128), 128, AR 0));
Or_| VARHAR2(256) := RPAD(SWBSTRNWL(Dr,’ "), 1,256), 256, GRO0));
FleXring_ |l VARCHAR2(2000) := RPADSIBSTRNVL(FileXring,’
"), 1, 2000), 2000, CHR(0)) ;
rc PLS | NTEGER
BEA N
rc :=i_QaMiltiFleDg(fh QaMiltiFleOg,
Titlell,
Filter_ |,
Or |,
FileXring_l);
FileSring := FleSring |;
RETURN (rc);
H\D.

FUINCTION i _QaSngleFleDg
(funcHandl e IN ora_ffi.funcHandl eType,
Title N QJT VARCHAR?,

Filter IN QU VARCHARZ,

Or INQJ VARCHAR?,
FileSring IN QJI VARHAR?)
RETURN PLS | NTEGER

PRAGVA | NTERFACE(C i _QaSi ngl eFi | ed g, 11265) ;
FUNCTION O aS ngleFi | eD g

(Title IN VARHAR?,

Filter IN VARCHAR?,

Or IN VARGHAR?,
FileSring IN QJI VARHAR?)
RETURN PLS INTEGRR | S

Title | VARCHAR2(128) := RPAD(SUBSTRNV(Title, Qpen’'), 1,128),128 AR 0));
Filter_| VARCHAR2(128) := RPAD(SUBSTR NVL
(Flter,” Al Fles (*.*)|*.*|"),1,128), 128, AR O0));
Or_| VARHAR2(256) := RPAD(SWBSTRNWL(Dr,’ '), 1,256), 256, GRO0));
FleXring_ | VARCHAR2(2000) := RPADSIBSTRNWL(FileXring,’
"), 1, 2000), 2000, CHR(0)) ;
rc PLS | NTEGER
BEA N
rc :=i_QaSngleFledg(fh OaSngl eFledg,
Titlel,
Filter_ |,
Or I,
FileXring_l);
FileSring := FleSring |;
RETURN (rc);

6-42 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

BEA N
BEA N
Ih QRADLG :=ora ffi.find library(’ CQRADLGDLL');
EXCEPTI ON WHEN ora_ffi. FFl _ERRCR THEN
Ih_ RADLG :=ora ffi.load_library(NJLL, CRADLGDLL');
BND ;
fh GaMiltiFileDg :=ora ffi.register_function

(lTh CRADLG'CGaMiltiFleD g ,ora ffi.PASCAL_STD);
ora ffi.register_paraneter(fh_ QaMitiFledg, CRA FFH.C HAR PTR;
ora ffi.register_paraneter(fh_ QaMiltiFledg, CRA FFH.C HAR PTR;
ora_ffi.register_paraneter(fh_QaMiltiFledg, GRA FH.C GHAR PTR;
ora_ffi.register_paraneter(fh_QaMiltiFledg, GRA FH.C GHAR PTR;
ora_ffi.register_return(fh_GaMiltiFleDg, CGRAFH.CLONG;
fh GaSngleFledg :=ora ffi.register_function

(lh CRADLG'GaSngleFileDg ,ora ffi.PASCAL STD;
ora ffi.register_paraneter(fh_QaSngleFlelg CGRA FFl.C HAR PTR);
ora_ffi.register_paraneter(fh_QaSngleFileDg, CGRA FFl.C CHAR PTR);
ora_ffi.register_paraneter(fh_QaSngleFleDg, CGRA FFl.C HAR PTR);
ora_ffi.register_paraneter(fh_QaSngleFleDg, CGRA FFl.C HAR PTR);
ora ffi.register_return(fh_GaSngleFledg, CRA FFl.C LONG;

B\D O al g;

6.2.5.3 Using ORA_FFI to call Unix(SUN) executables with a STDIN/STDOUT type
interface
[* Qopyright (c) 1997 by Qacle Gorporation */
/*
NAMVE
ora_pipe_i o_spec.sgl - Specification for access to Lhix P pe nechani sm
DESCR PTI ON
Denonstration of howto use the GRA FFl Package to provi de access to the
Lhi x Pipe C functions.
PUBLI C FUNCTI N[9)
popen - Qpen the Pipe command
get line - Gt aline of Text froma F pe
put_line - Put aline of Text into a P pe

pclose - dose the Pipe
is_open - Determine whether the Fipe descriptor is open.
NOTES

In Oder to use these routines you could wite the follow ng
PL/ SQ. Code:

-- Exanple of CGalls to ora pipe_io functions

Taking Advantage of Open Architecture 6-43

DEQLARE
streamora pipe_io. P PE
buf fer VARCHAR2(240) ;

BEA N
stream:= ora_pipe_io.popen(’lIs -1", ora_pipe_i o. READ MIE);
| oop
exit when not ora_pipe_io.get_|line(stream buffer, 240);
:directory.file := buffer;
down;
end | oop;

ora_pi pe_i o. pcl ose(strean);
BEND
MDHED (MIDOYY)
snel ark 08/05/94 - Qeation
*/

PACKAGE ora pipe_iois

/*

** Argurents to popen.

*/

READ ME constant VARCHAR2(1) :="'r’;
WR TE_ MDE constant VARCHAR2(1) :="Ww;
[* e TYPEPPE ----------- */
/*

** Public Type PIPE - Handl e to a Uh*x pi pe
* %
** Do not nodify the private nmenbers of this type
*/
TYPE P PE i s REGCRD
(file_handl e CRA FF . PQ NTERTYPE,
i s_open bool ean,
read_ wite node VARCHAR2(1));

[* ceeeeeee - FUNCTI ON PCPEN ----------- */
/*
** Function PCPEN -- (pen a Wh*x pi pe cormand

* %

** @ ven a Lhix command to execute and a P pe read/wite node i n which
** to execute the instruction this Function wll execute the Command

6-44 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

** and return a handl e, of type PPPE to the resulting | nput/Qutput
** stream

** The command to be executed is [imted to 1024 characters.
*/
FUNCTI ON popen(conmand i n VARCHAR2,
ctype in VARCHAR?)
RETURN P PE

[* ceeeeee - PROCEDURE PALCBE ----------- */
/*
** Procedure POLCEE -- dose a pipe

* %

** (ose a previously opened pi pe.

* %

** Rai ses a VALUE ERRCR exception if incorrect argunents are passed.
*/

PROCEDURE pcl ose(streamin out Pl PE);

[* ceeeeeee - FUNCTION GET_LINE ----------- */

/*

** Function CGET_LINE

** .. Gt aline of text into a buffer fromthe read nmode pi pe.

* %

** Gt aline of text froma previously opened pi pe.
* %
** Rai ses a VALUE ERRCR exception if incorrect argunents are passed.
** For exanpl e
** if you pass a pipe which has never been opened (using popen)
*/
FUNCTI ON get _line(streamin out P PE
s in out VARCHAR?,
nin PLS INTEGER
RETURN BOOL_EAN

[* e PROCEDURE PUT_LINE ----------- *
/*
** Procedure PUT_LINE -- Put aline of text into a a wite node pi pe.

* %

** Put aline of text into a previously opened pi pe.
* %

** Rai ses a VALUE ERRCR exception if incorrect argunents are passed.

Taking Advantage of Open Architecture 6-45

** For exanpl e
** if you pass a pipe which has never been opened (using popen)
* %

** The Internal buffer for the string to witeis linmted to 2048 bytes

*/
PROCEDURE put _line(streamin out M PE
s in VARHAR?) ;
[* ceeeeeee - FUNCTION IS CPEN ----------- */
/*

** Function | S GPEN -- Determnes whether a pipe is open.
* %
** Returns TRE if the pipe is open, FALSE if the pipe is cl osed.
*/
FUNCTION i s_open(streamin Pl PE)
RETURN BOOLEAN
BND,

/* ora_pipe_io_body.sgl - Body of Package for access to Uhix P pe nechani sm
CESCR PTION
Denonstration of howto use the GRA FFl Package to provi de access to the
Lhi x Pipe C functions.
PUBLI C FUNCTI QN 9)
popen - (pen the P pe command
get line - Gt aline of Text froma F pe
put line - Put aline of Text into a Pipe
pclose - dose the Pipe
is_open - Determine whether the Pipe descriptor is open.
PR VATE FUNCTI ON(S)
i cd_popen, icd_fgets, icd_fputs, icd pclose
NOTES
MDFEBED (MMDDYY)
sntl ark 11/02/94 - Mdified for production rel ease changes to CRA FFl .
snel ark 08/05/94 - Qeation
*/

PACKAGE BCDY ora pipe iois
Ih_libc oraffi.libHandl eType;
fh_popen ora ffi.funcHandl eType;
fh_pclose ora ffi.funcHandl eType;
fh fgets ora ffi.funcHandl eType;
fh fputs ora ffi.funcHandl eType;

A FUNCTI ON | @D PCPEN === ------ *]

6-46 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

/*
** Function | CD PCPEN -- Interface routine to Cfunction popen
* %
** This function acts as the interface to the popen function in
** |ibc.
*/
FUNCTI ON i cd_popen(funcHandl e in ora ffi.funcHandl eType,
command in out VARCHAR?,
ctype in out VARCHAR2)
return CRA FFl. PQ NTERTYPE

pragna interface(c, icd_popen, 11265);

R PROCEDURE | @D POLCBE ----------- */
/*
** Function | CD POLCSE -- Interface routine to C function pcl ose

* %

** This function acts as the interface to the pclose function in

** |ibc.

*/

PROCEDURE i cd_pcl ose(funcHandl e in ora ffi.funcHandl eType,
streamin out CRA FFl.PQ NTERTYFE);

pragna interface(c, icd_pclose, 11265);

[* ceeeeeee - FUNCTION | D FCETS ----------- */
/*
** Function | CD FCGETS -- Interface routine to Cfunction fgets

* %

** This function acts as the interface to the fgets function in
** |ibc.
*/
FUNCTI ON i cd_fgets(funcHandl e in ora ffi.funcHandl eType,
s in out VARCHAR2, n in PLS | NTEGER
streamin out CRA FFl . PQ NTERTYPE)
RETURN CRA FFl . PO NTERTYPE,

pragma interface(c, icd_fgets, 11265);

[* e FUNCTI ON | CD FPUTS === === ----- *
/*
** Function | CD FPUTS -- Interface routine to Cfunction fputs

Taking Advantage of Open Architecture 6-47

** This function acts as the interface to the fputs function in
** |ibc.
*/
PROCEDURE i cd_fputs(funcHandl e in ora ffi.funcHandl eType,
s in out VARCHAR?,
streamin out CRA FFl . PQ NTERTYPE) ;

pragma interface(c, icd_fputs, 11265);

[* e FUNCTI ON PCPEN ----------- */
/*
** Function PCPEN -- pen a Wh*x pi pe command
*/

FUNCTI ON popen(command i n VARCHAR2,
ctype in VARHAR?)
RETUNPPE s

/*

** Take a copy of the argunents because we need to pass them
** N QJT to icd_popen, but we really don't want people to have
** to call our routines in the same way.

*/
cnd varchar2(1024) : = command,;
cnode varchar2(1) := ctype;
stream Pl PE

BEG N

if (cnrode not in (READ MDE, WR TE MXIE))
or (crmode is NULL)
or (cmd is NULL)

then
rai se VALLE ERRCR
end if;
streamfile_handl e :=icd _popen(fh_popen, crd, cnode);

streamis_open : = TRE
streamread_wite _node : = ctype;
return(strean);

END popen;

6-48 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

** Procedure POLCEE -- dose a pipe

*/

PROCEDURE pcl ose(streamin out PIPE) is

BEA N
i cd_pcl ose(fh_pcl ose, streamfile_handl e);
streamis_open : = FALSE

END pcl ose;

[* e FUNCTI ON GET_LINE ----------- */

/*

** Function GET_LINE -- Get a line of text into a buffer
** fromthe read node pi pe.
*/
FUNCTI ON get _line(streamin out P PE
s inout VARHAR2, n in PLS | NTEGER
RETURN BOOLEAN i s
buf fer CRA FH . PO NTERTYPE,
BEA N
if (n<=0)
or (streamis_open = FALSE)
or (streamis_open is NLL)
or (streamread wite node <> READ MIE)
then
rai se VALLE ERRCR
end if;

/*
** |nitialise the Buffer area to reserve the correct anount of space.
*/

s:=rpad(’ ', n);

buffer :=icd fgets(fh_fgets, s, n, streamfile_handl e);
/*
** Determne whether a NULL poi nter was returned.
*/
return (ora ffi.is null_ptr(buffer) = FALSE);
END get _|ine;
A LR PROCEDURE PUT_LINE ----------- */

/*
** Procedure PUT_LINE -- Put aline of text into a a wite node pi pe.

Taking Advantage of Open Architecture 6-49

*/
PROCEDURE put _line(streamin out M PE
s in VARHAR?) is
buf fer varchar2(2048) :=s;
BEG N
if (streamis_open = FALSE)
or (streamis_open is NULL)
or (streamread wite node <> V\R TE MDE)
then
rai se VALLE ERRCR
end if;

icd fputs(fh_fputs, buffer, streamfile_handl e);
buf fer := chr(10);
icd fputs(fh_fputs, buffer, streamfile_handl e);

END put _l i ne;

A FUNCTION IS CPEN ----------- */

/*

** Function | S GPEN -- Determines whether a pipe is open.
*/

FUNCTION i s_open(streamin Pl PE)
RETURN BOOLEAN i s
BEA N
return(streamis_open);
END i s_open;

BEA N
/*
** Declare a library handle as libc. (Internal so NULL, NULL)
*
/
Ih_libc :=ora ffi.load |ibrary(NJLL, NJLL);
if oraffi.is null _ptr(lh_libc) then
rai se VALLE ERRCR

end if;

/*

** Regi ster the popen function, it's return type and argunents.
*/

fh_popen := ora ffi.register_function(lh_libc, 'popen’);
if ora ffi.is null_ptr(fh_popen) then
rai se VALLE ERR(R
end if;
ora ffi.register_return(fh_popen, CRA FFl.C DO D PTR;

6-50 Guidelines for Building Applications

6.2 Using Foreign Functions to Customize Your Applications

ora ffi.register_paraneter(fh_popen, CRA FFl.C HAR PTR);
ora ffi.register_paraneter(fh_popen, CRA FFl.C OHAR PTR;

/*
** Register the pclose function, it’s return type and ar gunents.
*/
fh pclose := ora ffi.register_function(lh_libc, ’'pclose);
if ora ffi.is null_ptr(fh_pclose) then
rai se VALLE ERRCR
end if;
ora ffi.register_return(fh_pclose, GRA FFl.CMAD);
ora ffi.register_paraneter(fh_pclose, CGRA FH.C DD PTIR;

/*
** Register the fgets function, it's return type and argunents.
*/
fh fgets := ora ffi.register_function(lh_ libc, 'fgets');
if ora ffi.is null_ptr(fh_fgets) then

rai se VALLE ERR(R
end if;
ora ffi.register_return(fh fgets, CRA FFl.C DO D PTR;
ora ffi.register_paraneter(fh_fgets, CRA FFl.C OHAR PTR;
ora ffi.register_paraneter(fh fgets, CRA FFl.CINI);
ora ffi.register_paraneter(fh_fgets, CRAFFl.CD/OD PIR;

/*
** Register the fputs function, it's return type and argunents.
*/
fh fputs := ora ffi.register_function(lh_ libc, 'fputs');
if ora ffi.is null_ptr(fh_fputs) then
rai se VALLE ERR(R
end if;
ora ffi.register_return(fh_fputs, CRAFF.CMAD);
ora ffi.register_paraneter(fh_fputs, CRA FFl.C OHAR PTR);
ora ffi.register_paraneter(fh fputs, CRA FFl.CDVOD PIR;

BEND ora_pi pe_i o;

Taking Advantage of Open Architecture 6-51

6.3 Using the Open API to Build and Modify Form Builder Applications

This section describes the non-interactive, programmatic method for building and
modifying Form Builder applications. It includes these topics:

« Section 6.3.1, "What is the Open API?"

= Section 6.3.2, "Guidelines for using the Open API"
= Section 6.3.3, "Using the Open API"

« Section 6.3.4, "Open APl examples"

6.3.1 What is the Open API?

The Open API is an advanced Form Builder feature for C/C++ developers that
want the power and flexibility to create or modify form modules in a
non-interactive environment.

Note: Before using the Open API, you should have a thorough understanding of
Form Builder objects and their properties and relations.

6.3.1.1 When should | use the Open API?

Use the Open APl when you want to quickly propagate development changes to a
large number of form modules. You might, for example, use the Open API to
update your applications to the current corporate standards for look and feel. This
could involve updating hundreds for form modules.

You can also use the Open API to:
« Compile a set of forms
« Collect dependency information

« Write your own documentation

6.3.1.2 Open API header files

The Open API consists of one C header file for each Form Builder object. There are
34 Form Builder objects (see the figure). These objects correspond to the Form
Builder objects that you are familiar with at design-time. Each header file contains
several functions and macros that you use to create and manipulate Form Builder
objects.

6-52 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

Form module Object library Menu module

|
| Object library tabs |

Iﬂanu Object Program visual

group unit attribute

Menu Attached Property
parameter library class

Menu Object group

item child

| Alert | | Block| | Editors | | LOV | Program Record |Trigger | |Window |

unit group

Attached

library

Canvas Form Object Property Report Visual

parameter group class attribute

LOV column Record group column
mapping specification

Object group Trigger
child

[]
Graphics| | Tab page

object canvas
I I I I
Data source | |Data source | Iltem | |Relation| |Trigger |
argument column
[]
Trigger Radio
button

Taking Advantage of Open Architecture 6-53

6.3.1.3 Open API properties
Within the Open API, you manipulate Form Builder objects by setting object
properties.

Open API properties have their own unique names, such as D2FP_FONT_NAM
These properties correspond to the Form Builder properties that you are familiar
with at design-time.

A property can be one of the following: Boolean, Text, Number, Object, or Blob.

The table below lists some common item properties with their corresponding Open
API equivalents.

Open API Property Form Builder (design-time) Property
D2FP_ACCESS KEY Access Key

D2FP_BEVEL_STY Bevel

D2FP_CNV_NAM Canvas

D2FP_ENABLED Enabled

D2FP_FONT_NAM Font Name

D2FP_HEI GHT Width/Height

D2FP_X POS X Position

D2FP_Y _POS Y Position

6.3.1.4 Open API functions and macros

You use Open API functions and macros to create, destroy, duplicate, subclass, get,
and set object properties.

For example, to determine an item’s font size, use the D2FI TM5_FONT_SI Z macro:
d2fitng_font_siz(ctx, obj, val);

This macro returns the value of the Font Size property of the item object as type

number.

To set a text item property, use the D2FI TMST_SETTEXTPROP function:
d2fitnst_Set Text Prop(d2fctx *pd2fctx, d2fitm*pd2fitm ub2 pnumtext *prp);

6-54 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

This function sets the value of the specified item text property. You specify a pointer
to the context in pd2f ct x, the item in pd2f i t m the property number in pnum and
a handle to the text value in pr p.

6.3.2 Guidelines for using the Open API

When working with the Open API, consider these guidelines:

Iltem Recommendation

File Backups The Open API is non-interactive; validation and error checking
are not supported. Before using the Open API, you should
backup your form modules (. FMBs).

Creating a relation object ~ When creating a relation object, you must:
« Create the object.
« Setrelation object properties.

« Call thed2f r el up_Updat e function to instantiate the
object.

6.3.3 Using the Open API

This section provides detailed steps that describe how to create and modify Form
Builder modules using the Open API.

6.3.3.1 Creating and modifying modules using the Open API
To create or modify a Form Builder module:

1. Include the appropriate C header files in your C source code.
2. Make calls to the desired APIs in your C source code.
= Initialize the context structure.

« Makel oad function calls to open an existing form module, menu module,
or object library.

= Make the necessary Open Forms API function calls to perform the desired
operations, including connecting to an existing database, if required.

« Generate an . FMX or . MMX compiled form using the appropriate
Conpi | eFi | e() function.

Taking Advantage of Open Architecture 6-55

« Make the required function calls to save the associated module (for
example, d2f f ndsv_Save() for a form module, d2f mdsv_Save() fora
menu module, or d2f ol bsv_Save() for an object library).

« Finally, call the context destroy function, d2f ct xde_Destroy(), to
destroy the Open Forms API context. Note that this function call must be
your final one.

3. Link your source files against the Open API library (i f d2f 60. | i b).
4. Compile the files to create an executable (. EXE file).

5. Run the executable to create or modify your Form modules (. F\VB).

6.3.4 Open APl examples

This section includes several examples that describe how to use the Open API.

6.3.4.1 Modifying modules using the Open API
/*
This exanpl e determines if the FormBuilder object is a subclassed obj ect and
returns the file path of the parent to NLL if the object is subclassed. This
sanpl e only processes the follow ng object types: formlevel triggers, alerts,
bl ocks, itens, itemlevel triggers, radio buttons, and bl ock | evel triggers.
Wse a simlar nethod to process other object types.
*/
#i ncl ude <stdio. h>
#i ncl ude <string. h>
ncl ude <w ndows. h>
ncl ude <d2ferr. h>
#i ncl ude <d2f ctx. h>
#i ncl ude <d2f f nd. h>
#i ncl ude <d2f bl k. h>
ncl ude <d2fitmh>
#i ncl ude <d2falt. h>
#i ncl ude <d2ftrg. h>
#i ncl ude <d2frdb. h>
#def i ne BUFS ZE 128
int WNAPI WnMai n(HANDLE hi nst ance,
HANDLE hPrevl nst ance,
LPSTR | pszConmandLi ne,
i nt cndShow)

d2f ct x* pd2f ct x;
d2ffnd* pd2f f nd;

6-56 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

d2fbl k* pd2f bl k;

d2fitmt pd2fitm

d2fctxa d2fctx_attr;

d2fstatus status;

d2fal t* pd2falt;

d2ftrgr pd2ftrg;

d2f r do* pd2f r db;

int counter;

char buf [BUFSl ZE] ;

char* form nanme=(char*)0;

/* Get the formnane fromthe command |ine */
st rncpy(buf, | pszConmandLi ne, BUFSI ZE);
formnpane = strtok(buf, ".");

/* Initialize the attribute nmask */
d2fctx_attr. mask_d2fctxa = 0;

[* for M5 Wndows-only attributes */

d2fctx_attr. d2fi hnd_d2f ct xa = hl nst ance;
d2f ct x_at t r. d2f phnd_d2f ct xa = hPrevl nst ance;
d2fctx_attr. d2f cnsh _d2f ct xa = cndShow,

/[* Ceate the APl context */
status = d2fctxcr_Qreat e(&d2f ctx, &2fctx_attr);
/* Load the form*/
status = d2f f mdl d_Load(pd2f ctx, &d2ffnd, formnane, FALSE ;
if (status == D2FS DPFS SUCCESS)
{
[*** Process FormLevel Trigger (bjects ***/
for(status = d2f f ndg_t ri gger (pd2f ct x, pd2f f nd, &d2ftrg);
pd2ftrg !'= NULL;
status = d2ftrgg_next (pd2f ct x, pd2ftrg, &d2ftrg))
{
if (d2ftrgi s_| sSubcl assed(pd2fctx, pd2ftrg) == DRFS YES
d2ftrgs_par_fl pat h(pd2f ct x, pd2ftrg, NJLL) ;
}
[*** Process Alert (bjects ***/
for(status = d2f f ndg_al ert (pd2f ct x, pd2f f nd, &d2fal t);
pd2falt !'= NULL;
status = d2fal t g_next (pd2fctx, pd2falt, &d2falt))
{
if (d2faltis_|sSubcl assed(pd2fctx, pd2falt) = DRFS YES
d2falts_par_fl pat h(pd2fctx, pd2fal t, NALL) ;
}
[*** Process Bl ock (bjects ***/
for(status = d2f f mdg_bl ock(pd2f ct x, pd2f f nd, &d2f bl k) ;
pd2fbl k '= NULL;
status = d2f bl kg_next (pd2f ct x, pd2f bl k, &d2f bl k))

Taking Advantage of Open Architecture 6-57

if (d2fbl ki s_| sSubcl assed(pd2f ct x, pd2f bl k) == DRFS YES)
d2f bl ks_par _f | pat h(pd2f ct x, pd2f bl k, NLLL) ;
}
/* Process Item(pj ects */
for(status = d2f bl kg_i t en{ pd2f ct x, pd2f bl k, &d2fitn);
pd2fitm!= NULL;
status = d2fitng_next (pd2f ct x, pd2fitm &d2fitn))
{
if (d2fitms_|sSubcl assed(pd2fctx, pd2fitn) = DRFS YES
d2fitns_par_fl pat h(pd2f ct x, pd2fitmNLL);
/* Process ItemLevel Trigger (bjects */
for(status = d2fitng_trigger(pd2fctx, pd2fitm&d2ftrg);
pd2ftrg !'= NULL;
status = d2ftrgg_next (pd2f ct x, pd2ftrg, &d2ftrg))

i f (d2ftrgis_| sSubcl assed(pd2f ct x, pd2ft r g) ==[2FS YES)
{
d2ftrgs_par_fl pat h(pd2f ct x, pd2ftrg, NJLL) ;
printf("itemtrigger is Subcl assed\n");
}
else if (d2ftrgis_IsSubcl assed(pd2f ctx,
pd2ft rg) ==D2FS NO
printf("itemtrigger is NOI Subcl assed\n");
}
/* Process Radio Button (bjects *
for(status = d2fitng_rad but (pd2fctx, pd2fitm &d2frdb);
pd2frdb !'= NULL;
status = d2f rdbs_next (pd2f ct x, pd2f r db, &d2f r db))

if (d2frdbis_| sSubcl assed(pd2f ct x, pd2f r db) ==D2FS YES
{
d2f rdbs_par _f| pat h(pd2f ct x, pd2f rdb, NJLL) ;
printf("radio button i s Subcl assed\n");
}
el se if (d2frdbi s_I sSubcl assed(pd2f ct x,
pd2f r db) ==D2FS NJ
printf("radio button is NOT Subcl assed\n");
}

}
/* Process B ock Level Trigger (hjects */

for(status = d2f bl kg_t ri gger (pd2f ct x, pd2f bl k, &d2ftrg);
pd2ftrg !'= NULL;
status = d2ftrgg_next (pd2f ct x, pd2ftrg, &d2ftrg))

6-58 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

if (d2ftrgis_|l sSubcl assed(pd2fctx, pd2ftrg) = DRFS YES)
{

d2ftrgs_par_fl pat h(pd2f ct x, pd2ftrg, NALL) ;

printf("block trigger is Subcl assed\n");
}
else if (d2ftrgis_| sSubcl assed(pd2f ct x,

pd2ftrg) =D2FS NO

printf("block trigger is NOT Subcl assed\n");

}

/* Save out the form*/

d2f f msv_Save(pd2fctx, pd2ffrd, (text *)0, FALSH ;
/* Generate the forns executabl e (fnx) */

d2f f ndcf _Conpi | eFi | e(pd2f ctx, pd2ffrmd) ;

/* Destroy the APl Gontext */

d2f ct xde_Destroy(pd2fctx) ;

6.3.4.2 Creating modules using the Open API

/ *

This exanpl e creates a master-detail formbased on the dept and enp dat abase
tabl es owned by the user scott. The naster contains the follow ng fields:
enpno, enang, job, sal, and deptno. The detail contains the follow ng fields
deptno, dnane, and loc. The join condition is deptno.

*/

#i ncl ude<st di 0. h>

#i ncl ude<stri ng. h>

#i ncl ude<w ndows. h>

#i ncl ude<d2f ct x. h>

#i ncl ude<d2f f md. h>

#i ncl ude<d2f f pr. h>

#i ncl ude<d2f ob. h>

#i ncl ude<d2f cnv. h>

#i ncl ude<d2ftrg. h>

#i ncl ude<d2bl k. h>

ncl ude<d2fit mh>

#i ncl ude<d2f wi n. h>

#i ncl ude<d2frel . h>

#def i ne DRFS_SUQCESS 0

#define FAL 1

#def i ne BUFS ZE 128

#define VBP_TXT "nul | ;\n"

int WNAPI WnMai n(HANDLE hi nst ance,

Taking Advantage of Open Architecture 6-59

HANDLE hPrevl nst ance,
LPSTR | pszConmandLi ne,
i nt crdShow)
{
d2fctx *pd2fctx;
d2ffmd *pd2f f nd;
d2fcnv *pd2f cnv;
d2fw n *pd2fw n;
d2f bl k *penpbl k;
d2f bl k *pdept bl k;
d2frel *pd2frel;
d2fitm *pEenpnoitm
d2fitm *pEenaneitm
d2fitm *pH obitm
d2fitm *pEsalitm
d2fitm *pEdeptnoitm
d2fitm *pDdeptnoitm
d2fitm *pDdnanei t m
d2fitm *pDO ocitm
text *nane = (text *)0;
text *formnane = (text *)0;
d2fctxa d2fctx_attr;
d2f status retval ;
char buf [BUFS ZE| ;
[* Gt formnanme */
strncpy(buf, "enpdept”, BUFS ZB);
formnane = (text*)strtok(buf, ".");
/* Initialize the attribute nask */
d2fctx_attr. nask_d2fctxa = 0O;
[* for M5 Wndows-only attributes */
d2fctx_attr.d2fi hnd_d2f ct xa = hl nst ance;
d2f ct x_att r. d2f phnd_d2f ct xa = hPrevl nst ance;
d2f ct x_attr. d2f cnsh_d2f ct xa = cndShow
/* Geate the APl context */
status = d2fctxcr_(reat e(&d2f ctx, &d2fctx_attr);
[* Qeate the context */
d2f ct xen_onnect (pd2fctx, (text*)"scott/tiger @est");
[* Qeate the form*/
d2f f nder _Qreat e(pd2f ct x, &d2ffrd, formnane);
/* Qreate a w ndow */
d2f wi ncr_Qr eat e(pd2f ct x, pd2f f nd, &d2fwi n, (text*)"MAWWN');
[*** (reate Canvas and set canvas-rel ated properties ***/
/[* Qeate a canvas */
d2f cnver_Creat e(pd2f ctx, pd2ffmd, &od2fcnv, (text*)"MWCANAS');
[* Set viewport width */

6-60 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

d2f cnvs_vprt_w d(pd2f ctx, pd2fcnv, 512);

/* Set viewport height */

d2f cnvs_vprt _hgt (pd2f ctx, pd2fcnv, 403);

/* Set wi ndow */

dwf cnvs_wnd_obj (pd2f ct x, pd2fcnv, pd2fw n);

[* Set viewport X-position */

d2f cnvs_vprt_x_pos(pd2fctx, pd2fcnv, 0);

/* Set viewport Y-position */

d2f cnvs_vprt _y_pos(pd2fctx, pd2fcnv, 0);

/* Set width */

d2f cnvs_wi dt h(pd2f ct x, pd2fcnv, 538)

[* Set height */

d2f cnvs_hei ght (pd2f ctx, pd2fcnv, 403)

[*** (reate Enp bl ock and set block-rel ated properties ***/
/* Qreate bl ock */

d2f bl ker_Creat e(pd2f ctx, pd2ffnd, &penpbl k, (text*)"BEMP');
/* Set to database bl ock */

d2f bl ks_db_bl k(pd2f ctx, penpbl k, TRUE);

[* Set query data source to Table */

d2f bl ks_qgry_dat _src_typ(pd2fctx, penpbl k, D2FC QRDA TABLE);
/* Set query data source nane to BEMP table */

d2f bl ks_qgry_dat _src_nan{pd2f ctx, penpbl k, "BEMP');

/* Set DML data source type to Table */

d2f bl ks_dm _dat _typ(Pd2f ctx, penpbl k, D2FC DMDA TABLE);

/* Set DML data source nane to BMP tabl e */

d2f bl ks_dm _dat _nan{pd2f ct x, penpbl k, (text*)"BW");

[*** (reate Dept bl ock and set bl ock-related properties ***/
/* Qreate bl ock */

d2f bl ker_Creat e(pd2f ctx, pd2ffnd, &pdeptbl k, (text*)"DEPT');
/* Set to database bl ock */

d2f bl ks_db_bl k(pd2f ctx, pdeptbl k, TRE);

/[* Set query data source to Table */

d2fbl ks_qgry_dat _src_typ(pd2fctx, pdeptbl k, C2FC QRDA TABLE);
/* Set query data source nane to BEMP table */

d2f bl ks_qgry_dat _src_nan{pd2f ctx, pdeptbl k, "DEPT");

/* Set DML data source type to Table */

d2f bl ks_dm _dat _t yp(Pd2f ct x, pdept bl k, D2FC DMDA TABLE);

/* Set DML data source nane to BMP tabl e */

d2f bl ks_dnm_dat _nan{ pd2f ctx, pdeptbl k, (text*)"DEPT');

[*** (reate enpno itemand itemrel ated properties ***/

/* Qeate item*/

d2fitner_QGeate(pd2fctx, penpbl k, &Eenpnoitm (text*)"BEMPNO');
[* Set itemtype */

d2fitns_itmtype(pd2fctx, pEenpnoitm DR2FCITTY_Tl);

/* Set Enable property */

Taking Advantage of Open Architecture 6-61

d2fitns_enabl ed(pd2f ctx, pEenpnoitm TRUE);

/* Set item (keyboard) navigabl e property */
d2fitns_kbrd_navi gabl e(pd2fctx, pEenpnoitm TRE);

/* Set itemData Type property */
d2fitns_dat_typ(pd2fctx, pEenpnoitm D[RFC DATY NMBER);
/* Set itemNMax Length property */

d2fitns_nmax_| en(pd2f ctx, pEenpnoitm 6);

/* Set itemRequired property */
d2fitns_required(pd2fctx, pEenpnoitm TRUE);

/* Set D stance Between Records property */
d2fitns_dist_btwn_recs(pd2fctx, pEenpnoitm O0);

/* Set Database bl ock(Dat abase Iten) property */
d2fitns_db itn{pd2fctx, pEenpnoitm TRUE);

[* Set Query Allowed */

d2fitns_qgry_al | owed(pd2fctx, pEenpnoitm TRUE);

/* Set Query Length */

d2fitns_qgry_|l en(pd2fctx, pEenpnoitm 6);

[* Set Wdate Al oned */

d2fitns_updt _al | oned(pd2fctx, pEenpnoitm TRUE);

[* Set ItemD splayed (M sible) */

d2fitns_visibl e(pd2fctx, pEenpnoitm TRUE);

[* Set ItemQCanvas property */

d2fitns_cnv_obj (pd2fctx, pEenpnoitm pd2fcnv);

/[* Set Item X position */

d2fitnms_x_pos(pd2fctx, pEenpnoitm 32);

/[* Set ItemY-position */

d2fitns_y_pos(pd2fctx, pEenpnoitm 50);

/* Set I[temWdth */

d2fitns_w dt h(pd2fctx, pEenpnoitm 51);

/* Set ItemHeight */

d2fitns_hei ght (pd2f ctx, pEenpnoitm 17);

/[* Set lItemBevel */

d2fitns_bevel (pd2fctx, pEenpnoitm [RFC BEST LONMRED);
/* Set itemHnNt */

d2fitns_hint(pd2fctx, PEenpnoitm (text*)"Enter val ue for : EMPNO');
[*** (reate Enane itemand itemrel ated properties ***/
/[* Qeate item*/

d2fitner_QGeate(pd2fctx, penpbl k, &Eenaneitm (text*)"ENAME');
/[* Set itemtype */

d2fitns_itmtype(pd2fctx, pEenaneitm [RFCITTY_Tl);
/* Set Enable property */

d2fitns_enabl ed(pd2f ctx, pEenaneitm TRUE);

/* Set item (keyboard) navigabl e property */

d2fit ns_kbrd_navi gabl e(pd2fctx, pEenaneitm TRE);

/* Set itemData Type property */

6-62 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

d2fitns_dat _typ(pd2fctx, pEenaneitm DRFC DATY CHAR;
/* Set itemMx Length property */

d2fitns_nmax_| en(pd2fctx, pEenaneitm 10);

/* Set Distance Between Records property */
d2fitns_dist_btwn_recs(pd2fctx, pEenaneitm O0);

/* Set Database bl ock(Dat abase Iten) property */
d2fitns_db itn{pd2fctx, pEenaneitm TRUE);

/* Set Query Alowed */

d2fitns_qgry_al | oned(pd2fctx, pEenaneitm TRUE);

/* Set Query Length */

d2fitns_qgry_|l en(pd2fctx, pEenaneitm 10);

[* Set Wdate Al owned */

d2fitns_updt _al | oned(pd2fctx, pEenaneitm TRUE);

[* Set ItemD splayed (Msible) */
d2fitns_visible(pd2fctx, pEenaneitm TRUE);

/* Set ItemCanvas property */

d2fitns_cnv_obj (pd2fctx, pEenaneitm pd2fcnv);

/[* Set Item X position */

d2fitnms_x_pos(pd2fctx, pEenaneitm 83);

/[* Set ItemY-position */

d2fitns_y_pos(pd2fctx, pEenaneitm 50);

/* Set ItemWdth */

d2fitns_w dt h(pd2fctx, pEenaneitm 77);

[* Set ItemHeight */

d2fitns_hei ght (pd2f ctx, pEenaneitm 17);

/* Set ItemBevel */

d2fitns_bevel (pd2fctx, pEenaneitm [RFC BEST LONMRED);
/* Set itemHnt */

d2fitns_hint(pd2fctx, PEenaneitm (text*)"Enter val ue for :ENAME');
[*** Qreate JAB itemand itemrel ated properties ***/
/[* Qeate item*/

d2fitner_Ceate(pd2fctx, penpbl k, &B obitm (text*)"JB');
/[* Set itemtype */

d2fitns_itmtype(pd2fctx, pgobitm DRFCITIY_T);
/* Set Enable property */

d2fitns_enabl ed(pd2f ctx, pEobitm TRUE);

/* Set item (keyboard) navigabl e property */

d2fit ns_kbrd_navi gabl e(pd2fctx, pgobitm TRE);

/* Set itemData Type property */
d2fitns_dat_typ(pd2fctx, pg obitm [RFC DATY CHAR;
/* Set itemNMax Length property */

d2fitns_nmax_| en(pd2fctx, pgobitm 9);

/* Set D stance Between Records property */
d2fitns_dist_btwn_recs(pd2fctx, pgobitm 0);

/* Set Database bl ock(Dat abase Iten) property */

Taking Advantage of Open Architecture 6-63

d2fitns_db itn{pd2fctx, pgobitm TRE;

[* Set Query Allowed */

d2fitns_qgry_al l oned(pd2fctx, pgobitm TRE;

/* Set Query Length */

d2fitns_qgry_len(pd2fctx, pgobitm 9);

[* Set Wdate Al owned */

d2fitns_updt _al | oned(pd2fctx, pgobitm TRUE);

[* Set ItemD splayed (Msible) */
d2fitns_visible(pd2fctx, pgobitm TRE);

/* Set ItemCanvas property */

d2fitns_cnv_obj (pd2fctx, pg obitm pd2fcnv);

/[* Set Item X position */

d2fitns_x_pos(pd2fctx, pEobitm 160);

/[* Set ItemY-position */

d2fitns_y pos(pd2fctx, pgobitm 50);

/* Set ItemWdth */

d2fitns_w dth(pd2fctx, pgobitm 70);

[* Set ltemHeight */

d2fitns_hei ght (pd2fctx, pgobitm 17);

/* Set ItemBevel */

d2fitns_bevel (pd2fctx, pE obitm [D2FC BEST LONRED);
/* Set itemHnNt */

d2fitns_hint(pd2fctx, PGobitm (text*)"Enter value for :JB');
[*** reate SALARY itemand itemrel ated properties ***/
/[* Qeate item*/

d2fitner_Qeate(pd2fctx, penpbl k, &Esalitm (text*)"SAL");
/[* Set itemtype */

d2fitns_itmtype(pd2fctx, pEsalitm DRFCITIY_TI);
/* Set Enable property */

d2fitns_enabl ed(pd2fctx, pEsalitm TRUE);

/* Set item (keyboard) navigabl e property */

d2fit ns_kbrd_navi gabl e(pd2fctx, pEsalitm TRUE);

/* Set itemData Type property */
d2fitns_dat_typ(pd2fctx, pEsalitm [RFC DATY NMBER;
/* Set itemMax Length property */

d2fitns_nmax_| en(pd2fctx, pEsalitm 9);

/* Set D stance Between Records property */
d2fitns_dist_btwn_recs(pd2fctx, pEsalitm 0);

/* Set Database bl ock(Dat abase Iten) property */
d2fitns_db itn{pd2fctx, pEsalitm TRE);

/* Set Query Allowed */

d2fitns_qgry_al | oned(pd2fctx, pEsalitm TRE);

/* Set Query Length */

d2fitns_qgry_len(pd2fctx, pEsalitm 9);

/* Set Wdate Al owned */

6-64 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

d2fitns_updt _al | oned(pd2fctx, pEsalitm TRUE);

/* Set ItemDisplayed (Msible) */
d2fitns_visible(pd2fctx, pEsalitm TRUE);

/* Set Item Canvas property */

d2fitns_cnv_obj (pd2fctx, pEsalitm pd2fcnv);

/[* Set Item X position */

d2fitns_x_pos(pd2fctx, pEsalitm 352);

/* Set ItemY-position */

d2fitns_y pos(pd2fctx, pEsalitm 50);

/* Set I[temWdth */

d2fitns_w dth(pd2fctx, pEsalitm 70);

/* Set ItemHeight */

d2fitns_hei ght (pd2fctx, pEsalitm 17);

/* Set ItemBevel */

d2fitns_bevel (pd2fctx, pEsalitm DR2FC BEST LONRED);
/* Set itemHnNt */

d2fitns_hint(pd2fctx, PEsalitm (text*)"Enter value for :SAL");
[*** reate DEPTNOitemand itemrel ated properties ***/
/[* Qeate item*/

d2fitner_Q eate(pd2f ctx, penpbl k, &Edeptnoitm (text*)"DEPTNO');
/[* Set itemtype */

d2fitns_itmtype(pd2fctx, pEdeptnoitm DRFCITTY_TI);
/* Set Enable property */

d2fitns_enabl ed(pd2f ctx, pEdeptnoitm TRUE);

/* Set item (keyboard) navigabl e property */

d2fit ns_kbr d_navi gabl e(pd2f ctx, pEdeptnoitm TRUE);
/* Set itemData Type property */
d2fitns_dat_typ(pd2fctx, pEdeptnoitm DRFC DATY NUMBER;
/* Set itemNMax Length property */

d2fitns_nmax_| en(pd2f ctx, pEdeptnoitm 4);

/[*Set itemRequired property */
d2fitns_required(pd2fctx, pEdeptnoitm TRUE);

/* Set D stance Between Records property */
d2fitns_dist_btwn_recs(pd2fctx, pEdeptnoitm 0);

/* Set Database bl ock(Dat abase Iten) property */
d2fitns_db itn{pd2fctx, pEdeptnoitm TRUE);

[* Set Query Allowed */

d2fitns_qgry_al | owned(pd2f ctx, pEdeptnoitm TRUE);

/* Set Query Length */

d2fitns_qgry_|l en(pd2fctx, pEdeptnoitm 4);

/* Set Wdate Al oned */

d2fitns_updt _al | oned(pd2fctx, pEdeptnoitm TRUE);

[* Set ItemD splayed (Msible) */

d2fitns_visibl e(pd2fctx, pEdeptnoitm TRUE);

/* Set ItemCanvas property */

Taking Advantage of Open Architecture 6-65

d2fitns_cnv_obj (pd2f ctx, pEdeptnoitm pd2fcnv);

/[* Set Item X position */

d2fitns_x_pos(pd2fctx, pEdeptnoitm 493);

/[* Set ItemY-position */

d2fitns_y pos(pd2fctx, pEdeptnoitm 50);

[* Set ItemWdth */

d2fitns_w dt h(pd2fctx, pEdeptnoitm 30);

/* Set ltemHeight */

d2fitns_hei ght (pd2fctx, pEdeptnoitm 17);

/* Set |temBevel */

d2fitns_bevel (pd2fctx, pEdeptnoitm DRFC BEST LONRED);
[* Set itemHnt */

d2fitns_hint(pd2fctx, PEdeptnoitm (text*)"Enter val ue for : DEPTNO');
[*** reate DEPTNOitemand itemrel ated properties ***/
/* Qeate item*/

d2fitner_Qeate(pd2fctx, pdeptbl k, &bDdeptnoitm (text*)"DEPTND');
/[* Set itemtype */

d2fitns_itmtype(pd2fctx, pDdeptnoitm DRFCITTY Tl);
/* Set Enable property */

d2fit ns_enabl ed(pd2f ctx, pDdeptnoitm TRUE);

/* Set item (keyboard) navigabl e property */

d2fit ns_kbr d_navi gabl e(pd2f ctx, pDdeptnoitm TRUE);

/* Set itemData Type property */

d2fitns_dat _typ(pd2fctx, pDdeptnoitm D2FC DATY NUMBER);
/* Set itemNMax Length property */

d2fitns_nmax_| en(pd2f ctx, pDdeptnoitm 4);

/*Set itemRequired property */
d2fitns_required(pd2fctx, pDdeptnoitm TRUE);

/* Set D stance Between Records property */
d2fitns_dist_btwn_recs(pd2fctx, pDdeptnoitm 0);

/* Set Database bl ock(Dat abase Iten) property */
d2fitns_db itn{pd2fctx, pDdeptnoitm TRUE);

/* Set Query Allowed */

d2fitns_qgry_al | oned(pd2fctx, pDdeptnoitm TRUE);

/* Set Query Length */

d2fitns_qgry_|l en(pd2fctx, pDdeptnoitm 4);

[* Set Wdate Al oned */

d2fitns_updt _al | oned(pd2fctx, pDdeptnoitm TRUE);

/* Set ItemD splayed (Msible) */
d2fitns_visible(pd2fctx, pDdeptnoitm TRUE);

/[* Set ItemCanvas property */

d2fitns_cnv_obj (pd2f ctx, pDdeptnoitm pd2fcnv);

/[* Set Item X position */

d2fitns_x_pos(pd2fctx, pDdeptnoitm 32);

/[* Set ItemY-position */

6-66 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

d2fitns_y pos(pd2fctx, pDdeptnoitm 151);

/* Set ItemWdth */

d2fitns_w dt h(pd2fctx, pDdeptnoitm 38);

/[* Set ItemHeight */

d2fitns_hei ght (pd2f ctx, pDdeptnoitm 17);

/[* Set ItemBevel */

d2fit ns_bevel (pd2fctx, pDdeptnoitm DRFC BEST LONRED);
/* Set itemHnt */

d2fitns_hint(pd2fctx, PDdeptnoitm (text*)"Enter val ue for : DEPTNO');
[*** (reate DNAME itemand itemrel ated properties ***/
/* Qeate item*/

d2fitner_Qeate(pd2fctx, pdeptbl k, &Ddnareitm (text*)"DNAME');
/[* Set itemtype */

d2fitns_itmtype(pd2fctx, pDdnaneitm DR2FCITTY_Tl);
/* Set Enable property */

d2fitns_enabl ed(pd2f ctx, pDdnaneitm TRUE);

/* Set item (keyboard) navigabl e property */

d2fit ns_kbrd_navi gabl e(pd2fctx, pDdnaneitm TRE);

/[* Set itemData Type property */

d2fitns_dat _typ(pd2fctx, pDdnaneitm DR2FC DATY CHAR;
/* Set itemNMax Length property */

d2fitns_nmax_| en(pd2fctx, pDdnaneitm 14);

/* Set D stance Between Records property */
d2fitns_dist_btwn_recs(pd2fctx, pDdnaneitm O0);

/* Set Database bl ock(Dat abase Iten) property */
d2fitns_db itn{pd2fctx, pDdnaneitm TRUE);

/* Set Query Alowed */

d2fitns_qgry_al | owed(pd2fctx, pDdnaneitm TRUE);

/* Set Query Length */

d2fitns_qgry_|l en(pd2fctx, pDdnaneitm 14);

[* Set Wdate Al owned */

d2fitns_updt _al | oned(pd2fctx, pDdnaneitm TRUE);

/* Set ItemD splayed (Msible) */

d2fitns_visibl e(pd2fctx, pDdnaneitm TRUE);

[* Set ItemCanvas property */

d2fitns_cnv_obj (pd2fctx, pDdnaneitm pd2fcnv);

/[* Set Item X position */

d2fitnms_x_pos(pd2fctx, pDdnaneitm 70);

/[* Set ItemY-position */

d2fitns_y pos(pd2fctx, pDdnaneitm 151);

/* Set ItemWdth */

d2fitns_w dt h(pd2fctx, pDdnaneitm 102);

[* Set ItemHeight */

d2fitns_hei ght (pd2f ctx, pDdnaneitm 17);

/* Set |temBevel */

Taking Advantage of Open Architecture 6-67

d2fitns_bevel (pd2fctx, pDdnaneitm [RFC BEST LONRED);

/[* Set itemHnt */

d2fitns_hint(pd2fctx, PDdnaneitm (text*)"Enter val ue for :DNAME');
[*** (reate LOCitemand itemrel ated properties ***/

/* Qeate item*/

d2fitner_Qeate(pd2fctx, pdeptblk, &D ocitm (text*)"LCC');
/[* Set itemtype */

d2fitns_itmtype(pd2fctx, pOocitm DRFCITIY T);

/* Set Enable property */

d2fitns_enabl ed(pd2fctx, pDocitm TRE);

/* Set item (keyboard) navigabl e property */

d2fit ns_kbrd_navi gabl e(pd2fctx, pDocitm TRE);

[* Set itemData Type property */

d2fitns_dat _typ(pd2fctx, pDocitm [R2FC DATY CHAR;

/* Set itemMax Length property */

d2fitns_nmax_| en(pd2fctx, pDocitm 13);

/* Set D stance Between Records property */
d2fitns_dist_btwn_recs(pd2fctx, pDocitm 0);

/* Set Database bl ock(Dat abase Iten) property */
d2fitns_db itn{pd2fctx, pOocitm TRE;

/* Set Query Allowed */

d2fitns_qgry_al l owed(pd2fctx, pOocitm TRE;

/* Set Query Length */

d2fitns_gry_len(pd2fctx, pDocitm 13);

[* Set Wdate Al oned */

d2fitns_updt _all oned(pd2fctx, pOocitm TRUE);

/* Set ItemD splayed (Msible) */

d2fitns_visible(pd2fctx, pDocitm TRE);

/* Set ItemCanvas property */

d2fitns_cnv_obj (pd2fctx, pO ocitm pd2fcnv);

/[* Set Item X position */

d2fitns_x_pos(pd2fctx, pOocitm 173);

/[* Set ItemY-position */

d2fitns_y pos(pd2fctx, pOocitm 151);

/* Set I[temWdth */

d2fitns_w dth(pd2fctx, pOocitm 96);

/* Set ItemHeight */

d2fitns_hei ght (pd2fctx, pOocitm 17);

/* Set |temBevel */

d2fitns_bevel (pd2fctx, pDocitm DRFC BEST LONMRED);

/* Set itemHnNt */

d2fitns_hint(pd2fctx, PDocitm (text*)"Enter value for :LCC');
[*** (reate Relations and rel ations-rel ated properties ***/
/[* Qeate Relation */

d2frel cr_QCeate(pd2fctx, (d2fob *)pdeptbl k, &d2frel, (text*)"DEPT_BW');

6-68 Guidelines for Building Applications

6.3 Using the Open API to Build and Modify Form Builder Applications

/* Set Relation Detail block */

d2frels_detail _bl k(pd2fctx, pd2frel, (text *)"BEMP');

/* Set Master Del etes property */

d2frel s_del _rec([pd2fctx, pd2frel, CRFC DERE NON | SOLATED) ;
/* Set Deferred property */

d2frel s_def erred(pd2ct x, pd2frel, FALSE);

[* Set Auto Query property */

d2frels_auto_gry(pd2ctx, pd2frel, FALSE);

/* Set Prevent Masterless property */
d2frels_prvnt_nstrless_ops(pd2ctx, pd2frel, FALSE);

/* Set Join Gondition property */

d2frel s_joi n_cond(pd2ctx, pd2frel, (text*)"DEPTNO');

/[* Instantiate Relation: creates master-detail triggers */
d2f rel up_Updat e(pd2f ct x, pd2frel);

/* Save Form*/

d2f f ndsv_Save(pd2fctx, pd2ffnd, (text*)0, FALSE TRE);

[* Conpile Form*/

d2f f ndcf _Conpi | eFi | e(pd2f ctx, pd2ffnd);

[* Destroy ontext */

d2f ct xde_Dest r oy(pd2f ct x) ;

}

Taking Advantage of Open Architecture 6-69

6.4 Designing Applications to Run against ODBC Datasources

The data within your enterprise often resides within several heterogeneous
datasources. Some portion of your data, for example, might be stored within an
Oracle database, while another portion is stored within an Informix database.
Building a single application that can access each datasource can be a difficult task.

However, by taking advantage of Forms Developer’s and Reports Developer’s open
datasource support, you can build generic applications that run transparently
against any ODBC-compliant datasource.

This section describes open datasource support. It includes these topics:
« Section 6.4.1, "What is the Oracle Open Client Adapter (OCA)?"
= Section 6.4.2, "Open datasource guidelines"

« Section 6.4.3, "Configuring your application to run against an ODBC
datasource"

6.4.1 What is the Oracle Open Client Adapter (OCA)?

When you connect to an ODBC datasource, you use the Oracle Open Client Adapter
(OCA). OCA is an ODBC level 2-compliant utility that allows Forms Developer or
Reports Developer on Microsoft Windows 95, Windows NT, and Windows 3.1 to
access ODBC -compliant datasources through ODBC drivers.

OCA is included with both Forms Developer and Reports Developer. You use the
Oracle Installer to install OCA.

6.4.1.1 When should | use OCA?

You should use OCA whenever your application must access hon-Oracle
datasources. Your Form and Report applications can automatically access any
ODBC-compliant datasources. Refer to the online help for specific information
about connecting to ODBC datasources.

6-70 Guidelines for Building Applications

6.4 Designing Applications to Run against ODBC Datasources

6.4.1.2 OCA architecture
The Oracle Open Client Adapter consists of the following:

Component Description

Forms Developer or Performs processing and calls ODBC functions to submit SQL
Reports Developer statements and retrieve results.

Application

Oracle Open Client Translates Oracle database calls to ODBC calls.

Adapter

Driver Manager Loads ODBC drivers for your application.

ODBC Drivers Process ODBC function calls, submits SQL requests to a

specific datasource, and returns results to your application.

Datasource Consists of the data that user wants to access and its associated
operating system, DBMS, and network platform (if any) used
to access the DBMS.

6.4.1.3 Establishing an ODBC connection

To connect to an ODBC datasource, type the following connect string in the Connect
dialog box:

[user[/ password]] @DBC dat asour ce] : dbnarre]

For example, to connect to Sybase System 10, type:

scott/ti ger @DBC sybase_ds

6.4.1.4 ODBC drivers

When you connect to an ODBC datasource, you use an ODBC driver to
communicate with the datasource. Both Forms Developer and Reports Developer
include prebundled ODBC drivers for each supported datasource. These drivers are
ODBC level 1-compliant and, to some extent, provide some level 2 functionality to
achieve greater performance.

6.4.1.5 OPENDB.PLL

OPENDRB. PLL is a PL/SQL library of functions that is included with OCA. You use
OPENDB. PLL within applications to:

« Automatically adjust form and data block properties at runtime to suit the
datasource.

Taking Advantage of Open Architecture 6-71

« Open auxiliary connections to other datasources in addition to the
application’s main connection.

« Execute arbitrary SQL statements and Stored Procedure calls on any
connection.

« Retrieve results sets from non-Oracle stored procedures.

« Obtain the DBMS and ODBC driver names and versions for a given
connection.

For more information about OPENDB. PLL, refer to OCA | NFO. PDF in the ORACLE _
HOVE\ TOCLS\ DOC20 directory.

6.4.2 Open datasource guidelines
When working with multiple datasources, consider these guidelines:

Topic Recommendation

Optimizing your You do not have to optimize your application to run against

application to run against multiple datasources unless you want to target a specific

multiple datasources datasource to take advantage of features particular to that
system.

Writing PL/SQL for use SQL statements embedded in PL/SQL program units must

with ODBC datasources conform to both Oracle SQL and the SQL dialect of the
datasource that you connect against. Any statements that fail
against Oracle will cause PL/SQL compilation failures.
Similarly, any statements that use unsupported syntax will fail
at execution.

The SYSDATE and USER functions are the only exceptions to
this restriction. These functions are Oracle-specific; and, OCA
translates these functions to the corresponding ODBC
functions, allowing these functions to work against all
datasources.

If you want to issue SQL statements that are
datasource-specific, but conflict with Oracle syntax, use the
EXEC_SQL package.

6-72 Guidelines for Building Applications

6.4 Designing Applications to Run against ODBC Datasources

Topic

Recommendation

Referencing tables from
more than one datasource

Many datasources allow you to access tables that are located in
other datasources if you specify the database, owner, and table
(for example, database.owner.tablename).

PL/SQL does not recognize the three-part table syntax, and
your client-side program unit or trigger will not compile.

To work around this restriction, enclose the three-part name in
double quotes, after calling the appropriate OPENDB function
that removes double quotes.

Restrictions

=« When working with a non-Oracle7 datasource, you must
store your application modules (forms, reports, and
graphics) in the file system. Non-Oracle7 datasources
cannot be used as a repository for storing application
modules.

« Trigger information for columns cannot be accessed from
the Object Navigator (Database Objects node).

=« You can view stored procedure text only for datasources
that emulate the Oracle ALL_SOURCE table (e.g.,
Microsoft SQL Server). You cannot edit database stored
procedure text.

« You cannot drag and drop PL/SQL program units from
the client to a non-Oracle7 datasource.

« Neither Forms Developer nor Reports Developer can use
primary and foreign key constraint information of OCA
datasources for default selection of master-detail
relationships. These relationships must be identified
directly where required.

« Optimizer hints (/*hint*/ style comments) are ignored by
any datasource that you connect to through OCA.

Taking Advantage of Open Architecture 6-73

Topic Recommendation

Troubleshooting To view the SQL statements issued by OCA and the messages
generated by the ODBC driver or the database:

1. Verify that the following entry is set in the ORACLE. | NI
file on Windows 3.1 or in the registry on Windows NT and
Windows 95:

UB=ORACLE_HOVE\ OCA20

2. Ifyou are unable to resolve the error, call Oracle Customer
Support.

3. Add the following entries to the ORACLE. | NI file on
Windows 3.1 or to the registry under SOFTWARE\ ORACLE
on Windows NT and Windows 95:

OCA_DEBUG_SQL=TRUE
OCA_DEBUG_ERROR=TRUE

4. Run your application against the ODBC datasource to
view SQL statements or error messages in the debug
window. Click OK to close the debug window and
continue processing.

Debugging Tips You can display debug information by setting the OCA
DEBUG_SQ. and OCA_DEBUG_ERRCRenvironment variables to
TRUE.

Using these environment variables will help you identify SQL
failures when using Forms Developer or Reports Developer
against OCA datasources.

When you set OCA_DEBUGto TRUE, any SQL statement that is
sent to the ODBC driver is displayed before it is transmitted.

When you set OCA_DEBUG_ERRORto TRUE, any errors that are
returned by the ODBC driver are displayed in a dialog before
being passed back to Forms or Reports.

6.4.3 Configuring your application to run against an ODBC datasource

To configure your application to run against an ODBC-compliant datasource, refer
to the “Accessing non-Oracle datasources” topic in the online help.

6-74 Guidelines for Building Applications

Glossary

action

In Project Builder, a command string supplied either by Project Builder or by the
user that applies to files of a given type or types. An action is not restricted to a sin-
gle file type; for example, if the action "Compile" is defined for both forms and C
source files, selecting the menu item Compile Project will compile all .FMBand .C
files using the appropriate tools. See also: pre-defined action, user-defined action.

applet

A Java term for small programs that can be dynamically imported into Web pages
or applications as needed.

bidirectional support

Support for languages whose natural writing direction is right-to-left, for example
Middle Eastern and North African languages.

block
The representation of an entity on a form.

built-in macro
In Project Builder, a macro shipped with Project Builder. See also: macro.

canvas

The surface on which interface items and prompts are drawn. Canvasses are dis-
played in a window.

Glossary-1

Glossary-2

CGl — Common Gateway Interface

The industry-standard technique for running applications on a Web server. Whereas
standard HTML documents retrieved from a Web server are static (the exact same
text is retrieved every time) CGIl enables a program running on the Web server to
communicate with another computer to generate "dynamic" HTML documents in
response to user-entered information.

character set

Encoding scheme in which each character is represented by a different binary value.
For example, 1SO8859-1 is an extended Latin character set that supports more than
40 Western European languages.

deliver

In Project Builder, to prepare and provide a completed application for distribution
and deployment.

dependency view

In Project Builder, a view that shows the files in the Project Navigator in the order in
which they depend on each other, with project nodes at the highest point in the
hierarchy, followed by target nodes, which are followed by buildable components of
those targets. For example, an executable form depends on and will be followed by
an .fmb file, which may depend on and be followed by a library used for a USER-
EXIT procedure, and so on. See also: project view, target.

dialog box

A window used to enter information needed to complete a specific action. The user
must interact with this window before proceeding.

encryption

The practice of scrambling (encrypting) data in such a way that only an intended
recipient can unscramble (decrypt) and read the data.

entity

A thing of significance to the user. ‘Assignments’ and ‘Sales Order Lines’ are exam-
ples of entities. A single entity may comprise several blocks, such as ‘Sales Rep’,
‘Quotas’, and ‘Territories’.

export

In Project Builder, the process of writing out a file containing project, type, action,
and/or macro definitions in a portable format for distribution to others who may
work on heterogeneous platforms. See also: export file, import.

export file

In Project Builder, the shareable, portable file created by exporting a project. The
default extension of an export file is . UPX. See also: export, import.

field

An interface element that displays information to the user and/or accepts input
from the user. Text items, check boxes, and poplists are examples of fields. Also
known as ‘widget’ or ‘item’.

firewall

A computer that regulates access to computers on a local area network from out-
side, and regulates access to outside computers from within the local area network.

format mask

A setting that defines the appearance of the value of a field. For example, a format
mask is used to specify the display of currency amounts and dates.

Global Registry

A Project Builder registry that stores information common to an entire Forms Devel-
oper or Reports Developer installation. This information is restricted to type defini-
tions and their associated actions and pre-defined or user-defined properties. The
use of the Global Registry is optional, its functions can be performed by individual
user registries. See also: registry, user registry.

group
In Project Builder, collections of related items available via submenus off the
Launcher. Groups enable users to set up the Launcher much like the Windows 95
Start menu, with arbitrary "groups" that pop up to reveal other items and/or
groups.

Glossary-3

Glossary-4

GUI — Graphical User Interface

The use of pictures rather than just words to represent the input and output of a
program. Programs with GUIs run under a windowing system (such as X Win-
dows, Microsoft Windows, Apple Macintosh, and so on). GUI programs display
icons, buttons, and so on, in windows on the screen; users control the GUI pro-
grams mainly by moving a pointer on the screen (typically controlled by a mouse).

HTML — Hypertext Markup Language

A tag-based ASCII language used to specify the content and hypertext links to other
documents on WWW servers on the Internet. End users with Web browsers view
HTML documents and follow links to display other documents.

HTTP — Hypertext Transfer Protocol

The protocol used to carry WWW traffic between a WWW browser computer and
the WWW server being accessed.

hyperlink

A reference (link) from some point in one hypertext document to (some point in)
another document or another place in the same document. A Web browser usually
displays a hyperlink in some distinguishing way (in a different color, font or style).
When users activate hyperlinks (by clicking on them with a mouse) the browser dis-
plays the target of the link.

hypertext

A collection of documents containing cross-references which, with the aid of a Web
browser, allow readers to move easily from one document to another.

implied item

In Project Builder, a project item, usually the result of automatic generation, which
Project Builder recognizes and for which it automatically creates an entry in the
Project Navigator. For example, Project Builder can recognize . OBJ files, generated
as an immediate step in the compilation of C source files, and create entries for
them in the Project Navigator. Although resetting the properties of an implied item
is of limited use (the next compilation will destroy changes) such items can be use-
ful, as they can be examined via actions such as Edit, View, and Print. See also:
action, item.

import

In Project Builder, to read in a file containing project information. This is the recom-
mended method for sharing projects. See also: export, export file.

inherit

In Project Builder, to obtain information for an action, type, macro, or property defi-
nition from an ancestor node in the dependency tree. If related attributes exist in an
ancestor node, they may be inherited. Thus, filesystem items like forms and docu-
ments may inherit action definitions from subprojects, projects, a user registry, or
the Global Registry; projects may inherit type definitions from a user registry or the
Global Registry; and so on.

input item

In Project Builder, the file used to build a target. For example, an .FMB is the input
item for an .FMX. Also called source.

Internet
A worldwide TCP/IP-based network of computers.

Intranet

An internal TCP/IP network, access to which is restricted (via a firewall) to individ-
uals inside the company or organization. An intranet provides similar services
within an organization to those provided by the Internet, but is not necessarily con-
nected to the Internet. A common example of an intranet is when a company sets up
one or more Web servers on an internal network for distribution of information or
applications within the company.

IP (Internet Protocol) Address

A four-part number with no more than three digits in each part that uniquely iden-
tifies a computer on the Internet.

item

In Project Builder, an object in the file system associated with a project, such as a
form or report, and pointed to or represented by a node in the Project Navigator.
JAR — Java ARchive

A file used for aggregating many files (Java class files, images, and so on) into one
file.

Java

A computer language that supports programming for the Internet in the form of
platform-independent "applets.”

Glossary-5

Glossary-6

language environment variable

Environment variable which specifies the language, territory, and character set for a
user’s environment. The language environment variable can be any one of the fol-
lowing: NLS_LANG, DEVELOPER_NLS_LANG, or USER_NLS_LANG.

Launcher

In Project Builder, the secondary toolbar docked (by default) to the left of the Project
Navigator. It provides simple organizational and application launching abilities.

macro

In Project Builder, a type-specific variable which may be used to customize and
extend actions. A macro may be either a constant or a simple expression (which
may, in turn, contain other constants and/or expressions). The use of macros offers
great flexibility in issuing command options, and in allowing the user to modify
sets of commands by changing one property definition.

master-detail

A relation between two entities that indicates a hierarchy of information. For exam-
ple, a Sales Order consists of a Header entity and a Line entity; the Header is the
master of the Line, and the Line is the detail of the Header.

modal

A state where the user must supply specific information before continuing opera-
tion of the application.

multilingual application

An application which can be deployed in more than one language and displays data
according to local conventions.

ORACLE_HOME
An environment variable that indicates the root of the Oracle7 Server code tree.

PDF — Portable Document Format

A file format (native for Adobe Acrobat) for representing documents in a manner
that is independent of the original application software, hardware, and operating
system used to create the documents. A PDF file can describe documents contain-
ing any combination of text, graphics, and images in a device-independent and res-
olution independent format.

PL/SQL

Oracle’s proprietary extension to the SQL language. Adds procedural and other
constructs to SQL that make it suitable for writing applications.

port

A number that TCP uses to route transmitted data to and from a particular pro-
gram.

pre-defined action

An action shipped with Project Builder and automatically available to the user via a
menu item and/or a toolbar button. Pre-defined actions include Build, Deliver, and
several source control options. When a pre-defined action is defined for a sup-
ported file type, the action is invoked for any selected item of that file type when
the user calls that action from Project Builder. See also: action, user-defined action.

project

The basic data structure created by Project Builder. A project is a collection of point-
ers to files in the user’s file system. It also contains information about behavior that
the user may wish to apply to a given project, such as the specific editor to invoke to
edit all files of types .CPP, .H, and .TXT. Project files can be exported and shared
across platforms. See also: export, project definition file, project item.

project definition file

In Project Builder, a file that stores project data, which consists of project items and
their properties. Each file has one project item by default, which can be thought of
as the "root" or master project for that file. The user can create as many subproject
items as necessary in this file; subprojects are items beneath the master project
which allow the user to collect subgroups of items and change their properties at
the parent (subproject) level. The default extension for a project file is .UPD. See also:
project, project item.

project item

In Project Builder, an item that stores project-specific information, such as a connec-
tion string and an implicit list of contained items. Types are not defined here, but
actions and user-defined macros for all types visible to a project may be defined
and/or overridden here. See also: item, project, project definition file.

Glossary-7

Glossary-8

Project Navigator

In Project Builder, the window containing a hierarchical list of project items for the
current session. The list appears in outline form, and enables the user to complete
several tasks, such as creating, editing, renaming, and deleting objects. Although
only one schema is visible at any time, the user can choose from two different
schema by which to organize the objects. See also: dependency view, project view.

project view

In Project Builder, the project view shows objects in the Project Navigator orga-
nized by their type, and by their project/subproject relationships. The projects are
organized alphabetically by project file, then alphabetically by category. See also:
dependency view, Project Navigator.

Project Wizard

In Project Builder, a dialog that assists the user in accomplishing the steps neces-
sary to create a new project or subproject.

prompt
A label that uniquely identifies an item. ‘Salesperson’ and ‘Item Description’ are
examples of prompts.

region

A set of related items within an entity. For example, the Purchase Order Header
entity might contain a ‘Currency Information’ region, which consists of the Rate,
Type, and Date fields.

registry

In Project Builder, a global and/or user-specific configuration file used to store
project definitions and environment information. See also: Global Registry, user regis-
try.

RDBMS — Relational Database Management System

A database that allows the definition of data structures, storage and retrieval opera-
tions, and integrity constraints. In such a database, data and relations between them
are organized in tables.

snap point
The point of a widget that corresponds to the (X,Y) position that locates it.

socket
The combination of an IP address and a port number.

target

In Project Builder, any item in the middle of the dependency tree; for example, an
executable is a (compile) target for a library, while a library is a target for a group of
objects and an object is a target for a source file. See also: input item.

toolbar
A series of iconic buttons that perform generic actions, such as List and Save.

TCP — Transmission Control Protocol

The underlying communication protocol for exchanging HTTP requests between
clients and Web servers.

type

In Project Builder, a description of a file type, such as a form, a document, etc., con-
taining such information as type name and description. Types are the foundation
for defining actions and macros.

URL: Uniform Resource Locator

The "address" used to specify a WWW server and home page. For example:
htt p: // waw acne. cond

indicates that the host’s address is ww. acre. com

An URL most often is a filename (possibly with a long path to it and usually with
an extension of . HTM_, or .HTM(for PC-DOS filenames).

user-defined action

In Project Builder, a custom action defined by a Project Builder user. Such actions
may apply to a single file type, or all file types. See also: action, pre-defined action.
user-defined macro

In Project Builder, a custom macro defined by a Project Builder user. Such macros
may be used to modify both pre-defined and user-defined actions. See also: action,
built-in macro, macro, pre-defined action.

Glossary-9

Glossary-10

user registry

In Project Builder, a project file storing configuration information on a per-user
basis. This enables users to customize their individual development environments.
The user registry inherits type information from the Global Registry, and may
define new types as well as override aspects of types defined in the Global Registry.
It also stores environment and preference information, such as the user’s preferred
connection string, Ul settings, and general project information. See also: Global Reg-
istry, registry.

virtual directory

A synonym that the virtual file system maps to a file stored in the file system main-
tained by the host machine’s operating system.

virtual file system

A mapping that associates the pathnames used in URL to the file system main-
tained by the host machine’s operating system.

Web browser

A program that end users utilize to read HTML documents and programs stored on
a computer (serviced by a Web server).

Web cartridge
A program executed on a Web server via the WRB.

Web server

A server process (HTTP daemon) running at a Web site which sends out Web pages
in response to HTTP requests from remote Web browsers

window

A screen in a graphical user interface (GUI) environment. A window is a frame
enclosing a surface on which elements are painted.

WRB — Oracle Web Request Broker

Provides a powerful distributed runtime environment for developing and deploy-
ing applications for the Web. The WRB runtime platform enables application devel-
opers to write applications that are independent of, and work with a number of,
Web servers.

WWW — World Wide Web

The network of servers on the Internet, each of which has one or more home pages,
which provide information and hypertext links to other documents on that and
(usually) other servers.

Glossary-11

Glossary-12

A

action
in Project Builder
automating, 1-7
definition, 1-4
multiple platforms, 1-22
ActiveX controls, 6-17
built-ins, 6-9
examples, 6-24
properties, 6-20
Activex controls
use guidelines, 6-21
alerts, 2-27
ALTER SESSION, 4-14
using to change NLS_LANG, 4-2
using to specify default format mask,
anchor, 2-33,2-34
animation, 3-33
application
associating modules with, 1-7
customizing using foreign functions,
deploying, 1-25
design and development, 1-10
designing for portability, 5-1
designing user interface, 2-1
maintenance and support, 1-18
managing, 1-1
multilingual, 4-1
multiple platforms, 1-21
project administrator role, 1-19
release phase, 1-25
running against ODBC datasources,
software development life cycle, 1-2

4-14

6-26

6-70

Index

test phase, 1-22
translating, 4-18
application server, 3-31
array processing, 3-11

B

bar graph, 2-38
Base Printing On property, 2-35
bidirectional support, 4-6
in Form Builder, 4-7
in Report Builder, 4-8
language environment variable, 4-6
Big Font, 4-10
block
in Form Builder
definition, 2-11
design guidelines, 2-23
boilerplate, 2-33
break groups, 3-24
Build From type action, 1-8
built-ins
OLE and ActiveX, 6-9
button, 2-33
portability considerations, 5-7,5-18

C

canvas
in Form Builder
definition, 2-14
design guidelines, 2-19
changes at runtime, 3-32
character data

Index-1

sorting, 4-13
character set, 4-1,4-4
conversion, 4-4
design considerations, 4-4
multibyte, 4-4
character-mode platform
for forms, 5-14
for reports, 5-19
Clearcase, 1-10
color
design guidelines, 2-18
portability considerations, 5-4,5-18
compiling
modifying results, 1-21
project, 1-20
configuration choice, 3-30
connection strings, 1-9
creating, 1-14
console
portability considerations, 5-8
container window, 2-12
Content canvas, 2-14
context-sensitive help, 2-29
control block, 2-12
COPIES parameter, 3-27

D

data block, 2-12

data model, 3-12

Data Model view, 2-32
database design, 3-12
debug mode, 3-22
default format mask

specifying with ALTER SESSION, 4-14
specifying with the language environment

variable, 4-11
DEl file, 1-29
Deliver File property, 1-9
Deliverable Type property, 1-8
DEPLOY directory, 1-29
desktop machine, 3-31
DEVELOPER_NLS LANG, 4-2,4-3
obtaining the current value of, 4-16
using for bidirectional applications,

Index-2

display size, 3-33
distribution media, 1-26
definition of, 1-26
DO_SQL procedure, 3-29
Double-Y, 2-39
DPI (dots per inch)
portability considerations, 5-18

E

embedded object, 6-3
entry
in Project Builder, 1-4
explicit anchor, 2-34
export
cross-platform development, 1-9
external activation, 6-4

=

fetch-ahead, 3-27
field, 2-33
fixed sizes, 3-22
font

portability considerations, 5-5,5-18
font aliases, 5-5
font aliasing, 4-5
font substitution, 4-5
font support
for Unicode, 4-10
foreign function, 6-26
creating, 6-31
examples, 6-38
interface, 6-27
use guidelines, 6-29
form
character-mode platforms, 5-14
Form Builder
bidirectional support, 4-7
building effective forms, 2-10
character-mode platforms, 5-14
design guidelines, 2-16
designing for portability, 5-2,5-11
using with Open API, 6-52
Form module, 2-10

format element
number, 4-14
format mask
default, 4-11
design considerations, 4-11
overriding the default, 4-12
specifying default with ALTER SESSION, 4-14
specifying default with the language
environment variable, 4-11
format triggers, 3-20
formatting attributes, 3-23
frame, 2-33
in Form Builder, 2-12

G

Gantt, 2-39
get_application_property, 5-13
Global Registry, 1-11
in Project Builder, 1-5
global variables, 3-19
Graphics Builder
creating effective displays, 2-37
designing for portability, 5-19
group filters, 3-14
GTM GlossaryTerm, Glossary-8
GUI (graphical user interface)
see user interface

H

handles for referencing, 3-30
hardware power, 3-34
headings

H1 Headl, 2-31,2-32
High-low, 2-39
Horizontal Elasticity, 2-35
hyperlinks, 3-33

icon

portability considerations, 5-6
image resolution, 3-23
implicit anchor, 2-34

implied item, 1-8
import
cross-platform development, 1-9
in-place activation, 6-4
INS file, 1-29
installable component, 1-26
installation
files, 1-27
process, 1-30
item
in Form Builder
definition, 2-11
design guidelines, 2-23

J

JAR files, 3-33
Java class files, 3-33
just-in-time compiling, 3-34

K

Kanji characters, 4-22
Keep with Anchoring Object property, 2-37

L

language conventions, 4-5

language environment variable, 4-2
DEVELOPER_NLS_LANG, 4-2
NLS_LANG, 4-2
USER_NLS_LANG, 4-2
using to specify character set, 4-4
using to specify default format mask, 4-11
using to specify language, 4-5
using to specify territory, 4-5

Launcher, 1-5

Launcher toolbar, 1-10

Layout Model view, 2-32,2-33

library usage, 3-33

Line chart, 2-39

linked object, 6-3

LOBs, 3-18

locking, 3-19

LOGON parameter, 3-29

Index-3

LONGCHUNK parameter, 3-26
LONGs, 3-18

M

macro
in Project Builder, 1-4
multiple platforms, 1-22
MAP file, 1-28
maximizing performance
See performance suggestions
measuring performance, 3-7
menu
in Form Builder
design guidelines, 2-30
portability considerations, 5-7
menu items, enabling/disabling, 3-32
Menu module, 2-10
messages
in Form Builder
design guidelines, 2-27
microhelp, 2-29
moat, 5-7
modal window, 2-12
modeless window, 2-12
modules
adding to project, 1-14
assigning connection strings to, 1-9
checking in and out, 1-21
creating dependencies, 1-8,1-14
creating install package, 1-9
editing, 1-20
in Form Builder, 2-10
monitor
portability considerations, 5-3
multibyte character set, 4-1, 4-4
multilingual application, 4-1
translating, 4-18
multimedia, 3-33
multiple datasources
See also OCA (Open Client Adaper)
use guidelines
multiple servers, 3-35
multi-tiered server, 3-28

Index-4

N

National Language Support (NLS), 4-1
navigation between forms, 3-18
NLS, see National Language Support
NLS_CALENDAR, 4-2,4-14,4-16
NLS_CREDIT, 4-2
NLS_CURRENCY, 4-2,4-14,4-16
NLS_DATE_FORMAT, 4-2,4-14
NLS_DATE_LANGUAGE, 4-2,4-14,4-16
NLS_DEBIT, 4-2
NLS_ISO_CURRENCY, 4-2,4-14,4-16
NLS_LANG, 4-2

changing with ALTER SESSION, 4-2

setting for Unicode, 4-10

setting for UTF-8, 4-10

syntax, 4-2
NLS_LANGUAGE, 4-14
NLS_LIST_SEPARATOR, 4-2
NLS_MONETARY_CHARACTERS, 4-2

NLS_NUMERIC_CHARACTERS, 4-2,4-14,4-16

NLS_SORT, 4-2,4-14
NLS_TERRITORY, 4-14
NLSSORT, 4-13

non-Oracle foreign function, 6-27
number format element, 4-14

O

object group, 2-6
object library, 2-5
definition, 2-15
Object Library module, 2-11
OCA
See OCA (Open Client Adapter)
OCA (Open Client Adapter)
OCAPLL, 6-71
overview, 6-70
running applications against ODBC
datasources, 6-74
use guidelines
ocCX
See ActiveX controls
ODBC (Open Database Connectivity)
See OCA (Open Client Adapter)

OLE (Object Linking and Embedding), 6-2

about OLE automation, 6-5
about OLE servers and containers, 6-3
built-ins, 6-9
container properties, 6-7
embedded objects, 6-3
examples, 6-15
external activation, 6-4
in-place activation, 6-4
linked objects, 6-3
registration database, 6-4
See also ActiveX controls
use guidelines, 6-13
online help
implementing, 2-29
portability considerations, 5-10
Open API
creating or modifying modules, 6-55
examples, 6-56
overview, 6-52
use guidelines, 6-55
Open Client Adapter
See OCA (Open Client Adapter)
OPENDB.PLL, 6-71
operating system
portability considerations, 5-9
ORA_FFI, 6-27
Oracle Applications object library, 2-5, 2-15
Oracle Call Interface foreign function, 6-27
Oracle File Packager, 1-26
Oracle Installer, 1-26, 1-27
Oracle precompiler foreign function, 6-27
ORACONNECT, 14
ORDER BY clause
using NLSSORT to control, 4-13

P

Page Break After property, 2-36

Page Break Before property, 2-36

Page Protect property, 2-37

Parameter Form view, 2-32

paths, specifying, 3-28

PDF, 4-4

performance suggestions
client/server specific, 3-30

data usage, 3-11
Form Builder specific, 3-15
Graphics Builder specific, 3-29
introduction to, 3-5
Java specific, 3-31
measurements, 3-7
Report Builder specific, 3-19
sharing work, 3-14
three-tier environment specific, 3-31
upgrades, 3-10
web specific, 3-31
pie chart, 2-38
platform
portability considerations, 5-9
PL/SQL
translating strings, 4-20
PL/SQL efficiency, 3-12
PL/SQL libraries
using to translate a multilingual
application, 4-20
PL/SQL Library module, 2-11, 2-31
popup hints, 2-29
portability
designing applications, 5-1
managing multi-platform projects, 1-21
registries, 1-21
user interface considerations, 2-6
PRD file, 1-27
preface
Send Us Your Comments, Xiii
pre-loading, 3-34
Print Object On property, 2-35

Product
definition of, 1-26
project
building, 1-20
creating, 1-12
definition, 1-4

multiple platforms, 1-21
packaging for release, 1-25
project administrator, 1-6
creating a project, 1-12
definition of role, 1-6
managing multi-platform projects, 1-22
release phase, 1-25

Index-5

test phase, 1-23

working with projects, 1-19
Project Builder

accessing other tools, 1-9

benefits, 1-7
installing, 1-11
overview, 1-3
roles, 1-6

terminology, 1-4
project items

implied items, 1-8
Project Navigator, 1-5
project registry file

definition, 1-5

sharing and porting, 1-9
Project Wizard, 1-12
prompt

portability considerations, 5-8
Property Palette, 1-5
PVCS, 1-10

R

record group fetch size, 3-18
Ref Cursor, 3-15
region
in Form Builder
definition, 2-12
design guidelines, 2-22
registration database, 6-4
registry
in Project Builder, 1-5
portability, 1-21
registry file
sharing and porting, 1-9
release phase, 1-25
repeating frame, 2-33
report

on character-mode platforms, 5-19

Report Builder
bidirectional support, 4-8
building effective reports, 2-30
character-mode platforms, 5-19
controlling layout objects, 2-33
designing for portability, 5-18

Index-6

Editor views, 2-32

modules, 2-31

templates, 2-32
report definition file

using NLS parameters in, 4-17
Report module, 2-31
residence choice, 3-31
runtime changes, 3-32
runtime language switching, 4-19
runtime parameters, 3-22

S

scalability
See performance suggestions
Scatter, 2-39
screen
design considerations, 4-21
screen design
for translation, 4-21
Send Us Your Comments
boilerplate, xiii
server (tier-two machine), 3-31
servers, multiple, 3-35
sharing between components, 3-14
shortcut built-ins, 3-30
software development life cycle, 1-2
source control
multiple platforms, 1-22
setting up, 1-15
using, 1-10
space reduction
See performance suggestions
speed, improving
See performance suggestions
SQL efficiency, 3-12
SQL functions
using NLS parameters with, 4-16
SRW.DO_SQL, 3-25
SRW.SET_ATTR, 3-26
Stacked canvas, 2-14
Stage area
definition of, 1-26
stage area, 1-26
Standard object library, 2-5, 2-15

StarBase, 1-10 portability considerations, 5-11

StarTeam, 1-10 user exits, 3-24
storage for documents, 3-28 user feedback
storage reduction gathering, 2-9
See performance suggestions user interface
stored procedures, 3-15 building, 2-9
storyboard, 2-7 designing, 2-1
subproject designing for portability, 5-2
in Project Builder, 1-4 translating, 4-10
system test, 1-2 user registry
in Project Builder
T customizing, 1-17
definition, 1-5
Tab canvas, 2-14 user requirements
table linking, 3-21 defining, 2-3
table of records, 3-16 USER_NLS_LANG, 4-2,4-3
template, 2-6, 2-32 obtaining the current value of, 4-16
territory conventions, 4-5 using for bidirectional applications, 4-6
test phase, 1-22 using to translate a multilingual application, 4-19
three-tier structure, 3-31 UTF-8, 4-8,4-9
Toolbar canvas, 2-14 setting NLS_LANG, 4-10
Tooltips, 2-29
translating a multilingual application, 4-18 vV
using PL/SQL libraries, 4-20
using runtime language switching, 4-19 validation, 3-32
using Translation Builder, 4-18 variable sizes, 3-23
Translation Builder, 4-18 version label, 1-19
using to translate a multilingual versions
application, 4-18 synchronizing, 1-19
transparent objects, 3-22 Vertical Elasticity, 2-35
type viewports, 2-14
in Project Builder, 1-4 VRF file, 1-29
U W
UIFONT.ALI, 5-5 WHERE clause
Unicode, 4-8 using NLSSORT to compare strings, 4-13
font support, 4-10 white space, 4-21
setting NLS_LANG, 4-10 widget usage, 3-19
support, 4-9 window
UTF-8, 4-8 in Form Builder
unit test, 1-2 definition, 2-12
user exit design guidelines, 2-21
interface to foreign functions, 6-27, 6-35 word wrapping, 3-23
ORA_FFI, 6-27

Index-7

Index-8

	Send Us Your Comments
	Preface
	1 Managing Your Applications
	1.1� The Software Development Lifecycle: An Overview
	1.1.1� Using Project Builder to implement a management strategy
	1.1.2� About Project Builder
	1.1.2.1� Understanding Project Builder terminology
	1.1.2.2� How Project Builder affects existing development roles

	1.1.3� Exploring Project Builder benefits
	1.1.3.1� Associating modules with an application
	1.1.3.2� Automating actions based on file types
	1.1.3.3� Creating dependencies between modules
	1.1.3.4� Assigning default connection strings to modules
	1.1.3.5� Designating which modules are to be included in the final install set
	1.1.3.6� Sharing and porting project and subproject registry files
	1.1.3.7� Accessing other product components and third party tools
	1.1.3.8� Using source control packages

	1.2� Managing Project Documents During Design and Development
	1.2.1� Installing Project Builder
	1.2.1.1� Installing the project and user registries

	1.2.2� Creating a project
	1.2.2.1� Creating a project: Project Administrator
	1.2.2.2� Creating a project: Team members

	1.2.3� Working with projects and project documents
	1.2.3.1� Working with projects: Project Administrator
	1.2.3.2� Working with project documents: Team members

	1.2.4� Managing projects and project documents across multiple platforms
	1.2.4.1� Managing projects across multiple platforms: Project Administrator
	1.2.4.2� Managing project documents across multiple platforms: Team members

	1.3� Managing Project Documents During the Test Phase
	1.3.1� On the development side
	1.3.1.1� The test phase: Project Administrator

	1.3.2� On the test side
	1.3.2.1� The test phase: Testers

	1.4� Managing Project Documents During the Release Phase
	1.4.1� On the development side
	1.4.1.1� The release phase: Project Administrator

	1.5� Deploying Completed Applications
	1.5.1� Before You Begin
	1.5.1.1� Terminology
	1.5.1.2� The Oracle Installer files
	1.5.1.3� The contents of the TEMPLATES directory

	1.5.2� Making your application an installable product
	1.5.2.1� Deploying your application on Windows

	2 Designing Visually Effective Applications
	2.1� Understanding the Process
	2.1.1� What are the stages?
	2.1.2� Defining user requirements
	2.1.3� Planning the user interface
	2.1.3.1� Creating your standards
	2.1.3.2� Considering portability
	2.1.3.3� Creating a prototype

	2.1.4� Building the user interface elements
	2.1.5� Gathering user feedback

	2.2� Creating an Effective Form
	2.2.1� Understanding forms
	2.2.1.1� What is a module?
	2.2.1.2� What are forms, blocks, items, regions, and frames?
	2.2.1.3� What are windows and canvases?

	2.2.2� Guidelines for building forms
	2.2.2.1� Using object libraries
	2.2.2.2� Understanding basic design principles
	2.2.2.3� Adding color
	2.2.2.4� Creating canvases
	2.2.2.5� Creating windows
	2.2.2.6� Creating regions
	2.2.2.7� Adding items to blocks
	2.2.2.8� Designing messages
	2.2.2.9� Implementing online help
	2.2.2.10� Building effective menus

	2.3� Creating an Effective Report
	2.3.1� Understanding Reports
	2.3.2� Using Templates in Report Builder
	2.3.3� Understanding Layout Objects
	2.3.4� Controlling Layout Objects in Report Builder
	2.3.4.1� Using anchors
	2.3.4.2� Using the Print Object On and Base Printing On properties
	2.3.4.3� Understanding Horizontal and Vertical Elasticity
	2.3.4.4� Using the Page Break Before and After property
	2.3.4.5� Using the Page Protect property
	2.3.4.6� Using the Keep with Anchoring Object property

	2.4� Creating an Effective Display
	2.4.0.7� Choosing the Right Graph

	3 Performance Suggestions
	3.1� Summary
	3.2� Introduction: What Is Performance?
	3.2.1� Performance When?
	3.2.2� Performance of What?
	3.2.3� Interrelationships
	3.2.4� Trade-offs

	3.3� Measuring Performance
	3.3.1� Forms Developer- and Reports Developer-Specific Measurements
	3.3.1.1� Forms Measurements
	3.3.1.2� Reports Measurements

	3.3.2� Server- and Network-Specific Measurements

	3.4� General Guidelines for Performance Improvement
	3.4.1� Upgrades of Hardware and Software
	3.4.1.1� Software Upgrades
	3.4.1.2� Hardware Upgrades

	3.4.2� Suggestions for Data Usage
	3.4.2.1� Use Array Processing
	3.4.2.2� Eliminate Redundant Queries
	3.4.2.3� Improve Your Data Model
	3.4.2.4� Use SQL and PL/SQL Efficiently
	3.4.2.5� Use Group Filters
	3.4.2.6� Share Work Between Components
	3.4.2.7� Move Wait Time Forward

	3.4.3� Forms-Specific Suggestions
	3.4.3.1� Tune Your Array Processing
	3.4.3.2� Base Data Blocks on Stored Procedures
	3.4.3.3� Optimize SQL Processing in Transactions
	3.4.3.4� Optimize SQL Processing in Triggers
	3.4.3.5� Control Inter-Form Navigation
	3.4.3.6� Raise the Record Group Fetch Size
	3.4.3.7� Use LOBs instead of LONGs
	3.4.3.8� Erase Global Variables
	3.4.3.9� Reduce Widget Creation on Microsoft Windows
	3.4.3.10� Examine the Necessity of Locking

	3.4.4� Reports-Specific Suggestions
	3.4.4.1� Areas to Focus On
	3.4.4.2� Reduce Layout Overhead
	3.4.4.3� Use Format Triggers Carefully
	3.4.4.4� Consider Linking Tables
	3.4.4.5� Control Your Runtime Parameter Settings
	3.4.4.6� Turn Off Debug Mode
	3.4.4.7� Use Transparent Objects
	3.4.4.8� Use Fixed Sizes for Non-Graphical Objects
	3.4.4.9� Use Variable Sizes for Graphical Objects
	3.4.4.10� Use Image Resolution Reduction
	3.4.4.11� Avoid Word Wrapping
	3.4.4.12� Simplify Formatting Attributes
	3.4.4.13� Limit Your Use of Break Groups
	3.4.4.14� Avoid Duplicate Work with Graphics Builder
	3.4.4.15� Choose Between PL/SQL and User Exits
	3.4.4.16� Use PL/SQL instead of SRW.DO_SQL for DML
	3.4.4.17� Evaluate the Use of Local PL/SQL
	3.4.4.18� Use Multiple Attributes When Calling SRW.SET_ATTR
	3.4.4.19� Adjust the ARRAYSIZE Parameter
	3.4.4.20� Adjust the LONGCHUNK Parameter
	3.4.4.21� Adjust the COPIES Parameter
	3.4.4.22� Avoid Fetch-Aheads in Previewing
	3.4.4.23� Choose Appropriate Document Storage
	3.4.4.24� Specify Path Variables for File Searching
	3.4.4.25� Use the Multi-Tiered Server

	3.4.5� Graphics-Specific Suggestions
	3.4.5.1� Pre-Load Your Graphics Files
	3.4.5.2� Update Displays Only If Necessary
	3.4.5.3� Move Display Updates Out of Loops
	3.4.5.4� Use Common Elements Wherever Possible
	3.4.5.5� Limit the DO_SQL Procedure to DDL Statements
	3.4.5.6� Use Handles to Reference Objects
	3.4.5.7� Consider Not Using Shortcut Built-ins

	3.5� In a Client/Server Structure
	3.5.0.8� Choose the Best Installation Configuration
	3.5.0.9� Choose a Suitable Application Residence

	3.6� In a Three-Tier Structure
	3.6.1� Maximizing Tier 1 - Tier 2 Scalability
	3.6.1.1� Increase Network Bandwidth
	3.6.1.2� Minimize Changes to the Runtime User Interface
	3.6.1.3� Adjust Stacked Canvases
	3.6.1.4� Perform Validation at a Higher Level
	3.6.1.5� Avoid Enabling and Disabling Menu items
	3.6.1.6� Keep Display Size Small
	3.6.1.7� Identify Paths for Graphic URLs
	3.6.1.8� Limit the Use of Multimedia
	3.6.1.9� Avoid Use of Animations Driven from the Application Server
	3.6.1.10� Take Advantage of Hyperlinks
	3.6.1.11� Put Code into Libraries
	3.6.1.12� Reduce Start-up Overhead with JAR Files
	3.6.1.13� Reduce Start-up Overhead with Pre-Loading
	3.6.1.14� Use Just-in-Time Compiling

	3.6.2� Maximizing Tier 2 - Tier 3 Scalability
	3.6.3� Increase Tier 2 Power — Hardware
	3.6.4� Increase Tier 2 Power — Software

	4 Designing Multilingual Applications
	4.1� National Language Support (NLS)
	4.1.1� The language environment variables
	4.1.1.1� NLS_LANG
	4.1.1.2� DEVELOPER_NLS_LANG and USER_NLS_LANG

	4.1.2� Character sets
	4.1.2.1� Character set design considerations
	4.1.2.2� Font aliasing on Windows platforms

	4.1.3� Language and territory
	4.1.4� Bidirectional support
	4.1.4.1� Bidirectional support in Form Builder
	4.1.4.2� Bidirectional support in Report Builder

	4.1.5� Unicode
	4.1.5.1� Unicode support
	4.1.5.2� Font support
	4.1.5.3� Enabling Unicode support

	4.2� Using National Language Support During Development
	4.2.1� Format masks
	4.2.1.1� Format mask design considerations
	4.2.1.2� Default format masks
	4.2.1.3� Format mask characters

	4.2.2� Sorting character data
	4.2.2.1� Comparing strings in a WHERE clause
	4.2.2.2� Controlling an ORDER BY clause

	4.2.3� NLS parameters
	4.2.3.1� Using ALTER SESSION
	4.2.3.2� Using NLS parameters in SQL functions
	4.2.3.3� Form Builder NLS parameters
	4.2.3.4� Report Builder report definition files

	4.3� Translating Your Applications
	4.3.1� Translating your applications using Translation Builder
	4.3.1.1� Advantages
	4.3.1.2� Disadvantages

	4.3.2� Translating your applications using runtime language switching
	4.3.2.1� Advantages
	4.3.2.2� Disadvantages

	4.3.3� Using PL/SQL libraries for strings in code
	4.3.4� Screen design considerations

	5 Designing Portable Applications
	5.1� Before You Begin
	5.2� Designing Portable Forms
	5.2.1� Considering the GUI
	5.2.1.1� Choosing a coordinate system
	5.2.1.2� Considering monitors
	5.2.1.3� Using color
	5.2.1.4� Resolving font issues
	5.2.1.5� Using icons
	5.2.1.6� Using buttons
	5.2.1.7� Creating menus
	5.2.1.8� Creating the console
	5.2.1.9� Miscellaneous

	5.2.2� Considering the operating system
	5.2.2.1� Including user exits

	5.2.3� Strategies for developing cross-platform forms
	5.2.3.1� Creating a single source
	5.2.3.2� Subclassing visual attributes
	5.2.3.3� Using the get_application_property built-in
	5.2.3.4� Hiding objects

	5.2.4� Designing forms for character-mode

	5.3� Designing Portable Reports
	5.3.1� Designing a report for character-mode environments
	5.3.1.1� Design considerations

	5.4� Designing Portable Displays

	6 Taking Advantage of Open Architecture
	6.1� Working with OLE Objects and ActiveX Controls
	6.1.1� What is OLE?
	6.1.1.1� When should I use OLE?
	6.1.1.2� About OLE servers and containers
	6.1.1.3� About embedded and linked objects
	6.1.1.4� About the registration database
	6.1.1.5� About OLE activation styles
	6.1.1.6� About OLE automation
	6.1.1.7� OLE support
	6.1.1.8� OLE guidelines
	6.1.1.9� Adding an OLE object to your application
	6.1.1.10� Manipulating OLE objects
	6.1.1.11� OLE examples

	6.1.2� What are ActiveX controls?
	6.1.2.1� When should I use ActiveX controls?
	6.1.2.2� Manipulating ActiveX controls
	6.1.2.3� Responding to ActiveX events
	6.1.2.4� Deploying your ActiveX control
	6.1.2.5� ActiveX support
	6.1.2.6� ActiveX guidelines
	6.1.2.7� Adding an ActiveX control to your application
	6.1.2.8� ActiveX examples

	6.2� Using Foreign Functions to Customize Your Applications
	6.2.1� What are foreign functions?
	6.2.1.1� When should I use a foreign function?
	6.2.1.2� Foreign function types

	6.2.2� The foreign function interface
	6.2.2.1� The Oracle Foreign Function Interface (ORA_FFI)
	6.2.2.2� User exit interface to foreign functions
	6.2.2.3� Comparing ORA_FFI and user exits

	6.2.3� Foreign function guidelines
	6.2.4� Creating a foreign function
	6.2.4.1� Creating an ORA_FFI interface to a foreign function
	6.2.4.2� Creating a user exit interface to a foreign function

	6.2.5� Foreign function examples
	6.2.5.1� Using ORA_FFI to call Windows help
	6.2.5.2� Using ORA_FFI to open the File Open dialog on Windows
	6.2.5.3� Using ORA_FFI to call Unix(SUN) executables with a STDIN/STDOUT type interface

	6.3� Using the Open API to Build and Modify Form Builder Applications
	6.3.1� What is the Open API?
	6.3.1.1� When should I use the Open API?
	6.3.1.2� Open API header files
	6.3.1.3� Open API properties
	6.3.1.4� Open API functions and macros

	6.3.2� Guidelines for using the Open API
	6.3.3� Using the Open API
	6.3.3.1� Creating and modifying modules using the Open API

	6.3.4� Open API examples
	6.3.4.1� Modifying modules using the Open API
	6.3.4.2� Creating modules using the Open API

	6.4� Designing Applications to Run against ODBC Datasources
	6.4.1� What is the Oracle Open Client Adapter (OCA)?
	6.4.1.1� When should I use OCA?
	6.4.1.2� OCA architecture
	6.4.1.3� Establishing an ODBC connection
	6.4.1.4� ODBC drivers
	6.4.1.5� OPENDB.PLL

	6.4.2� Open datasource guidelines
	6.4.3� Configuring your application to run against an ODBC datasource

	Glossary
	Index

