
Oracle9 i Application Server Release 1.0.2:

Deploying Forms Applications to the Web

for Windows and UNIX

October 2000

Part No. A86783-01

This book contains the information you need to deploy Forms applications to
the Web using the Oracle9i Application Server.

Oracle9i Application Server Release 1.0.2: Deploying Forms Applications to the Web, for Windows and
UNIX

Part No. A86783-01

Copyright © 1996, 2000, Oracle Corporation. All rights reserved.

Primary Authors: Tony Wolfram, Cathy Godwin

Contributing Authors: Tom Haunert, Joan Carter, Poh Lee Tan

Contributors: Ken Chu, Steve Button, Chris Barrow, Nigel Ferris, Alex Bryant, Hubert Bakker, Duncan
Mills

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark of Oracle Corporation. All other company or product names mentioned
are used for identification purposes only and may be trademarks of their respective owners.

 iii

Contents

Send Us Your Comments .. xv

Preface ... xvii

Intended Audience ... xvii
Structure ... xvii
Related Documents... xx

Part I Deploying Forms Applications to the Web

1 Introduction

1.1 The Internet Has Changed Everything .. 1-1
1.2 The Oracle Internet Platform ... 1-1
1.2.1 Simple .. 1-2
1.2.2 Complete ... 1-2
1.2.3 Integrated .. 1-2
1.3 Deploying Applications with the Oracle Internet Platform.. 1-2
1.4 Oracle9i Application Server... 1-3
1.4.1 Scalability .. 1-4
1.4.2 Availability.. 1-4
1.4.3 Load Balancing ... 1-4
1.4.4 Oracle9i Application Server Services .. 1-5
1.4.4.1 Communication Services ... 1-5
1.4.4.2 Presentation Services .. 1-5
1.4.4.3 Data Management Services ... 1-5

iv

1.4.4.4 System Services ... 1-6
1.4.4.5 Business Logic Services .. 1-6
1.5 Deploying Forms with Oracle9i Application Server .. 1-7
1.6 How This Guide Can Help... 1-8

2 Overview of Form Services

2.1 Introduction.. 2-1
2.2 Form Services Architecture .. 2-2
2.3 Form Services Components ... 2-3
2.3.1 Forms Applet .. 2-4
2.3.2 Forms Listener .. 2-4
2.3.3 Forms Runtime Engine .. 2-4
2.4 Form Services in Action.. 2-5

3 Preview of Configuration Choices

3.1 Introduction.. 3-1
3.2 Sockets, HTTP, or HTTPS... 3-1
3.2.1 Sockets.. 3-2
3.2.2 HTTP .. 3-2
3.2.3 HTTPS .. 3-3
3.3 Client Browser using Native JVM, Oracle JInitiator, or AppletViewer......................... 3-5
3.3.1 Native JVM Using Internet Explorer 5 .. 3-5
3.3.2 Oracle JInitiator... 3-5
3.3.3 AppletViewer.. 3-6
3.4 Load Balancing or standalone configuration .. 3-6
3.5 Forms Servlet or CGI implementation ... 3-6
3.6 What’s Next .. 3-7

4 Installing Form Services

4.1 Introduction.. 4-1
4.2 About the Oracle Universal Installer .. 4-1
4.3 Starting Form Services .. 4-2
4.4 What’s Next .. 4-2

 v

5 Configuring Form Services

5.1 Introduction.. 5-1
5.2 Configuring Your Web Server... 5-2
5.3 Customizing Environment Variables ... 5-2
5.4 Description of Form Services Startup Parameters.. 5-4
5.4.1 Port Parameter .. 5-4
5.4.2 Mode Parameter ... 5-4
5.4.3 Pool Parameter ... 5-5
5.4.4 Log Parameter... 5-5
5.5 Customizing Configuration Files .. 5-5
5.5.1 FormsServlet.initArgs.. 5-5
5.5.2 formsweb.cfg... 5-6
5.5.2.1 Creating special configurations in formsweb.cfg... 5-7
5.5.2.2 Parameters in the formsweb.cfg File .. 5-7
5.5.2.3 Default formsweb.cfg File.. 5-11
5.5.3 base.htm, basejini.htm, and baseie.htm .. 5-14
5.5.3.1 Parameters and variables in the base HTML file ... 5-15
5.5.3.2 Usage Notes ... 5-16
5.5.3.3 Default base.htm File.. 5-16
5.5.3.4 Default basejini.htm File .. 5-17
5.5.3.5 Default baseie.htm File... 5-19
5.6 Reading the Servlet Error Log ... 5-20
5.7 Setting Up the HTTPS Connection Mode .. 5-20
5.7.1 Customize HTTPS Environment Variables .. 5-22
5.7.2 Create Wallets and Request Certificates ... 5-22
5.7.2.1 Create a Wallet .. 5-23
5.7.2.2 Create a Certificate Request .. 5-23
5.7.2.3 Send the Certificate Request.. 5-24
5.7.2.4 Import the Certificate ... 5-24
5.7.2.5 Set Auto Login to ON... 5-25
5.7.3 Create Wallets and Request Certificates That Are Not Trusted by JInitiator by Default

5-26
5.7.3.1 Create a Wallet .. 5-27
5.7.3.2 Create a Certificate Request .. 5-28
5.7.3.3 Send the Certificate Request.. 5-28

vi

5.7.3.4 Install the VeriSign Trial CA Root Certificate on Client Machines................ 5-29
5.7.3.5 Import the Certificate ... 5-30
5.7.3.6 Set Auto Login to ON ... 5-31
5.8 What’s Next .. 5-32

6 Deploying Forms to the Web

6.1 Introduction.. 6-1
6.2 Deploying a Forms Application .. 6-1
6.2.1 Creating your Runtime Executable Files .. 6-1
6.2.2 Deploying the Executable Files on Your Server.. 6-2
6.2.3 Broadcasting the Application's URL ... 6-2
6.2.4 Servlet Error Log .. 6-2
6.3 What’s Next .. 6-3

7 Application Design Considerations

7.1 Introduction.. 7-1
7.2 General Guidelines .. 7-1
7.3 Guidelines for Designing Forms Applications.. 7-2
7.3.1 Create Your Own Template HTML Files.. 7-2
7.3.2 Create an HTML Application Menu.. 7-2
7.3.3 Use Oracle Designer with Form Services.. 7-2
7.3.4 Reduce Network Traffic .. 7-3
7.3.5 Avoid Unnecessary Graphics and Images.. 7-3
7.3.6 Select Standard Fonts... 7-3
7.4 Deploying Icons and Images Used by Form Services .. 7-4
7.4.1 Icons.. 7-4
7.4.2 SplashScreen and Background Images ... 7-5
7.4.3 Using a Custom JAR File Containing Icons and Images .. 7-6
7.4.3.1 Creating a JAR File.. 7-6
7.4.3.2 Using Files Within the JAR File... 7-6
7.4.4 Search Path for Icons and Images .. 7-7
7.4.4.1 DocumentBase ... 7-7
7.4.4.2 CodeBase .. 7-8
7.5 Integrating Reports.. 7-9
7.6 Feature Restrictions for Forms Applications on the Web.. 7-10

 vii

8 Migrating Legacy Applications to the Web

8.1 Introduction.. 8-1
8.1.1 Client/Server-Based Architecture ... 8-2
8.1.2 Web-Based Architecture.. 8-3
8.1.3 Who Should Read this Chapter?.. 8-4
8.2 Comparing Cartridge and servlet Implementations .. 8-4
8.3 Reconfiguration Strategies ... 8-5
8.3.1 Strategy for Users with Complex Base HTML Files ... 8-5
8.3.2 Strategy for Users with Simple Base HTML Files ... 8-6
8.4 Reconfiguring Forms Web Cartridge to Servlets.. 8-7
8.4.1 Stopping Oracle Application Server Web Listener Instances.................................. 8-7
8.4.1.1 Stopping Oracle Application Server Completely... 8-7
8.4.1.2 Stopping Specific Instance of Oracle Application Server.................................. 8-8
8.4.2 Configuring the formsweb.cfg File.. 8-8
8.4.2.1 System Parameters.. 8-8
8.4.2.2 User Parameters .. 8-9
8.4.2.3 Specific Configurations .. 8-9
8.4.3 Configuring the base.htm or basejini.htm File... 8-10
8.4.4 Broadcasting the Applications’s URL ... 8-11
8.5 Guidelines for Migration.. 8-13

9 Network Considerations

9.1 Introduction.. 9-1
9.2 Network Topologies ... 9-1
9.2.1 Internet... 9-2
9.2.2 Intranet... 9-2
9.2.3 Extranet.. 9-3
9.3 Deploying Form Services in your Network Environment .. 9-3
9.3.1 Deploying Over the Internet .. 9-4
9.3.1.1 Risks .. 9-4
9.3.1.2 Other Internet Deployment Options .. 9-5
9.3.2 Deploying On a Local Area Network (LAN)... 9-5
9.3.3 Deploying On a Network with Remote Dial-Up Access.. 9-5
9.3.4 Deploying On a Network via Telecom-Provided VPN Access over Public Lines 9-6
9.3.5 Deploying On a Network via VPN Access over the Internet 9-7

viii

9.4 Guidelines for Maintaining Network Security.. 9-8

10 Security Considerations

10.1 Introduction.. 10-1
10.2 Common System Security Issues .. 10-1
10.2.1 User Authentication ... 10-2
10.2.2 Server Authentication .. 10-2
10.2.3 Authorization.. 10-3
10.2.4 Secure Transmission (Encryption) ... 10-3
10.2.5 Firewall .. 10-5
10.2.6 Virtual Private Network (VPN).. 10-5
10.2.7 Demilitarized Zone (DMZ) ... 10-5
10.3 Simple Steps to Improve Security ... 10-6

11 Performance Tuning Considerations

11.1 Introduction.. 11-1
11.2 Built-in Optimization Features of Form Services.. 11-1
11.2.1 Minimizing Client Resource Requirements ... 11-2
11.2.2 Minimizing Form Services Resource Requirements ... 11-2
11.2.3 Minimizing Network Usage ... 11-3
11.2.4 Maximizing the Efficiency of Packets Sent Over the Network.............................. 11-3
11.2.5 Rendering Application Displays Efficiently on the Client 11-4
11.3 Tuning Form Services Applications.. 11-4
11.3.1 Location of the Form Services with Respect to the Data Server 11-4
11.3.2 Minimizing the Application Startup Time ... 11-6
11.3.2.1 Using JAR Files.. 11-7
11.3.2.2 Using Caching ... 11-8
11.3.2.3 Deferred Load on Demand.. 11-8
11.3.3 Reducing the Required Network Bandwidth .. 11-9
11.3.4 Other Techniques to Improve Performance ... 11-11
11.4 Performance Collection Services ... 11-12
11.4.1 How to Use Performance Collection Services.. 11-12
11.4.2 Events Collected by Performance Services... 11-13
11.4.3 Analyzing the Performance Data ... 11-13
11.5 Trace Collection ... 11-14

 ix

11.5.1 Types of Forms Events Traced Using Oracle Trace .. 11-14
11.5.1.1 Forms Duration Events and Items.. 11-15
11.5.1.2 Forms Point Events and Items .. 11-17
11.5.2 Using Forms and Oracle Trace without the Diagnostics Pack 11-18
11.5.2.1 Starting the Collection.. 11-18
11.5.2.2 Formatting the Output ... 11-20
11.5.2.3 Using Optional Report Parameters .. 11-20
11.5.3 Using Forms and Oracle Trace with the Diagnostics Pack 11-21
11.5.3.1 Starting the Collection.. 11-21
11.5.3.2 Formatting the Output ... 11-22
11.5.3.3 Using the Trace Data Viewer .. 11-22
11.5.4 Setting Up the Load Balancer Server Trace Log .. 11-23
11.5.4.1 Trace level 1 ... 11-23
11.5.4.2 Trace level 2 ... 11-23
11.5.4.3 Sample Trace File .. 11-24

12 Load Balancing Considerations

12.1 Introduction.. 12-1
12.2 Load Balancing Terminology .. 12-1
12.3 Load Balancing in Action ... 12-3
12.4 Configuring for Form Services Load Balancing.. 12-5
12.4.1 Form Services Listener Parameters ... 12-6
12.4.2 Load Balancer Server Parameters .. 12-6
12.4.3 Load Balancer Client Parameters... 12-7

13 Oracle Enterprise Manager Forms Support

13.1 Introduction.. 13-1
13.2 Why Should I Use OEM? ... 13-2
13.3 OEM Components... 13-2
13.4 Installing and Configuring OEM Components for Use with Forms 13-2
13.4.1 Configuring Forms Support for OEM... 13-2
13.4.2 Starting the OMS Service .. 13-3
13.5 Managing Form Services from the OEM Console .. 13-3
13.5.1 Locating Nodes... 13-3
13.5.2 Entering the Administrative User’s Credentials in the OEM Console................. 13-4

x

13.5.3 Viewing Forms Runtime Instances from the OEM Console 13-4
13.6 OEM Menu Options .. 13-5
13.6.1 Controlling Forms Listeners Group... 13-5
13.6.2 Controlling Forms Listeners Instance ... 13-5
13.6.3 Runtime Processes List Window.. 13-6
13.6.4 Controlling Forms Runtime Processes .. 13-6
13.6.5 Controlling Load Balancer Server Group ... 13-6
13.6.6 Controlling Load Balancer Server Instance .. 13-7
13.6.7 Controlling Load Balancer Client Group.. 13-7
13.6.8 Controlling Load Balancer Client Instance... 13-7
13.6.9 Monitoring Functions .. 13-7

14 Capacity Planning Considerations

14.1 Introduction.. 14-1
14.2 What Is Scalability? ... 14-2
14.3 Criteria for Evaluating System Capacity.. 14-3
14.3.1 Processor.. 14-3
14.3.2 Memory.. 14-4
14.3.3 Network ... 14-4
14.3.4 Shared Resources.. 14-4
14.3.5 User Load .. 14-5
14.3.6 Application Complexity .. 14-5
14.4 Determining Scalability Thresholds ... 14-7
14.5 Sample Benchmark Results .. 14-8
14.5.1 Medium-Complex Application on a Low-Cost Intel Pentium-Based System..... 14-8
14.5.2 Medium-Complex Application on an Intel Pentium II Xeon-Based System....... 14-9
14.5.3 Medium-Complex Application on an Entry-Level Sun UltraSparc Server 14-9
14.5.4 Simple Application on an Intel Pentium II Xeon-Based System 14-10
14.5.5 Simple Application on an Entry-Level Sun UltraSparc Server............................ 14-10

15 Troubleshooting Solutions

15.1 Introduction.. 15-1
15.2 Checking the Status of the Form Services .. 15-1
15.3 Starting the Form Services.. 15-2
15.4 Stopping the Form Services Process ... 15-3

 xi

15.5 Starting the Form Services Log.. 15-4
15.6 Troubleshooting FAQ ... 15-4

Part II Appendices

A Form Services Parameters

A.1 Introduction.. A-1
A.2 Windows 95 and Windows NT Registry ... A-1
A.2.1 Viewing and Modifying the Registry.. A-1
A.3 Configuration Parameters .. A-2
A.3.1 Required Parameters ... A-2
A.3.2 Customizable Parameters .. A-3

FORMS60_PATH .. A-3

FORMS60_REPFORMAT... A-3

FORMS60_TIMEOUT... A-4

GRAPHICS60_PATH ... A-4

NLS_LANG.. A-4

ORACLE_HOME .. A-5

B Client Browser Support

B.1 Introduction.. B-1
B.2 How Configuration Parameters and Base HTML Files are Tied to Client Browsers.. B-1
B.3 Internet Explorer 5 with Native JVM ... B-2
B.3.1 Software Installation .. B-2
B.3.2 Testing Microsoft Internet Explorer .. B-2
B.3.2.1 Checking Microsoft JVM.. B-3
B.3.2.2 Java 1.1 Applet Testing .. B-3
B.3.3 Launching Oracle Forms Applications ... B-3
B.3.4 Troubleshooting ... B-3
B.3.5 Modification of the baseie.htm file .. B-4
B.4 Oracle JInitiator.. B-4
B.4.1 Why Use Oracle JInitiator? ... B-5
B.4.2 Benefits of Oracle JInitiator... B-5
B.4.3 Using Oracle JInitiator... B-5

xii

B.4.4 Supported Configurations .. B-6
B.4.5 System Requirements .. B-6
B.4.6 Using Oracle JInitiator with Netscape Navigator.. B-6
B.4.7 Using Oracle JInitiator with Microsoft Internet Explorer... B-7
B.4.8 Setting up the Oracle JInitator Plug-in .. B-7
B.4.8.1 Adding Oracle JInitiator Markup to Your Base HTML File B-7
B.4.8.2 Customizing the Oracle JInitiator Download File.. B-8
B.4.8.3 Making Oracle JInitiator available for download... B-8
B.4.9 Modifying the Oracle JInitiator plug-in .. B-8
B.4.9.1 Modifying the cache size for Oracle JInitiator .. B-8
B.4.9.2 Modifying the heap size for Oracle JInitiator ... B-9
B.4.9.3 Check and modify the proxy server setting for Oracle JInitiator..................... B-9
B.4.9.4 Viewing Oracle JInitiator output .. B-9
B.4.10 Oracle JInitiator tags for a base HTML file ... B-10
B.4.11 Oracle JInitiator FAQ ... B-11
B.4.11.1 Certification and Availability .. B-11
B.4.11.2 Support ... B-13
B.4.11.3 Installation.. B-13
B.4.11.4 Operation of Oracle JInitiator.. B-16
B.4.11.5 Caching ... B-17
B.5 AppletViewer ... B-20
B.5.1 Running Applications in the AppletViewer... B-21
B.5.1.1 Preparing to Run Your Application with the AppletViewer.......................... B-21
B.5.1.2 Adding the clientBrowser Parameter to your Base HTML File B-21
B.5.1.3 Setting the clientBrowser Parameter ... B-22
B.5.2 Registering the Forms Applet Signature... B-23
B.5.2.1 Trusting the Forms Applet by Registering Its Signature B-23
B.5.2.2 Trusting the Forms Applet by Installing the Forms Java Class Files Locally

B-24
B.5.3 Instructions for the User.. B-24
B.5.3.1 Installing the AppletViewer .. B-24
B.5.3.2 Running the AppletViewer.. B-25
B.5.3.3 Invoking a Web Browser From Within the AppletViewer B-25

 xiii

C Java Importer

C.1 Overview .. C-1
C.1.1 Importing Java and Building Applications .. C-1
C.1.2 Running Applications with Imported Java .. C-2
C.2 Components ... C-2
C.3 Installation Requirements .. C-2
C.3.1 Imported Java Requirements.. C-2
C.4 Importing Java ... C-3
C.4.1 Using the Java Importer Tool ... C-3
C.4.2 Invoke the Import Java Classes dialog box .. C-3
C.4.3 Specify options for importing... C-4
C.4.4 Import a Java class into PL/SQL ... C-5
C.5 Building Applications with Imported Java ... C-6
C.5.1 Description of the Generated PL/SQL.. C-6
C.5.1.1 What Gets Generated?.. C-6
C.5.1.2 How is the Java Mapped to PL/SQL? ... C-6
C.5.1.3 What are the importer mapping options? ... C-8
C.5.1.4 How does PL/SQL naming vary? .. C-8
C.5.1.4.1 What is different between persistent and default naming?....................... C-9
C.5.1.5 What happens if I regenerate the PL/SQL?.. C-12
C.5.2 Java Types ... C-13
C.5.2.1 Java Type Information in the PL/SQL Package ... C-13
C.5.2.2 Arrays ... C-14
C.5.3 Persistence ... C-15
C.5.3.1 Global References.. C-15
C.5.4 Error Handling ... C-15
C.5.4.1 Errors .. C-16
C.5.4.2 Exceptions .. C-16
C.6 Limitations.. C-17
C.6.1 Java/PL/SQL Issues/Requirements... C-17
C.6.2 Java in the Form Services .. C-17
C.6.3 Builder CLASSPATH Updates... C-17
C.6.4 Builder Restrictions.. C-18
C.7 ORA_JAVA Built-ins Reference .. C-18
C.7.1 NEW_GLOBAL_REF built-in... C-20

xiv

C.7.2 DELETE_GLOBAL_REF built-in .. C-21
C.7.3 LAST_EXCEPTION built-in... C-21
C.7.4 CLEAR_EXCEPTION built-in ... C-22
C.7.5 LAST_ERROR built-in .. C-23
C.7.6 CLEAR_ERROR built-in... C-24
C.7.7 NEW_<java_type>_ARRAY built-in.. C-25
C.7.8 GET_<java_type>_ARRAY_ELEMENT built-in .. C-27
C.7.9 SET_<java_type>_ARRAY_ELEMENT built-in ... C-29
C.7.10 IS_NULL built-in ... C-32
C.7.11 GET_ARRAY_LENGTH built-in... C-32

Part III Index

Index

 xv

Send Us Your Comments

Oracle9 i Application Server Release 1.0.2: Deploying Forms Applications to the Web, for Win-
dows and UNIX

Part No. A86783-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available).

You can email your comments to us by sending them to oddoc@us.oracle.com.

If you have problems with the software, please contact your local Oracle Support Services.

xvi

 xvii

Preface

Intended Audience
This manual is intended for software developers who are interested in deploying
Forms applications to the Web with the Oracle9i Application Server.

Structure
This manual contains the following chapters and appendices:

Chapter 1 Introduction

Explains the benefits of deploying applications to the Web.

Chapter 2 Overview of Form Services

Introduces you to the deployment tools that you will be using by
providing an overview of the Form Services architecture and its
components.

Chapter 3 Preview of Configuration Choices

Presents a preview of configurations choices that you will face
when deploying applications to the Web.

Chapter 4 Installing Form Services

Describes Form Services installation through the Oracle Universal
Installer.

Chapter 5 Configuring Form Services

Describes the steps necessary to manually configure your network
environment to support Form Services.

xviii

Chapter 6 Deploying Forms to the Web

Describes the steps you must perform to deploy your applications
to the Web, such as creating the executable files and broadcasting
the application’s URL.

Chapter 7 Application Design Considerations

Contains guidelines and tips for designing Forms applications for
Web deployment and includes some feature restrictions.

Chapter 8 Migrating Legacy Applications to the Web

Includes guidelines to migrate your current applications from
client/-based or cartridge implementation to Web-based Form
Services implementation.

Chapter 9 Network Considerations

Describes the networking implementations upon which you can
deploy Web applications, and the things you need to consider
when deploying Web applications on each type.

Chapter 10 Security Considerations

Describes common security issues that you must consider when
setting up Form Services in a networked environment.

Chapter 11 Performance Tuning Considerations

Describes the tuning considerations when you deploy an
application over the Internet or other network environment using
Form Services.

Chapter 12 Load Balancing Considerations

Discusses load balancing techniques using servlet load balancing.

Chapter 13 Oracle Enterprise Manager Forms Support

Describes the Oracle Enterprise Manager (OEM) system
management tool.

Chapter 14 Capacity Planning Considerations

Explores the scalability features of Form Services.

Chapter 15 Troubleshooting Solutions

Contains information about troubleshooting solutions for Form
Services.

 xix

Appendix A Form Services Parameters

Describes the parameters that you use to configure Form Services.

Appendix B Client Browser Support

Describes the benefits of using native JVM with Internet Explorer 5,
Oracle JInitiator, or AppletViewer for your users’ Web browsers.

Appendix C Java Importer

Describes how the Java Importer allows Forms developers to
generate PL/SQL packages to access Java classes and then program
with the generated PL/SQL in their Forms applications.

xx

Related Documents
For more information, see the following manuals:

■ Oracle Forms Developer 6i Release Notes

■ Oracle Forms Developer: Getting Started (Windows 95/NT)

■ Oracle Reports Developer: Publishing Reports

■ Oracle Forms Developer and Oracle Reports Developer: Guidelines for Building
Applications

■ Oracle Forms Developer: Form Builder Reference

Part I
 Deploying Forms Applications to the Web

 Introduction 1-1

1
Introduction

1.1 The Internet Has Changed Everything
The Internet has introduced enormous opportunities for companies to customize
and streamline their internal business processes. But these opportunities bring new
challenges: Applications must be made available on the Internet in rapid time and
must scale to serve very high numbers of users.

The use of middle tier application servers promises to shrink development time and
expense by providing scalable infrastructure, transactional management, portal
services, business intelligence functionality, and integration.

Unfortunately, most vendors’ application server products target only a subset of
these services, leading customers into the dark, tangled forest of integrating
products from multiple vendors.

1.2 The Oracle Internet Platform
Oracle helps its customers find a clear path through this heavy growth by offering a
simple, complete, and integrated Internet platform composed of three core
products:

■ The Oracle8i database

■ Oracle9i Application Server

■ Oracle9i Developer Suite

One way Oracle’s Internet Platform reduces the total cost of ownership of a
corporate IT infrastructure is by eliminating the expense of integrating multiple
products from various vendors. With the Oracle Internet Platform, customers can
refocus their IT resources on creating true, value-added services to differentiate
themselves from their competitors.

Deploying Applications with the Oracle Internet Platform

1-2 Deploying Forms Applications to the Web

Oracle9i Application Server combines with Oracle8i and the Oracle9i Developer
Suite to provide everything necessary to build, deploy, and manage Internet
applications. Together, they constitute an Internet platform that is simple, complete,
and integrated.

1.2.1 Simple
Oracle9i Application Server, Oracle8i, and Oracle9i Developer Suite are simple to
buy, simple to install, and simple to manage. All of Oracle’s core middle-tier
services and core development tools, including Oracle9i Application Server Form
Services and Oracle Forms Developer, have been integrated. Application services
have been integrated into Oracle9i Application Server. Development tools have
been integrated into Oracle9i Developer Suite. These integrations enable customers
to build and deploy portals, transactional applications, and business intelligence
facilities with just three products.

1.2.2 Complete
With Oracle8i to manage data, Oracle9i Developer Suite to build applications, and
Oracle9i Application Server to run them, the Oracle Internet Platform is a complete
solution for building any type of application and deploying it to the Web. These
Oracle tools provide a scalable and highly available infrastructure that enables
customers to easily accommodate growing user populations.

1.2.3 Integrated
Oracle9i Application Server is simply the best application server for the Oracle8i
database and applications built with Oracle development tools. By leveraging a
common technology stack, Oracle9i Application Server can transparently scale an
Oracle database by caching data and application logic on the middle tier.
Additionally Oracle9i Application Server inherits much of its robust scalability and
availability features from the mature technology of Oracle8i.

1.3 Deploying Applications with the Oracle Internet Platform
The Internet has moved application architectures from a typical 2-tier client/server
model to a variety of multi-tier deployments that host presentation and business
logic on the server. The advantages inherent in this move are many:

■ Deployment of new versions is easier, faster, and cheaper. To roll out a Web
application, simply give users the application's URL. This distribution method

Oracle9i Application Server

 Introduction 1-3

reduces the time, cost, and complexity of deploying applications to a large or
geographically-dispersed user base by eliminating the need to install
application software on each user’s desktop machine.

■ Centralized distribution means lower total cost of ownership. Web
deployment dramatically reduces the cost of administration, maintenance, and
network while increasing information accessibility. Instead of multiple outposts
providing system administration support, system maintenance and
administration is performed from one central location. With Web deployment,
application complexity moves off of each user’s desktop and onto centrally
located, professionally managed application servers. This makes possible
professional management of your site on a small number of servers, vastly
simplifying, accelerating, and standardizing maintenance tasks and
dramatically lowering costs.

■ Standards-based development means better integration. Oracle application
development adheres to the same existing and emerging standards used all
across the World Wide Web. These include Java, Enterprise JavaBeans, HTML,
XML, CORBA, HTTP, HTTPS, and the like. Common language means easier
and faster integration of newly or separately developed applications.

■ Component-based development means increased productivity, easy
maintenance, and reusability. Customize applications rapidly in response to
the different requirements of a diverse audience. Business developers need only
alter affected components and not the entire application. Commonly applied
components can easily be reused in other applications. These are just some of
the ways organizations are able to respond in "Web time" to user requirements.

The Oracle Internet platform is the lowest-cost deployment platform because it
simplifies the delivery and management of applications:

■ Server scalability means fewer servers for lower cost and easier management.

■ Server-side application and data processing mean efficient network utilization.

■ On the client side, all you need is a browser: there are no incremental software
costs for desktops connecting to a database.

1.4 Oracle9 i Application Server
Oracle9i Application Server is an important component of the Oracle Internet
Platform. It provides the broadest range of middle tier services of any vendor,
supporting portal and transactional application development, flexible deployment,
enterprise integration, and business intelligence services all out-of-the-box.

Oracle9i Application Server

1-4 Deploying Forms Applications to the Web

Oracle9i Application Server enables its customers to bring new and existing
applications to run on the Internet quickly and at low cost. It offers performance
benefits through its scalability, availability, and load balancing services.

1.4.1 Scalability
Oracle9i Application Server enables high scalability of Web applications in three
central ways:

■ It runs on a broad set of hardware and operating systems, enabling users to
upgrade their hardware without changing their applications.

■ It can boost the scalability of the system by caching database data and stored
procedures on the middle tier, allowing back-end databases to serve greater
numbers of concurrent users.

■ It can be deployed on single-node or multi-node clusters to scale both stateless
and stateful applications.

1.4.2 Availability
Clients running applications on Oracle9i Application Server will ideally perceive
little or no loss of service during many types of hardware and software outages.
Oracle9i Application Server provides a number of features and mechanisms
designed to keep your system available despite limited server failures:

■ It has no single point of failure.

■ It isolates sessions to minimize impact of session outage.

■ It can automatically detect failure, reroute connections, and restart processes.

1.4.3 Load Balancing
With load balancing, when you approach the limits of your current hardware,
rather than either upgrading or throwing out a machine, you can just add more
nodes and spread the increasing load across several machines.

Effective load balancing helps maximize scalability by enabling a system to make
efficient use of its processing resources. Oracle9i Application Server load balances
efficiently both between threads and processes on a single node and between nodes
in a multi-node deployment. Further, Oracle9i Application Server can be deployed
on a centralized collection of host machines, known as middle-tier server farms.

Oracle9i Application Server

 Introduction 1-5

1.4.4 Oracle9 i Application Server Services
Oracle9i Application Server consists of a set of services and utilities that can be used
to implement applications in a distributed environment for scalability and
reliability. These include:

■ Communication services

■ Presentation services

■ Data management services

■ System services

■ Business logic services

1.4.4.1 Communication Services
Oracle9i Application Server communication services handle requests coming in to
the server. Services are provided through a combination of Oracle HTTP Server and
Oracle HTTP Server Modules. The Oracle HTTP Server is powered by Apache, the
de facto standard Web listener on the Internet. Apache serves over 60 percent of the
world’s Internet sites, offering a robust, scalable technology. Oracle HTTP Server
Modules are plug-ins to the HTTP Server that extend its functionality by offering
native services or by dispatching requests to external processes.

1.4.4.2 Presentation Services
Oracle9i Application Server presentation services handle output of graphical
representation, often in the form of HTML. They support a variety of different ways
to generate client presentation, from low-level programming via scripts, through
high-level frameworks via Oracle Portal. These services include support for Oracle
Portal, Apache JServ, OracleJSP, PL/SQL, and Perl.

1.4.4.3 Data Management Services
To reduce the load on the back-end database instance, and to avoid network
round-trips for read-only data, Oracle9i Application Server includes Oracle 9i
Application Server Cache.

Oracle 9i Application Server Cache is a read-only data and application cache that
resides on the middle tier as a component of Oracle9i Application Server. It
improves the performance and scalability of applications that access Oracle
databases by caching frequently used data and stored procedures on the middle-tier
machine. Oracle 9i Application Server Cache has enabled some applications to

Oracle9i Application Server

1-6 Deploying Forms Applications to the Web

process several times as many requests as their original capacity. It’s ability to
improve performance is based largely on two factors:

■ Processing database queries on the middle tier reduces time spent sending and
receiving data over the network.

■ Reducing the load on the database server tier means that existing databases can
support more users.

Applications that stand to benefit the most from Oracle 9i Application Server Cache
include those that access data from an Oracle database over a network; those that
have significant dynamic read-only content; and those that contain discrete tables
with low volatility.

1.4.4.4 System Services
To provide system management and security services, Oracle9i Application Server
includes Oracle Enterprise Manager (OEM) and Oracle Advanced Security. These
services offer a comprehensive management framework for your entire Oracle
environment along with network security via Secure Sockets Layer-based
encryption and authentication facilities.

OEM provides an integrated solution for centrally managing your Oracle platform.
It includes a GUI console, Oracle Management Services, Oracle Intelligent Agents,
and administrative tools.

Use OEM to:

■ Monitor and respond to the status of your Oracle products and third-party
services

■ Schedule activities on multiple nodes

■ Monitor networked services for events

■ Organize your view of server components and services into logical
administrative groups

■ Measure application performance (through OEM’s Oracle Trace)

1.4.4.5 Business Logic Services
Oracle9i Application Server provides several ways to develop business logic, using
both Java development and high-level, model-driven techniques. This includes
support for such Java technologies as Java 2 Platform, Enterprise Edition (J2EE);
Enterprise Java Beans (EJB); Oracle Business Components for Java (BC4J); as well as

Deploying Forms with Oracle9i Application Server

 Introduction 1-7

rich, GUI-oriented approaches, using Oracle Forms Developer and Oracle Reports
Developer.

1.5 Deploying Forms with Oracle9 i Application Server
Using Oracle9i Application Server Form Services, you can run applications built
with Oracle Forms Developer over the Internet or your corporate intranet, without
compromising either functionality or richness of interface.

Build new applications specifically for Web deployment, or take your existing
forms, menus, and libraries currently deployed client/server and move them to
Web deployment, almost without change.

There are many additional benefits to be realized from using Oracle9i Application
Server Forms Services. Here are just a few:

■ Extensible optimized Java client. Business developers can incorporate
JavaBeans and reuse Java classes in their Forms applications. This extends the
client Java applet portion of Form Services architecture and enables business
developers to build really sophisticated user interfaces. These interfaces
leverage the strengths of the Java language and allow for the reuse of Java
components.

■ Automatic scalability over any network. Oracle Forms Services natively
delivers load balancing capabilities. Load balancing efficiently distributes client
requests across available system resources. It is optimized for corporate
intranet, extranet, and Internet deployment. You can use the application on
LAN, WAN, and dial-up network architectures.

■ Built-in optimizations for high performance. Oracle Forms Services has many
built-in optimizations that work around the two main constraints that are
typical in three-tier architectures: network bandwidth and latency between the
client and application server.

Forms Services reduces network bandwidth by intelligently condensing the
data stream using advanced algorithms.

One way Oracle Forms Services tackles latency is through Event Bundling:
When a user navigates from item A to item B (such as when tabbing from one
entry field to another), a range of pre- and post-triggers may fire, each of which
requires processing on the server. Event Bundling "gathers" all the events
triggered while navigating between the two objects and delivers them to the
server as a single packet for processing. When navigation involves traversing
many objects (such as when a mouse click is on a distant object), Event

How This Guide Can Help

1-8 Deploying Forms Applications to the Web

Bundling gathers all events from all of the objects that were traversed and
delivers them as a single network message to the server.

■ Integration with a highly productive, declarative Rapid Application
Development (RAD) tool. The Forms Services in Oracle9i Application Server
were developed specifically to serve Oracle Forms applications. This simplifies
the transition from development to deployment by eliminating time-consuming
issues that can arise when integrating applications and servers created with
tools from disparate vendors.

1.6 How This Guide Can Help
When you choose to deploy applications to the Internet, there are many decisions to
be made as to how you will go about it. This guide provides information about
those decisions and offers suggestions and methods for configuring your system for
Web deployment of your applications.

We provide:

■ An overview of the Form Services component of Oracle9i Application Server
architecture

■ A guide for installing and configuring the Form Services component in a
variety of Web deployment scenarios

■ A section on migrating your legacy client/server applications to the Web

■ Sections on capacity planning and load balancing to help you set up multiple
servers that work and communicate together to share growing workloads

■ Sections on network and security considerations

■ Sections on application design considerations and tuning for optimizing the
performance of your Web applications

 Overview of Form Services 2-1

2
Overview of Form Services

2.1 Introduction
The Oracle9i Application Server is a scalable, secure, middle-tier aplication server. It
enables you to deliver web content, host web applications, and connect to to
back-office applications. Form Services are an integral part of the Oracle9i
Application Server bundle, which provides the technology to fully realize the
benefits of Internet computing. This chapter provides an overview of Form Services
architecture, specifically as it relates to deploying forms over the Internet.

Form Services are a new generation of development tools that enable you to deploy
new and existing Oracle Forms applications on the World Wide Web. You can
deploy applications on an internal company intranet, an external company extranet,
or on the Internet.

Form Services are an application server optimized to deploy Oracle Forms
applications in a multi-tiered environment. It takes advantage of the ease and
accessibility of the Web and elevates it from a static information-publishing
mechanism to an environment capable of supporting complex applications.

Form Services Architecture

2-2 Deploying Forms Applications to the Web

2.2 Form Services Architecture
Form Services use a three-tier architecture to deploy database applications.
Figure 2–1 shows the three tiers that make up the Form Services architecture:

■ The client tier contains the Web browser, where the application is displayed
and used.

■ The middle tier is the application server, where application logic and server
software are stored.

■ The database tier is the database server, where enterprise data is stored.

Figure 2–1 Form Services architecture

Form Services Components

 Overview of Form Services 2-3

2.3 Form Services Components
Form Services is a middle-tier application server for deploying complex,
transactional forms applications to the Internet. Developers can build new
applications with Oracle Forms Developer and deploy them to the Internet with
Form Services. Developers can also take existing applications that were previously
deployed in client/server and move them to a three-tier architecture without
changing the application code.

Form Services consists of three major components, as shown in Figure 2–2:

■ The Forms Applet, which is automatically downloaded to the client and viewed
within the Web browser

■ The Forms Listener, which resides on the middle tier

■ The Forms Runtime Engine, which also resides on the middle tier

Figure 2–2 Three-tier configuration for running a form on the Web

Form Services Components

2-4 Deploying Forms Applications to the Web

2.3.1 Forms Applet
When a user runs a Forms session over the Web, a thin Java-based Forms applet is
dynamically downloaded from the application server and automatically cached on
the Java client machine.

The Forms applet provides the user interface for the Form Services Runtime Engine.
As an extensible, optimized Java applet, it operates inside the framework of the
client’s Web browser. It handles user interaction and visual feedback, such as
information that is generated when navigating between items or when checking a
check box. It is responsible for rendering the application display and contains no
specific application logic.

The same Java applet code can be used for any Form, regardless of size or
complexity. This means that you do not have to write Java code for every
application or Form that you want to deploy on the Web.

2.3.2 Forms Listener
The Forms Listener acts as a broker between the Java client and the Form Services
runtime process. It takes connection requests from Java client processes and initiates
a Form Services Runtime process on their behalf. The listener can also maintain a
pool of running engines that stand ready to make the connection from the Java
client complete as quickly as possible.

2.3.3 Forms Runtime Engine
The Forms Runtime Engine manages application logic and processing. It maintains
a connection to the database on behalf of the Java client. It uses the same Forms,
Menus, and Libraries files that are used for running in client/server mode. No
application code changes are required to deploy a legacy client/server application
to the Internet.

The Forms Runtime Engine plays two roles: when it is communicating with the
client browser, it acts as a server by managing requests from client browsers; when
it is communicating with the database server, it acts as a client by querying the
database server for requested data.

Form Services in Action

 Overview of Form Services 2-5

2.4 Form Services in Action
To start and run a Forms application on the Web, users will employ a Java-enabled
Web browser to access a URL. Figure 2–3 and the text that follows show and explain
the sequences of events that occur during the process flow involving the Form
Services.

Figure 2–3 Form Services process flow

Form Services in Action

2-6 Deploying Forms Applications to the Web

When a user runs a Forms application on the Web, the following sequence of events
occurs:

1. The user accesses the URL of an HTML page that indicates a Forms application
should be run.

2. The HTML page is downloaded to the Web browser. If needed, the client will
also download the Java archive file containing the Forms applet. The Forms
applet will be instantiated and the parameters from the HTML page will be
used to determine which Forms application will be run.

3. The Forms applet sends a request to the Forms Listener (which resides on a
specific port of the machine from which the Forms applet was downloaded).

4. The Forms Listener contacts the Forms Runtime Engine and connects to a Form
Services runtime process. If included in the HTML page, Forms command-line
parameters (such as form name, user ID and password, database SID, menu
name, and so on) and any user-defined Form Builder parameters are passed to
the process by the Forms Listener.

5. The Listener establishes a connection with the Runtime Engine, and sends the
connection information to the Forms applet.

6. The Forms applet then establishes a direct connection with the Runtime Engine.

7. The Forms applet and Runtime Engine then communicate directly, freeing the
Listener to accept startup requests from other users. The Forms applet displays
the application's user interface in the main window of the user's Web browser.

8. The application running on the Runtime Engine communicates directly with the
database.

 Preview of Configuration Choices 3-1

3
Preview of Configuration Choices

3.1 Introduction
This chapter previews the choices you will face during the configuration of Form
Services and offers descriptive information to assist you in understanding the
differences between options. Configuration choices include:

■ Socket connection, HTTP connection, or HTTP with SSL (secure sockets layer)
connection?

■ Viewing forms in Internet Explorer using the native JVM, or viewing forms in
Internet Explorer or Netscape Navigator using Oracle JInitiator or
AppletViewer?

■ Load balancing or standalone configuration?

■ Forms Servlet or CGI implementation?

3.2 Sockets, HTTP, or HTTPS
The Form Services can be used in three modes for deploying applications:

■ Sockets

■ HTTP

■ HTTPS (HTTP 1.1 with SSL)

Refer to Section 9.3, "Deploying Form Services in your Network Environment" for
more detailed information on the best implementation of Form Services in your
specific network environment.

Sockets, HTTP, or HTTPS

3-2 Deploying Forms Applications to the Web

3.2.1 Sockets
Like many other Internet-based technologies, Form Services was originally
designed to use sockets for communication. A sockets connection uses a standard
programming interface to TCP/IP.

A simple way to think of sockets is to imagine a numbering system for programs
that communicate over the network. Typically these programs have a client part
and a server part that share a common socket number. The server listens at the
common socket port for requests from the client. Communication between the client
and server parts of a program are done over what is called a socket connection.

Here is a typical example of socket use: A client sends a request to a URL that has a
non-standard port number (for example, http://www.xyz.com:9000). This means
the client browser will attempt to connect to socket number 9000. This also means
that there is a server running on www.xyz.com that listens for connections on port
9000.

The socket mode of deployment is efficient and simple to use. Form Services runs
on a networked host machine, and it listens on a specified socket or port for
connections from the client running on a user machine. For this method to work, the
client and server machines must be able to see, or communicate with, one another
directly on the network. It is not possible to use a server-side proxy in this mode.

Note: A server-side proxy is a method for keeping the machine running the server software
unknown or anonymous when it is connected or providing services to the Internet. It is a security
feature that is invisible to a client and used to thwart unauthorized access to the server.

If the server and the client are separated by an unsecured network, such as the
Internet, socket-based deployment has potentially severe security implications.

3.2.2 HTTP
Note: For client browsers using Oracle JInitiator, version 1.1.7.30 of JInitiator is required to use the
HTTP and HTTPS modes.

In HTTP mode, communication is also accomplished through a socket connection,
but it is an HTTP socket connection. Form Services listen for HTTP connections
from a client rather than for proprietary connections via sockets. All internal
messaging between the Form Services and the client is encapsulated in HTTP
packets.

An HTTP socket connection makes it possible for sites to allow secure
communication between clients and servers through a firewall. Sites that allow only
HTTP traffic can deploy Forms applications through their existing firewall with

Sockets, HTTP, or HTTPS

 Preview of Configuration Choices 3-3

little or no change to the configuration. The fact that a proxy is used is completely
transparent to the client. As far as the client knows, it has a direct connection to the
Form Services.

In the presence of a firewall, the socket mode will not work. To make a socket mode
connection work through a firewall, the specific sockets or ports used by the Form
Services would have to be open and available on the firewall, which would expose
your network to any traffic that locates the open socket. This essentially pierces the
firewall and defeats its purpose.

HTTP is one of the most widely used protocols for deploying applications on the
Internet. Organizations can lock-down their firewalls and allow only HTTP traffic,
which greatly enhances the security of their private networks. Most firewall
companies support the HTTP standard in their products, and many organizations
are willing to allow HTTP traffic in and out of their private networks.

3.2.3 HTTPS
In HTTPS mode, communication is accomplished through an HTTP socket
connection, as described in Section 3.2.2, "HTTP". However, with HTTPS, SSL
(secure sockets layer) is implemented as well.

Note: For client browsers using AppletViewer, the HTTPS connection mode is not supported.

Note: For client browsers using Oracle JInitiator, version 1.1.7.30 of JInitiator is required to use the
HTTP and HTTPS modes.

Form Services can use SSL as a transport protocol to provide privacy, integrity, and
server authentication. SSL works at the transport level, which is one level below the
application level. This means that SSL can encrypt and decrypt messages before
they are handled by application-level protocols such as Telnet, FTP, and HTTP.

■ Privacy is accomplished by encrypting messages between clients and servers,
which protects messages from being read by unintended recipients.

Servers and clients can support 128-bit or 40-bit encryption. If you have a server
using 128-bit encryption, then clients that use 40-bit encryption cannot connect
unless you set the environment variable FORMS60_HTTPS_NEGOTIATE_
DOWN to TRUE. (The default setting is FALSE.) See Section 5.3, "Customizing
Environment Variables" for details. When you set this environment variable to
TRUE, the server will always use the highest level of encryption supported by
the client that is attempting to connect. If set to FALSE, clients that support
encryption levels lower that the server’s cannot connect. The following table
shows sample implementations:

Sockets, HTTP, or HTTPS

3-4 Deploying Forms Applications to the Web

■ Integrity protects messages from being altered. If altered, messages cannot be
decrypted correctly.

■ Server Authentication is the process of a client machine verifying that a server
is who it claims to be. For example, when a client sends confidential data to a
server, the client can verify that the server is secure and is the correct recipient
of the client’s confidential data. Server authentication is accomplished using
digital certificates. When a client browser connects to a server, the server
presents its certificate for verification. A certificate is issued by a third party,
called a certificate authority (CA).

For Internet Explorer client browsers using the native JVM, any certificate
trusted by the browser can be used. If you want to use a CA that is not trusted
by the browser by default, see the CA’s instructions. Also, you will need to
install Oracle Wallet Manager on Form Services in order to create certificate
requests and manage certificates. See Section 5.7, "Setting Up the HTTPS
Connection Mode" for details.

For client browsers using JInitiator, HTTPS mode trusts (by default)
certificates issued by the following CAs:
■ VeriSign, Inc. - Class 1, 2, 3 Public Primary Certification Authority

■ RSA Data Security Inc. - Secure Server Authority

■ GTE CyberTrust Solutions Inc.- CyberTrust Global Root

■ GTE Corporation.- CyberTrust Root

If you want to use another CA or another type of certificate, additional
configuration steps are required because the certificate will not be trusted by

Server encryption level Client encryption level

FORMS60_HTTPS_
NEGOTIATE_DOWN
setting Connection possible?

128-bit 40-bit

128-bit

TRUE Yes, 40-bit encryption for
some clients and 128-bit
for other clients

128-bit 40-bit FALSE No

40-bit 128-bit TRUE Yes, 40-bit encryption

40-bit 40-bit TRUE Yes, 40-bit encryption

40-bit 40-bit FALSE Yes, 40-bit encryption

Client Browser using Native JVM, Oracle JInitiator, or AppletViewer

 Preview of Configuration Choices 3-5

default. Also, you will need to install Oracle Wallet Manager on Form Services
in order to create certificate requests and manage certificates. See Section 5.7,
"Setting Up the HTTPS Connection Mode" for details.

3.3 Client Browser using Native JVM, Oracle JInitiator, or AppletViewer
Users can view Oracle Forms applications on the Web using one of the following
browser configurations:

■ Native JVM (using Internet Explorer 5)

■ Oracle JInitiator plug-in (using Netscape Navigator or Internet Explorer)

■ AppletViewer

Note: For client browsers using AppletViewer, the HTTPS connection mode is not supported.

Note: For client browsers using Oracle JInitiator, version 1.1.7.30 of JInitiator is required to use the
HTTP and HTTPS modes.

3.3.1 Native JVM Using Internet Explorer 5
Oracle provides a Microsoft-specific signed CAB file (f60all.cab) that allows the
Oracle Forms Java applet to run as a trusted applet inside of Internet Explorer 5.
This browser option alleviates the need to perform any end user configurations of
the browser.

Refer to Section B.3, "Internet Explorer 5 with Native JVM" for more information.

3.3.2 Oracle JInitiator
Oracle JInitiator runs within a Web browser. It provides the ability to specify the use
of a specific Java Virtual Machine (JVM) on the client rather than using the
browser's default JVM. Oracle JInitiator does not replace or modify the default JVM
provided by the browser. Rather, it provides an alternative JVM in the form of a
plug-in.

Oracle JInitiator is Oracle's version of JavaSoft's Plug-In. It runs as a plug-in for
Netscape Navigator and as an ActiveX component for Internet Explorer.

Oracle provides two JAR files (f60all.jar and f60all_jinit.jar) that group and zip
classes together for efficient delivery across the network to the client. f60all_jinit.jar
is an extra-compressed JAR file that can be used only with Oracle JInitiator to
provide increased performance at download time. Once on the client, the files are
cached for future use.

Load Balancing or standalone configuration

3-6 Deploying Forms Applications to the Web

Note: For client browsers using Oracle JInitiator, version 1.1.7.30 of JInitiator is required to use the
HTTP and HTTPS modes.

Refer to Section B.4, "Oracle JInitiator" for more information.

3.3.3 AppletViewer
Users can also view applications using the AppletViewer. The AppletViewer is a
Java Developer Kit (JDK) component that client machines use to view applications
running on Form Services.

Note: For client browsers using AppletViewer, the HTTPS connection mode is not supported.

Refer to Section B.5, "AppletViewer" for more information on running applications
with the AppletViewer.

3.4 Load Balancing or standalone configuration
Form Services includes load-balancing capabilities to optimize hardware resources
for scaling from one to thousands of users with unprecedented performance. With
load balancing, when you approach the limits of your hardware, rather than
upgrading or replacing a machine, you simply add more machines to run your
application and spread the load across several machines.

Refer to Chapter 12, "Load Balancing Considerations" for specific information on
implementing load balancing.

3.5 Forms Servlet or CGI implementation
The Forms Servlet and Forms CGI components are both installed with Form
Services. Both the servlet and CGI implementations provide load balancing and can
create HTML files on the fly.

The primary differences between servlet and CGI implementations are:

■ With servlets, HTML files are created on the fly more quickly than with CGI,
especially in high-traffic networks.

■ With servlets, multiple end-user browser configurations can be used. The Forms
servlet automatically detects the client browser type and generates the HTML
page on the fly, determining the correct tags and the correct archive.

Both the servlet and CGI implementations use the formsweb.cfg file to define
configuration parameters.

What’s Next

 Preview of Configuration Choices 3-7

3.6 What’s Next
After deciding what your choices are, you can configure the necessary Form
Services components. Refer to Chapter 4, "Installing Form Services" for information
about using the Oracle Universal Installer to install Form Services. Refer to
Chapter 5, "Configuring Form Services" for more information about configuring
Form Services.

What’s Next

3-8 Deploying Forms Applications to the Web

 Installing Form Services 4-1

4
Installing Form Services

4.1 Introduction
Form Services are installed as part of the Enterprise Edition of the Oracle9i
Application Server. The Enterprise Edition is recommended for medium to large
sized websites that handle a high volume of transactions.

For more detailed information about installing Form Services, refer to the Oracle9i
Application Server Installation Guide. All necessary requirements and tasks are
documented in the installation guide.

4.2 About the Oracle Universal Installer
Oracle9i Application Server uses the Oracle Universal Installer, a Java-based tool, to
configure environment variables and to install components. The installer guides
you through each step of the installation process, so you can choose different
configuration options.

The installer includes features that perform the following tasks:

■ Explore and provide installation options for the product

■ Detect pre-set environment variables and configuration settings

■ Set environment variables and configuration settings during installation

■ De-install the product

Starting Form Services

4-2 Deploying Forms Applications to the Web

4.3 Starting Form Services
After installation is completed, Form Services are started automatically.

To manually start Form Services, type:

<ORACLE_HOME>/6iserver/ forms60_server start

To stop Form Services, type:

<ORACLE_HOME>/6iserver/ forms60_server stop

4.4 What’s Next
To actually deploy your applications, you must perform several steps, which
include creating your runtime executable files, deploying the executable files on
your Web server, and broadcasting your application’s URL. These steps are
described in Chapter 6, "Deploying Forms to the Web".

 Configuring Form Services 5-1

5
Configuring Form Services

5.1 Introduction
This chapter describes the steps you need to follow to configure your environment
for Form Services. After installation is complete, you can use the information in this
chapter to change your initial configuration or make modifications as your needs
change.

This chapter contains the following sections:

■ Configuring Your Web Server

■ Customizing Environment Variables

■ Customizing Configuration Files

■ Reading the Servlet Error Log

■ Setting Up the HTTPS Connection Mode

Configuring Your Web Server

5-2 Deploying Forms Applications to the Web

5.2 Configuring Your Web Server
Oracle9i Application Server installs and configures the Oracle HTTP Server as your
Web server. No additional configuration is necessary.

The following paths are created:

Note: These virtual directories are specified in the 6iserver.conf file located in the <ORACLE_
HOME>/6iserver directory.

5.3 Customizing Environment Variables
This section describes how to customize environment variables in Form Services.

On UNIX, you can set these environment variables in the forms60_server shell
script, which is found in the <ORACLE_HOME>/6iserver directory. This way, all
the environment variables needed for Form Services are automatically set up when
you launch Form Services Listener using the following command line:

forms60_server start.

Note: After you run the forms60_server startup script, ORACLE_HOME changes from its original
setting to <ORACLE_HOME>/6iserver for use with Form Services.

On NT, you set environment variables in the registry under HKEY_LOCAL_
MACHINE\software\oracle in the <ORACLE_HOME> corresponding to Forms 6i,
as described in Section A.2, "Windows 95 and Windows NT Registry".

Virtual Path Physical Directory Description

/forms60java/ <ORACLE_HOME>/6iserver/forms60/java/ Forms Java files

/dev60html/ <ORACLE_
HOME>/6iserver/tools/web60/html/

Starter HTML files for running Forms

/servlet/ <ORACLE_
HOME>/6iserver/forms60/java/oracle/for
ms/servlet

Servlet executables

/dev60cgi/ <ORACLE_
HOME>/6iserver/tools/web60/cgi/

CGI executables

/jinitiator/ <ORACLE_HOME>/6iserver/jinit/ JInitiator (for download)

/dev60temp/ <ORACLE_
HOME>/6iserver/tools/web60/temp/

Forms temporary files

Customizing Environment Variables

 Configuring Form Services 5-3

The environment variables for Form Services are as follows:

For example, you can define your environment variables as the following:

FORMS60_PATH=/<ORACLE_HOME>/6iserver/forms60
FORMS60_OUTPUT=/<ORACLE_HOME>/6iserver/tools/web60/temp
FORMS60_MAPPING=/dev60temp
FORMS60_MESSAGE_ENCRYPTION=TRUE
FORMS60_WALLET=/<ORACLE_HOME>/6iserver/forms60/wallet
FORMS60_HTTPS_NEGOTIATE_DOWN=FALSE

Note: The virtual directory set by the FORMS60_MAPPING environment variable must correspond
to the physical directory set by the FORMS60_OUTPUT environment variable.

Environment Variable Default Value and Description

 FORMS60_PATH <ORACLE_HOME>/6iserver/forms60

Specifies the path that Forms searches when looking for a Form
to run. Separate paths with a semi-colon (;).

 FORMS60_OUTPUT <ORACLE_HOME>/6iserver/tools/web60/temp

Physical directory on the application server in which to store
generated Reports files. If you are not using Reports, this
environment variable is not required. See Section 7.5,
"Integrating Reports" for more information.

 FORMS60_MAPPING /dev60temp

Virtual directory pointing to the physical directory defined by
the FORMS60_OUTPUT variable. If you are not using Reports,
this environment variable is not required. See Section 7.5,
"Integrating Reports" for more information.

FORMS60_MESSAGE_ENCRYPTION Not set

Possible values are TRUE or FALSE. Environment variable to
encrypt Forms messages using RC4 40-bit encryption. Applies
only to socket and HTTP communication modes. By default,
communication is encrypted.

FORMS60_WALLET <ORACLE_HOME>/6iserver/forms60/wallet

Used for HTTPS communications mode. See Section 5.7,
"Setting Up the HTTPS Connection Mode" for details.

FORMS60_HTTPS_NEGOTIATE_DOWN FALSE

Used for HTTPS communications mode only. See Section 5.7,
"Setting Up the HTTPS Connection Mode".

Description of Form Services Startup Parameters

5-4 Deploying Forms Applications to the Web

Note: You will need administrator privileges to make these changes, and will need to restart the
server for many of these configuration changes to take effect.

5.4 Description of Form Services Startup Parameters
The following parameters are used during Form Services startup:

■ Port Parameter

■ Mode Parameter

■ Pool Parameter

■ Log Parameter

On UNIX, you can modify these parameters by editing the forms60_server shell
script found in the <ORACLE_HOME>/6iserver directory and modifying the
following command:

f60ctl start

For example:

f60ctl start port=9001 mode=socket pool=5 log=/tmp/app.log

On NT, you can modify these parameters by specifying them on the command line.
For example:

ifsrv60 start port=9001 mode=socket pool=5 log=c:\tmp\app.log

On NT, if Form Services are started as a service, modify parameters by adding them
to the Start-up Parameters field of the Service Start-up property.

5.4.1 Port Parameter
Determines the port on which the server process is started. If you do not specify a
port number when you start the Form Services process, the process starts on port
9001 by default. The port number on which you start the server process must match
the serverPort number you specify in an application’s HTML file, configuration
parameters, or URL.

5.4.2 Mode Parameter
Determines whether the Form Services will run in socket mode (which uses a direct
socket connection), HTTP mode (which can traverse firewalls), or HTTPS mode

Customizing Configuration Files

 Configuring Form Services 5-5

(which can traverse firewalls, and additionally uses SSL, secure sockets layer, for
server authentication and message encryption). The default mode is socket. See
Section 3.2, "Sockets, HTTP, or HTTPS" for a detailed description of each mode.

5.4.3 Pool Parameter
Determines the number of spare active connections that will be available for
subsequent users. For example, if "pool" is set to 5, there will be 5 active spare
connections.

5.4.4 Log Parameter
Generates a server log file when provided a path name and log file name, for
example, log=/PathName/LogFileName.

5.5 Customizing Configuration Files
During the installation, the following configuration files were installed onto your
system:

■ FormsServlet.initArgs

■ formsweb.cfg

■ base.htm, basejini.htm, and baseie.htm

When a user first starts a Web-enabled application (by clicking a link to the
application’s URL), the base HTML file is read by Forms Servlet or CGI. Any
variables (%variablename%) in the base HTML file are replaced with the appropriate
parameter values specified in the formsweb.cfg file, and from query parameters in
the URL request (if any).

For servlet implementations, the baseHTML, baseHTMLJInitiator, and baseHTMLIE
tags are replaced with the values specified in the FormsServlet.initArgs file.

You can modify the configuration files as your needs change.

5.5.1 FormsServlet.initArgs
This file is located at:

<ORACLE_HOME>\6iserver\apache\jserv\servlets\oracle\
forms\servlet\FormsServlet.initArgs

Customizing Configuration Files

5-6 Deploying Forms Applications to the Web

Edit this file only if you are using the servlet implementation. It contains the
following parameters:

Note: Do not reference any environment variables in the fully qualified path.

Note: On both UNIX and NT, specify fully qualified paths using the forward slash (/), and not the
backslash (\).

Note: The parameter names are case sensitive in the FormsServlet.initArgs file.

5.5.2 formsweb.cfg
This file contains most of the servlet and CGI configuration parameter settings that
you set during installation. You can modify these parameters, if needed.

Variables (%variablename%) in the base HTML file are replaced with the appropriate
parameter values specified in the formsweb.cfg file and from query parameters in
the URL request (if any).

We recommend that you enter configuration changes in the formsweb.cfg file, and
use variables in the baseHTML file.

Parameter
Required /
Optional Parameter Value

baseHTML required Fully qualified path to the HTML file that contains applet tags.

The default path is <ORACLE_HOME>
/forms60/server/base.htm

baseHTMLJinitiator required Fully qualified path to the HTML file that contains JInitiator
tags.

The default path is <ORACLE_HOME>
/forms60/server/baseJini.htm

baseHTMLie required Fully qualified path to the HTML file that contains Internet
Explorer 5 tags, for example the CABBASE tag.

The default path is <ORACLE_HOME>
/forms60/server/baseie.htm.

configFileName required Fully qualified path pointing to the configuration file
formsweb.cfg.

The default path is <ORACLE_HOME>
/forms60/server/formsweb.cfg

Customizing Configuration Files

 Configuring Form Services 5-7

5.5.2.1 Creating special configurations in formsweb.cfg
You can create specific, named configurations in the formsweb.cfg file. These
configurations can be requested in the end-user’s query string of the URL used to
run a form.

Create special configurations by adding the name of the configuration in brackets at
the end of the formsweb.cfg file. Then, specify the parameters for this special
configuration. (Specify only the parameters that you want to change.)

For example, to create a configuration to run forms in a separate browser window
with a "generic" look and feel, add the following code to the formsweb.cfg file:

[sepwin]
separateFrame=True
lookandfeel=Generic

The end-user would type the following URL to launch a form that uses the "sepwin"
configuration:

http://server:port/servlet/f60servlet?config=sepwin

(for a servlet configuration)

http://myhost.mydomain.com/dev60cgi/ifcgi60.exe?config=sepwin
(for a CGI configuration)

See Section 5.5.2.3, "Default formsweb.cfg File" for other examples of special
configurations.

5.5.2.2 Parameters in the formsweb.cfg File

Parameter
Required /
Optional Parameter Value

baseHTML required Physical path to HTML file that contains applet tags.

baseHTMLJInitiator required Physical path to HTML file that contains JInitiator tags.

baseHTMLIE required Physical path to the HTML file that contains Internet Explorer 5
tags, for example the CABBASE tag. The default path is
<ORACLE_HOME>/6iserver/forms60/server/baseie.htm.

Customizing Configuration Files

5-8 Deploying Forms Applications to the Web

ie50 recommended if
there are users
with Internet
Explorer 5
browsers

If the client is using the Internet Explorer 5 browser, either the
native JVM, JInitiator, or AppletViewer can be used. A setting
of "JInitiator" uses the basejini.htm file and JInitiator. A setting
of "Native" uses the browser's native JVM.

HTML delimiter required Delimiter for variable names. Defaults to %.

MetricsServerHost optional For load balancing. See Chapter 12, "Load Balancing
Considerations".

MetricsServerPort optional For load balancing. See Chapter 12, "Load Balancing
Considerations".

MetricsServerErrorURL optional For load balancing. See Chapter 12, "Load Balancing
Considerations".

MetricsTimeout optional For load balancing. See Chapter 12, "Load Balancing
Considerations".

leastloadedhost optional For load balancing. See Chapter 12, "Load Balancing
Considerations".

This is a variable that can be specified in either the base HTML
file or the formsweb.cfg file, wherever the name of the least
loaded machine is required for load balancing. If you use the
default base HTML file, which is recommended, then be sure to
specify serverHost=%loastloadedhost% in the formsweb.cfg file
when load balancing is being used.

During load balancing, this placeholder is replaced
dynamically with the name of the least-loaded system.

Standard applet or object Parameters

Note: All of the following can be specified in the base HTML file as %variablename%. For example:

<PARAM NAME="connectMode" VALUE=" %connectMode%">

All variables in the base HTML file are replaced with the appropriate parameter values specified in the
formsweb.cfg file.

codebase required Virtual directory you defined to point to the physical directory
<ORACLE_HOME>/6iserver/forms60/java.

code required Do not remove or modify the code parameter. Its value should
always be: oracle.forms.engine.Main.

Parameter
Required /
Optional Parameter Value

Customizing Configuration Files

 Configuring Form Services 5-9

connectMode required for
HTTP and
HTTPS
connections;
optional for
socket connection

Specifies to the client the type of connection protocol to use
with the Form Services. Valid values are socket, http, and https.
The default is socket. See Section 3.2, "Sockets, HTTP, or
HTTPS" for details.

archive_ie optional Comma-separated list of CAB file(s) that is used when the
browser detected is Internet Explorer using native JVM. (The
default is f60all.cab.)

archive_jinit optional Comma-separated list of JAR file(s) that is used when the
browser detected is JInitiator. (The default is f60all_jinit.jar.)

archive optional Comma-separated list of archive files that are used when the
browser detected is neither Internet Explorer using native JVM
nor JInitiator. (The default is f60all.jar.)

width required Specifies the width of the Form, in pixels.

height required Specifies the height of the Form, in pixels.

align optional left|center|right|top|middle|bottom

alt optional Text displayed instead of applet (if browser does not support
applets)

hspace optional Horizontal gutter, in pixels.

vspace optional Vertical gutter, in pixels.

type required Hard coded value ("application/x-jinit-applet" for JInitiator; no
value required for AppletViewer).

name optional Applet instance name.

title optional Advisory title string.

border optional Border to display.

standby optional Text to display when loading.

codetype optional Defaults to type.

Parameters specific to the Forms applet (in PARAM tags)

serverHost optional Host on which the Form Services, for example, ifsrv60.exe on
NT, runs (defaults to Web listener machine).

Parameter
Required /
Optional Parameter Value

Customizing Configuration Files

5-10 Deploying Forms Applications to the Web

serverPort required Port on which the Form Services, for example, ifsrv60.exe on
NT, listens. In most cases, the port number will remain 9001
(the default).

serverArgs required Command-line parameters for Runform. See Runform
parameters below.

Replace forms_param with any valid Form Runtime
command-line parameter. Replace user_param with any valid
user-defined parameter. For example, <param
name="serverArgs" VALUE="module=order.fmx">

Notes: You can provide multiple Form Runtime command-line
and user-defined parameters. You must provide a physical
directory path for the .FMX file by including a directory path by
defining the FORMS60_PATH environment variable. The .FMX
suffix is optional.

splashScreen optional Specifies the .GIF file that should appear before the applet
appears. Set to NO for no splash. Leave empty to use the
default splash.

background optional Specifies the .GIF file that should appear in the background. Set
to NO for no background. Leave empty to use the default
background.

clientDPI optional Specifies the dots per inch (DPI) and overrides the DPI setting
returned by the JVM, allowing you to manage varying DPI
settings per platform. For example, a form developed on the
Win32 platform may not display properly on the UNIX
platform due to varying DPI values. The clientDPI value can be
any positive integer. Oracle recommends that you use an
integer between 50 and 200. <param name="clientDPI"
value="200">

separateFrame optional Determines whether the applet appears within a separate
frame. Legal values: True or False.

lookAndFeel optional Determines the applications look-and-feel. Legal values: Oracle
or Generic (Windows 95 look-and-feel).

colorScheme optional Determines the application’s color scheme. Legal values: Teal,
Titanium, Red, Khaki, Blue, Olive, or Purple.

Note: colorScheme is ignored if lookAndFeel is set to Generic.

serverApp optional Replace default with the name of your application class (if any).
Use application classes for creating application-specific font
mapping and icon path settings.

Parameter
Required /
Optional Parameter Value

Customizing Configuration Files

 Configuring Form Services 5-11

5.5.2.3 Default formsweb.cfg File
The default formsweb.cfg file contains the following:

; Forms Web CGI Configuration File
; --------------------------------
; This file defines parameter values used by the Forms Web CGI

; ********************************
; PARAMETER VALUES USED BY DEFAULT
; ********************************
 ; SYSTEM PARAMETERS
 ; -----------------
 ; These have fixed names and give information required by the Forms
 ; Web CGI in order to function. They cannot be specified in the URL query

heartBeat optional Use this parameter to set the frequency at which a client sends a
packet to the server to indicate that it is still running. Define
this integer value in minutes or in fractions of minutes, for
example, 0.5 for 30 seconds. The default is two minutes.

imageBase optional Use this parameter to indicate where icon files are stored.
Choose between:

■ codeBase, which indicates that the icon search path is
relative to the directory that contains the Java classes. Use
this value if you store your icons in a JAR file
(recommended).

■ documentBase, which is the default. In deployments that
make use of the Form Services CGI, you must specify the
icon path in a custom application file.

registryPath optional Use this parameter to list the virtual directory where the
application file named in the serverApp parameter is located.

webformsTitle optional Use this parameter to change the title that appears in the top
border of a form’s display window.

Runform parameters (serverArgs parameters)

MODULE required Form module name (optionally includes path).

USERID optional Login string, such as scott/tiger@ORA8.

user-defined parameters optional Arbitrary name/value pairs.

Parameter
Required /
Optional Parameter Value

Customizing Configuration Files

5-12 Deploying Forms Applications to the Web

 ; string. But they can be overriden in a named configuration (see below).
baseHTML=d:\orant\forms60\server\base.htm
baseHTMLJInitiator=d:\orant\forms60\server\basejini.htm
baseHTMLie=d:\orant\forms60\server\baseie.htm
HTMLdelimiter=%
MetricsServerPort=9020
MetricsServerErrorURL=
 ; The next parameter specifies how to execute the Forms applet under
 ; Microsoft Internet Explorer 5.0. Put IE50=native if you want the
 ; Forms applet to run in the browser's native JVM.
IE50=native
 ; USER PARAMETERS
 ; ---------------
 ; These match variables (e.g. %form%) in the baseHTML file. Their values
 ; may be overridden by specifying them in the URL query string
 ; (e.g. "http://myhost.mydomain.com/ifcgi60.exe?form=myform&width=700")
 ; or by overriding them in a specific, named configuration (see below)

 ; 1) Runform arguments:
form=test.fmx
otherparams=
userid=

 ; 2) HTML page title, attributes for the BODY tag, and HTML to add before and
 ; after the form:
pageTitle=Oracle Forms Server
HTMLbodyAttrs=
HTMLbeforeForm=Hello
HTMLafterForm=

 ; 3) Values for the Forms applet parameters:
width=650
height=500
separateFrame=false
splashScreen=no
 ; select default background by not specifying a value
background=
lookAndFeel=Oracle
colorScheme=teal
serverApp=default
serverPort=9000
serverHost=rlouis-lap
connectMode=Socket
archive=f60all.jar
archive_ie=f600all.cab

Customizing Configuration Files

 Configuring Form Services 5-13

archive_jinit=f60all_jinit.jar

 ; 4) Parameters for JInitiator
 ; Page displayed to Netscape users to allow them to download JInitiator.
 ; If you create your own version, set this parameter to point to it.
jinit_download_page=/jinitiator/us/jinit_download.htm
 ; Parameters related to the version of JInitiator.
jinit_classid=clsid:21157916-4d49-11d4-a3e0-00c04fa32518
jinit_exename=jinit.exe#Version=1,1,7,30
jinit_mimetype=application/x-jinit-applet;version=1.1.7.30

; ********************************
; SPECIFIC CONFIGURATIONS
; ********************************
; You may define your own specific, named configurations (sets of parameters)
; by adding special sections as illustrated in the following examples.
; Note that you need only specify the parameters you want to change. The
; default values (defined above) will be used for all other parameters.
; Use of a specific configuration can be requested by including the text
; "config=<your_config_name>" in the query string of the URL used to run
; a form. For example, to use the sepwin configuration, your could issue
; a URL like "http://myhost.mydomain.com/ifcgi60.exe?config=sepwin".

; Example 1: configuration to run forms in a separate browser window with
; "generic" look and feel (include "config=sepwin" in the URL)
[sepwin]
separateWindow=True
lookandfeel=Generic

; Example 2: configuration affecting users of MicroSoft Internet Explorer 5.0.
; Forms applet will run under the browser's native JVM rather than
; using Oracle JInitiator.
[ie50native]
IE50=native

; Example 3: configuration forcing use of the base.htm base HTML file in all
; cases (means applet-style tags will always be generated and
; JInitiator will never be used).
[applet]
baseHTMLJInitiator=

Customizing Configuration Files

5-14 Deploying Forms Applications to the Web

5.5.3 base.htm, basejini.htm, and baseie.htm
Three base HTML files are created for your system by the Oracle Universal Installer
during Form Services installation and configuration. In most cases, you will not
need to modify these files.

When a user first starts a Web-enabled application (by clicking a link to the
application’s URL), a base HTML file is read by Forms Servlet or CGI.

Any variables (%variablename%) in the base HTML file are replaced with the
appropriate parameter values specified in the formsweb.cfg file described in
Section 5.5.2, "formsweb.cfg", and from query parameters in the URL request (if
any).

For servlet implementations, the baseHTML, baseHTMLJInitiator, and baseHTMLIE
tags are replaced with the values specified in the FormsServlet.initArgs file
described in Section 5.5.1, "FormsServlet.initArgs".

Then, the base HTML file is downloaded to the user’s Web browser.

Note: Any base HTML variables that you want to modify can be changed by modifying the
corresponding parameter values in the FormsServlet.initArgs file described in Section 5.5.1,
"FormsServlet.initArgs" and in the formsweb.cfg file, described in Section 5.5.2, "formsweb.cfg".

The following base HTML starter files are available in the <ORACLE_
HOME>/6iserver/forms60/server directory:

■ basejini.htm: This is a base HTML file containing the tags required to run the
Forms applet using Oracle JInitiator. It is suitable for browsers (only on
Windows platforms) certified by Oracle to work in this manner (and which do
not work using standard APPLET tags). See Section 5.5.3.4, "Default
basejini.htm File" for an example. Also, see Appendix B, "Client Browser
Support" for more information about JInitiator settings.

■ base.htm: This is a base HTML file containing the APPLET tags required to run
the Forms applet in the AppletViewer, or in any Web browser certified by
Oracle whose native JVM is certified with Forms. See Section 5.5.3.3, "Default
base.htm File" for an example. Also, see Appendix B, "Client Browser Support"
for more information about native JVM and AppletViewer settings.

■ baseie.htm: This is a base HTML file containing the Internet Explorer 5 tags
required to use native JVM in Internet Explorer 5. See Section 5.5.3.5, "Default
baseie.htm File" for an example. Also, see Appendix B, "Client Browser
Support" for more information about Internet Explorer and native JVM.

If you decide to create a new base HTML file:

Customizing Configuration Files

 Configuring Form Services 5-15

1. Copy the basejini.htm or base.htm starter file, which is located in the
<ORACLE_HOME>/6iserver/forms60/server directory.

2. Rename the file, for example, order.htm.

3. Add or modify any text that is visible to the user (for example text contained
within <TITLE> and <BODY> tags).

4. Modify the parameters as needed. We recommend that you use variables in the
base HTML file, and specify the actual values in the FormsServlet.initArgs and
formsweb.cfg files, as described in Section 5.5.1, "FormsServlet.initArgs" and
Section 5.5.2, "formsweb.cfg".

5. Place the new base HTML file in any directory. Update the baseHTML,
baseHTMLJInitiator, or baseHTMLIE parameter in the FormsServlet.initArgs
and formsweb.cfg files to contain the base HTML file’s full physical path
location.

5.5.3.1 Parameters and variables in the base HTML file
Note: If you do not want to use a parameter tag that is provided in the base.htm or basejini.htm file,
delete it from the file.

Parameter
Required /
Optional Parameter Value

leastloadedhost optional For load balancing. See Chapter 12, "Load Balancing
Considerations".

This is a variable that can be specified in either the base HTML
file or the formsweb.cfg file, wherever the name of the least
loaded machine is required for load balancing. If you use the
default base HTML file, which is recommended, then be sure to
specify serverHost=%leastloadedhost% in the formsweb.cfg file
when load balancing is being used.

During load balancing, this place holder is replaced
dynamically with the name of the least-loaded system.

cabbase optional For Internet Explorer using native JVM, contains the CAB file
that is used (f60all.cab).

Customizing Configuration Files

5-16 Deploying Forms Applications to the Web

5.5.3.2 Usage Notes
■ You can use a variable value anywhere in the base HTML file. Variables are

specified as a name enclosed in a special delimiter. (The default delimiter is %.)
For example, you could have the following line in your HTML file:

ARCHIVE="%Archive%"

You then must assign a value to %Archive% either in the formsweb.cfg file (or
in the URL query string).

■ All variables must receive values at runtime. If a variable does not receive a
value, Form Services cannot build an HTML file to pass back to the user’s Web
browser, resulting in an error.

■ To streamline performance, use only one Web server as a source for JAR file
downloads. This will prevent multiple downloads of the same files from
different servers.

5.5.3.3 Default base.htm File
<HTML>
<!-- FILE: base.htm (Forms Server) -->

<!-- This is the default base HTML file for running a form on the -->
<!-- web using APPLET-style tags to include the Forms applet. -->
<!-- This file will be REPLACED if you reinstall "Forms Web CGI and -->
<!-- cartridge", so you are advised to make your own version if you -->
<!-- want to make any modifications. You should then set the -->
<!-- baseHTML parameter in the Forms web CGI configuration file -->
<!-- (formsweb.cfg) to point to your new file instead of this one. -->

Note: We recommend that you specify the rest of the parameter values as variables (%variablename%) in the
base HTML file. For example:

<PARAM NAME="connectMode" VALUE=" %connectMode%">

or

<PARAM NAME="cabbase" VALUE=" %archive_ie% ">

Then, specify the actual parameter values in the formsweb.cfg file, which are defined in Section 5.5.2.2,
"Parameters in the formsweb.cfg File". All variables are replaced with the appropriate parameter values at
runtime.

Parameter
Required /
Optional Parameter Value

Customizing Configuration Files

 Configuring Form Services 5-17

<!-- IMPORTANT NOTE: default values for all the variables which -->
<!-- appear below (delimited by the percent character) are defined -->
<!-- in the formsweb.cfg file. It is preferable to make changes in -->
<!-- that file where possible, and leave this one untouched. -->

<HEAD><TITLE>%pageTitle%</TITLE></HEAD>

<BODY %HTMLbodyAttrs%>
%HTMLbeforeForm%

<!-- Forms applet definition (start) -->
<APPLET CODEBASE="/forms60java/"
 CODE="oracle.forms.engine.Main"
 ARCHIVE="%archive%"
 WIDTH="%Width%"
 HEIGHT="%Height%">

<PARAM NAME="serverPort" VALUE="%serverPort%">
<PARAM NAME="serverHost" VALUE="%serverHost%">
<PARAM NAME="connectMode" VALUE="%connectMode%">
<PARAM NAME="serverArgs"
 VALUE="module=%form% userid=%userid% %otherParams%">
<PARAM NAME="separateFrame" VALUE="%separateFrame%">
<PARAM NAME="splashScreen" VALUE="%splashScreen%">
<PARAM NAME="background" VALUE="%background%">
<PARAM NAME="lookAndFeel" VALUE="%lookAndFeel%">
<PARAM NAME="colorScheme" VALUE="%colorScheme%">
<PARAM NAME="serverApp" VALUE="%serverApp%">

</APPLET>
<!-- Forms applet definition (end) -->

%HTMLafterForm%

</BODY>
</HTML>

5.5.3.4 Default basejini.htm File
<HTML>
<!-- FILE: basejini.htm (Oracle Developer Forms) -->

<!-- This is the default base HTML file for running a form on the -->
<!-- web using JInitiator-style tags to include the Forms applet. -->
<!-- This file will be REPLACED if you reinstall "Forms Web CGI and -->

Customizing Configuration Files

5-18 Deploying Forms Applications to the Web

<!-- cartridge", so you are advised to make your own version if you -->
<!-- want to make any modifications. You should then set the -->
<!-- baseHTML parameter in the Forms web CGI configuration file -->
<!-- (formsweb.cfg) to point to your new file instead of this one. -->

<!-- IMPORTANT NOTE: default values for all the variables which -->
<!-- appear below (delimited by the percent character) are defined -->
<!-- in the formsweb.cfg file. It is preferable to make changes in -->
<!-- that file where possible, and leave this one untouched. -->

<HEAD><TITLE>%pageTitle%</TITLE></HEAD>

<BODY %HTMLbodyAttrs%>
%HTMLbeforeForm%

<!-- Forms applet definition (start) -->
<OBJECT classid="%jinit_classid%"
 codebase="/jinitiator/%jinit_exename%"
 WIDTH="%Width%"
 HEIGHT="%Height%"
 HSPACE="0"
 VSPACE="0">
<PARAM NAME="TYPE" VALUE="%jinit_mimetype%">
<PARAM NAME="CODEBASE" VALUE="/forms60java/">
<PARAM NAME="CODE" VALUE="oracle.forms.engine.Main" >
<PARAM NAME="ARCHIVE" VALUE="%archive%" >

<PARAM NAME="serverPort" VALUE="%serverPort%">
<PARAM NAME="serverHost" VALUE="%serverHost%">
<PARAM NAME="connectMode" VALUE="%connectMode%">
<PARAM NAME="serverArgs"
 VALUE="module=%form% userid=%userid% %otherParams%">
<PARAM NAME="separateFrame" VALUE="%separateFrame%">
<PARAM NAME="splashScreen" VALUE="%splashScreen%">
<PARAM NAME="background" VALUE="%background%">
<PARAM NAME="lookAndFeel" VALUE="%lookAndFeel%">
<PARAM NAME="colorScheme" VALUE="%colorScheme%">
<PARAM NAME="serverApp" VALUE="%serverApp%">
<COMMENT>
<EMBED SRC="" PLUGINSPAGE="%jinit_download_page%"
 TYPE="%jinit_mimetype%"
 java_codebase="/forms60java/"
 java_code="oracle.forms.engine.Main"
 java_archive="%archive%"
 WIDTH="%Width%"

Customizing Configuration Files

 Configuring Form Services 5-19

 HEIGHT="%Height%"
 HSPACE="0"
 VSPACE="0"

 serverPort="%serverPort%"
 serverHost="%serverHost%"
 connectMode="%connectMode%"
 serverArgs="module=%form% userid=%userid% %otherparams%"
 separateFrame="%separateFrame%"
 splashScreen="%splashScreen%"
 background="%background%"
 lookAndFeel="%lookAndFeel%"
 colorScheme="%colorScheme%"
 serverApp="%serverApp%"
>
<NOEMBED>
</COMMENT>
</NOEMBED></EMBED>
</OBJECT>
<!-- Forms applet definition (end) -->

%HTMLafterForm%

</BODY>
</HTML>

5.5.3.5 Default baseie.htm File
<HTML>
<!-- FILE: base.htm (Oracle Developer Forms) -->

<!-- This is the default base HTML file for running a form on the -->
<!-- web using APPLET-style tags to include the Forms applet. -->
<!-- This file will be REPLACED if you reinstall "Forms Web CGI and -->
<!-- cartridge", so you are advised to make your own version if you -->
<!-- want to make any modifications. You should then set the -->
<!-- baseHTML parameter in the Forms web CGI configuration file -->
<!-- (formsweb.cfg) to point to your new file instead of this one. -->

<!-- IMPORTANT NOTE: default values for all the variables which -->
<!-- appear below (delimited by the percent character) are defined -->
<!-- in the formsweb.cfg file. It is preferable to make changes in -->
<!-- that file where possible, and leave this one untouched. -->

<HEAD><TITLE>%pageTitle%</TITLE></HEAD>

Reading the Servlet Error Log

5-20 Deploying Forms Applications to the Web

<BODY %HTMLbodyAttrs%>
%HTMLbeforeForm%

<!-- Forms applet definition (start) -->
<APPLET CODEBASE="/forms60java/"
 CODE="oracle.forms.engine.Main"
 WIDTH="%Width%"
 HEIGHT="%Height%">

<PARAM NAME="cabbase" VALUE="%archive_ie%">
<PARAM NAME="serverPort" VALUE="%serverPort%">
<PARAM NAME="serverHost" VALUE="%serverHost%">
<PARAM NAME="connectMode" VALUE="%connectMode%">
<PARAM NAME="serverArgs"
 VALUE="module=%form% userid=%userid% %otherParams%">
<PARAM NAME="separateFrame" VALUE="%separateFrame%">
<PARAM NAME="splashScreen" VALUE="%splashScreen%">
<PARAM NAME="background" VALUE="%background%">
<PARAM NAME="lookAndFeel" VALUE="%lookAndFeel%">
<PARAM NAME="colorScheme" VALUE="%colorScheme%">
<PARAM NAME="serverApp" VALUE="%serverApp%">

</APPLET>
<!-- Forms applet definition (end) -->

%HTMLafterForm%

</BODY>
</HTML>

5.6 Reading the Servlet Error Log
If you are using the Forms Servlet implementation, any configuration errors in the
formsweb.cfg and FormsServlet.initArgs files are logged to the jserv.log file. This
file is located in <ORACLE_HOME>/apache/Jserv/logs.

5.7 Setting Up the HTTPS Connection Mode
The HTTPS connection mode uses HTTP for communications in order to traverse
firewalls. In addition, Form Services uses SSL as a transport protocol to provide
privacy, integrity, and server authentication. See Section 3.2.3, "HTTPS" for a
description of this communications mode.

Setting Up the HTTPS Connection Mode

 Configuring Form Services 5-21

To use the HTTPS mode, you need to:

■ On your web server: If end-user browsers are using Internet Explorer with
native JVM, configure the web server to use SSL, which requires the use of a
certificate on the web server. The steps to do this vary for different web servers,
so see your web server documentation for details. If end-user browsers are
using Internet Explorer with native JVM, users must download the initial Forms
startup HTML page in HTTPS mode. (This step is optional for Oracle JInitiator.)

■ On Form Services:

■ Customize HTTPS Environment Variables

■ Depending on client configurations, use one of the following sets of steps:
Create Wallets and Request Certificates, or
Create Wallets and Request Certificates That Are Not Trusted by JInitiator
by Default

Note: See the client browser descriptions that follow to determine which steps to use.

■ For client browsers: Depending on the client browsers being used, you may
need to take steps to ensure that certificates installed on the web server and
Form Services are trusted by the client browser.

If your client browsers are using Internet Explorer 5 with native JVM to
display forms, use the steps described in Create Wallets and Request
Certificates.

If your client browsers are using Oracle JInitiator to display forms, the
following CAs and certificates are trusted by JInitiator by default. If you are
using one of the following certificates, use the steps described in Create Wallets
and Request Certificates:

■ VeriSign, Inc. - Class 1, 2, 3 Public Primary Certification Authority

■ RSA Data Security Inc. - Secure Server Authority

■ GTE CyberTrust Solutions Inc.- CyberTrust Global Root

■ GTE Corporation.- CyberTrust Root

If your client browsers are using Oracle JInitiator and you did not use one of
the certificates listed above, use the steps described in Create Wallets and
Request Certificates That Are Not Trusted by JInitiator by Default.

Note: For client browsers using AppletViewer, the HTTPS connection mode is not supported.

Note: Oracle Wallet Manager must be installed on Form Services to use the HTTPS connection mode

Setting Up the HTTPS Connection Mode

5-22 Deploying Forms Applications to the Web

and on all Form Services machines that will provide server authentication.

5.7.1 Customize HTTPS Environment Variables
Two environment variables associated with HTTPS mode are set during Form
Services installation. Check that these environment variables are set to meet your
security needs, and change them, if needed, on all Form Services machines running
in HTTPS mode. See Section 5.3, "Customizing Environment Variables" for
information on how to change environment variables.

5.7.2 Create Wallets and Request Certificates
Public-key cryptography requires, among other things, certificates. A user
certificate is issued by a third party, called a certificate authority (CA). The certificate
is obtained in a secure manner and does not need to be validated for its authenticity
each time it is accessed.

In the case of Form Services and a client using HTTPS mode, the client validates
that Form Services is who it claims to be by verifying the server’s certificate. You
use Oracle Wallet Manager to create wallets and request certificates.

After installing Oracle Wallet Manager on Form Services, you must do the following
to obtain a certificate:

■ Create a Wallet

■ Create a Certificate Request

■ Send the Certificate Request

■ Import the Certificate

Environment Variable Value

FORMS60_HTTPS_NEGOTIATE_DOWN The default value is FALSE.

Valid values are TRUE and FALSE. If set to TRUE, a server that
uses 128-bit encryption will negotiate encryption down to the
highest level supported by the client. If FALSE, the server will
reject client connections that do not support 128-bit encryption.
See Section 3.2.3, "HTTPS" for details.

FORMS60_WALLET The default value is /<ORACLE_
HOME>/6iserver/forms60/wallet

Directory containing the "wallet" that holds the certificate used
for server authentication.

Setting Up the HTTPS Connection Mode

 Configuring Form Services 5-23

■ Set Auto Login to ON

The following sections provide an overview of how to complete the above steps in
Oracle Wallet Manager. See the Oracle Wallet Manager documentation for details.

Note: If you have multiple Form Services machines, you can request a unique certificate for each
machine, or you can use the same certificate on all machines. Contact the CA for any licensing
restrictions.

■ To use a unique certificate on each machine, perform all of the procedures in
this section on each Form Services machine running in HTTPS mode.

■ To use the same certificate on all machines, perform all of the procedures in this
section on one of the Form Services machines to create a wallet that contains a
certificate. Then, copy the wallet file, ewallet.der, to the other Form Services
machines running in HTTPS mode. Copy the file to the directory specified in
the FORMS60_WALLET environment variable. Finally, be sure that Auto Login
is set to ON on all machines, as described in Set Auto Login to ON.

5.7.2.1 Create a Wallet
On UNIX, run owm, which is located in the <ORACLE_HOME>/6iserver/bin
directory.

On NT, run the Oracle Wallet Manager by clicking on Start Programs Oracle
for Windows NT Oracle Wallet Manager.

Create a wallet as follows:

1. Click Wallet New from the menu bar. The New Wallet dialog box is
displayed.

2. Type a password in the Wallet Password field.

3. Retype that password in the Confirm Password field.

4. Click OK to continue. A message appears, and informs you that a new empty
wallet has been created, and prompts you to decide whether you want to create
a certificate request.

5. Click Yes, and see the next section.

5.7.2.2 Create a Certificate Request
Create a certificate request as follows:

1. Type the following information in the Certificate Request dialog box:

Setting Up the HTTPS Connection Mode

5-24 Deploying Forms Applications to the Web

■ Common Name: Type the name of the certificate identity in First name Last
name format. For example you could use the name of the server
administrator.

■ Organizational Unit: Type the name of the organizational unit, for example,
Finance.

■ Organization: Type the name of the organization, for example, XYZ Corp.

■ Locality/City: Type a city or locality.

■ State/Province: Type a state or province. Do not use abbreviations such as
CA for California.

■ Country: Click the drop down list to view a list of country abbreviations.
Click to select the country in which the organization is located.

■ Key Size: Click the drop down box to view a list of key sizes to use when
creating the public/private key pair.

■ Advanced: Click Advanced to view the Advanced Certificate Request
dialog panel. Use this field to edit or customize the distinguished name
(DN).

2. Click OK. An Oracle Wallet Manager message box informs you that a certificate
request was successfully created.

3. Save the wallet to the disk now or at any other time by clicking on Wallet
Save. You will be prompted for a directory name.

5.7.2.3 Send the Certificate Request
There are many ways to send the certificate request to one of the trusted CAs. The
most common way is to cut and paste the certificate request from Oracle Wallet
Manager into the CA's certificate request form on the web. You can also copy the
certificate request text from the body of the Oracle Wallet Manager message box,
paste it into an e-mail message, and send the request to the certificate authority if
they accept requests in that format.

Then, return to the Oracle Wallet Manager window, and click OK. An Oracle Wallet
Manager message box informs you that a certificate request was successfully
created.

5.7.2.4 Import the Certificate
After you receive the certificate that you requested from the CA, you must import it
into the wallet that you created. You can import it in one of two ways:

Setting Up the HTTPS Connection Mode

 Configuring Form Services 5-25

■ Paste the certificate from an e-mail that you receive from the certificate
authority.

■ Import the certificate from a file.

To paste the certificate:

1. From the menu bar, click Operations Import User Certificate. The Import
User Certificate dialog box opens.

2. Click the Paste the Certificate radio button, and click OK. An Import User
Certificate dialog box opens with the following message: "Please provide a
base64 format certificate and paste it below".

3. Copy the certificate from the body of the e-mail you received.

4. Paste the certificate into the window, and click OK. A message at the bottom of
the window informs you that the certificate was successfully installed.

5. Click OK. You are returned to the Oracle Wallet Manager main panel, and the
certificate is displayed at the bottom of the User Certificates tree.

6. Save the wallet to the disk now or at any other time by clicking on Wallet
Save.

To import a file that contains the certificate:

1. From the menu bar, click Operations Import User Certificate. The Import
User Certificate dialog box opens.

2. Type the path or folder name of the certificate location.

3. Click to select the name of the certificate file, for example, cert.txt.

4. Click OK. A message at the bottom of the window informs you that the
certificate was successfully imported into the wallet.

5. Click OK to close the dialog box. You are returned to the Oracle Wallet Manager
main panel, and the certificate is displayed at the bottom of the User Certificates
tree.

6. Save the wallet to the disk now or at any other time by clicking on Wallet
Save.

5.7.2.5 Set Auto Login to ON
The Oracle Wallet Manager Auto Login feature automatically opens a copy of the
wallet. This allows

Setting Up the HTTPS Connection Mode

5-26 Deploying Forms Applications to the Web

server authentication to occur without having to provide a password for the wallet.
To set Auto Login to ON:

1. Click Wallet from the menu bar.

2. Click the check box next to the Auto Login menu item. This will create a file
called cwallet.sso. This file is machine-dependent, and cannot be copied from
one machine to another.

3. A message at the bottom of the window displays "Autologin enabled".

Note: The check box next to the Auto Login menu item can be toggled on and off. Click the check
box again to clear the check mark. This will disable autologin.

Note: Auto Login must be set to ON for all Form Services machines that will provide server
authentication.

5.7.3 Create Wallets and Request Certificates That Are Not Trusted by JInitiator by
Default
Note: In this section, the VeriSign Trial Certificate is used as an example of a certificate that is not
trusted by JInitiator default.

Note: This section applies to a scenario where you plan to use certificates on the web server and
Form Services that are not trusted by Oracle JInitiator by default. The following CAs and certificates
are trusted by Oracle JInitiator:

■ VeriSign, Inc. - Class 1, 2, 3 Public Primary Certification Authority

■ RSA Data Security Inc. - Secure Server Authority

■ GTE CyberTrust Solutions Inc.- CyberTrust Global Root

■ GTE Corporation.- CyberTrust Root

Note: If you are using one of the certificates listed above, use the steps in Create Wallets and
Request Certificates.

Public-key cryptography requires, among other things, certificates. A user
certificate is issued by a third party, called a certificate authority (CA). The certificate
is obtained in a secure manner and does not need to be validated for its authenticity
each time it is accessed.

In the case of Form Services and a client using HTTPS mode, the client validates
that Form Services is who it claims to be by verifying the server’s certificate. You
use Oracle Wallet Manager to create wallets and request certificates.

Setting Up the HTTPS Connection Mode

 Configuring Form Services 5-27

After installing Oracle Wallet Manager on Form Services, you must do the following
to obtain a certificate:

■ Create a Wallet

■ Create a Certificate Request

■ Send the Certificate Request

■ Install the VeriSign Trial CA Root Certificate on Client Machines

■ Import the Certificate

■ Set Auto Login to ON

Note: If you have multiple Form Services machines, you can request a unique certificate for each
machine, or you can use the same certificate on all machines.

■ To use a unique certificate on each machine, perform all of the procedures in
this section on each Form Services machine running in HTTPS mode.

■ To use the same certificate on all machines, perform all of the procedures in this
section on one of the Form Services machines to create a wallet that contains a
certificate. Then, copy the wallet file, ewallet.der, to the other Form Services
machines running in HTTPS mode. Copy the file to the directory specified in
the FORMS60_WALLET environment variable. Finally, be sure that Auto Login
is set to ON on all machines, as described in Set Auto Login to ON.

5.7.3.1 Create a Wallet
On UNIX, run owm, which is located in the <ORACLE_HOME>/6iserver/bin
directory.

On NT, run the Oracle Wallet Manager by clicking on Start Programs Oracle
for Windows NT Oracle Wallet Manager.

Create a wallet as follows:

1. Click Wallet New from the menu bar. The New Wallet dialog box is
displayed.

2. Type a password in the Wallet Password field.

3. Retype that password in the Confirm Password field.

4. Click OK to continue. A message appears, and informs you that a new empty
wallet has been created, and prompts you to decide whether you want to create
a certificate request.

5. Click Yes, and see the next section.

Setting Up the HTTPS Connection Mode

5-28 Deploying Forms Applications to the Web

5.7.3.2 Create a Certificate Request
Create a certificate request as follows:

1. Type the following information in the Certificate Request dialog box:

■ Common Name: Type the name of the certificate identity in First name Last
name format. For example you could use the name of the server
administrator.

■ Organizational Unit: Type the name of the organizational unit, for example,
Finance.

■ Organization: Type the name of the organization, for example, XYZ Corp.

■ Locality/City: Type a city or locality.

■ State/Province: Type a state or province. Do not use abbreviations such as
CA for California.

■ Country: Click the drop down list to view a list of country abbreviations.
Click to select the country in which the organization is located.

■ Key Size: Click the drop down box to view a list of key sizes to use when
creating the public/private key pair.

■ Advanced: Click Advanced to view the Advanced Certificate Request
dialog panel. Use this field to edit or customize the distinguished name
(DN).

2. Click OK. An Oracle Wallet Manager message box informs you that a certificate
request was successfully created.

3. Save the wallet to the disk now or at any other time by clicking on Wallet
Save. You will be prompted for a directory name.

5.7.3.3 Send the Certificate Request
There are many ways to send the certificate request to the CA. The most common
way is to cut and paste the certificate request from Oracle Wallet Manager into the
CA's certificate request form on the web. You can also copy the certificate request
text from the body of the Oracle Wallet Manager message box, paste it into an
e-mail message, and send the request to the certificate authority if they accept
requests in that format.

We are using the Trial Server Certificate from VeriSign as an example in these steps:

1. Using your browser, go to www.verisign.com.

Setting Up the HTTPS Connection Mode

 Configuring Form Services 5-29

2. Search for "Trial Server Certificate" if you do not see a link on the home page.

3. VeriSign's web site lists five steps that you need to perform. Start by performing
the first three steps:

■ Step 1: Generate CSR. You have already completed this step using Oracle
Wallet Manager.

■ Step 2: Submit CSR. Cut and paste the certificate request information from
Oracle Wallet Manager into the Enter CSR information field of VeriSign's
Trial Server Certificate web page.

■ Step 3: Complete Application. Enter the Technical Contact Information,
such as the e-mail address where the certificate should be sent, into the
VeriSign Trial Server Certificate web page.

4. Now, return to the Oracle Wallet Manager window, and click OK. An Oracle
Wallet Manager message box informs you that a certificate request was
successfully created.

5. You will complete the final two steps, listed below, in the sections that follow:

■ Step 4: Install Test CA Root. We will do this in the next section.

■ Step 5: Install your Test Server ID. We will do this in the next section.

5.7.3.4 Install the VeriSign Trial CA Root Certificate on Client Machines
You will need to use Internet Explorer 5.0 to install the CA root certificate and
export it as a Base64 encoded X.509(.CER) file, which can be read by Oracle Wallet
Manager. (Unfortunately, you cannot use Netscape because it does not allow the
export of the root certificates to a file.)

1. Using Internet Explorer 5.0, go to
http://www.verisign.com/server/trial/welcome/caroot.html.

2. Follow the instructions, and download the CA root certificate into your
browser.

3. Click on Tools Internet Options Content and Certificates.

4. When the Certificate Manager displays, make sure the Intended Purpose
option is set to All, and click Trusted Root Certification Authorities.

5. Select the certificate that has the value For VeriSign authorized testing only...
in the Issued to column.

6. Click Export Next, and select Base64 encoded X.509(.CER).

Setting Up the HTTPS Connection Mode

5-30 Deploying Forms Applications to the Web

7. Save it as vrsnca.cer.

8. Return to Oracle Wallet Manager.

9. Click Operations Import Trusted Certificate.

10. Click Select a file that contains the certificate.

11. Open the file vrsnca.cer that you just saved.

12. Be sure you see For VeriSign authorized testing only listed among the Trusted
Certificates.

13. Export all trusted certificates by clicking Operations Export All Trusted
Certificates.

14. Save it as vrsndb.txt.

15. On the client machine, replace the certdb.txt of Jinitiator with the new version
by making a backup copy of \Program
Files\Oracle\Jinitiator\lib\security\certdb.txt. Then, copy vrsndb.txt onto
\Program Files\Oracle\Jinitiator\lib\security\certdb.txt. This step updates the
list of CAs that are trusted by the client.

5.7.3.5 Import the Certificate
After VeriSign processes your request, you will receive an email from VeriSign
containing the certificate which looks something like this:

-----BEGIN CERTIFICATE-----
MIICETCCAXqgAwIBAgICAkkwDQYJKoZIhvcNAQEEBQAwazELMAkGA1UEBhMCVV
Mx
DzANBgNVBAoTBk9yYWNsZTEoMCYGA1UECxMfRW50ZXJwcmlzZSBBcHBsaWNhdG
lv
biBTZXJ2aWNlczEhMB8GA1UEAxMYRUFTUUEgQ2VydGlmaWNhdGUgU2VydmVyMB
4X
DTk5MDcyNjE3MzkyNloXDTAwMDEyMjE3MzkyNlowPTELMAkGA1UEBhMCVVMxDz
A
BgNVBAoTBm9yYWNsZTEOMAwGA1UECxMFZm9ybXMxDTALBgNVBAMTBGFtYXIw
-----END CERTIFICATE-----

After you receive the certificate, you must import it into the wallet that you created.
You can import it in one of two ways:

■ Paste the certificate from an e-mail that you receive from the certificate
authority.

■ Import the certificate from a file.

Setting Up the HTTPS Connection Mode

 Configuring Form Services 5-31

To paste the certificate:

1. From the Oracle Wallet Manager menu bar, click Operations Import User
Certificate. The Import User Certificate dialog box opens.

2. Click the Paste the Certificate radio button, and click OK. An Import User
Certificate dialog box opens with the following message: "Please provide a
base64 format certificate and paste it below".

3. Copy the certificate from the body of the e-mail you received or the web page.

4. Paste the certificate into the window, and click OK. A message at the bottom of
the window informs you that the certificate was successfully installed.

5. Click OK. You are returned to the Oracle Wallet Manager main panel, and the
certificate is displayed at the bottom of the User Certificates tree.

6. Save the wallet to the disk now or at any other time by clicking on Wallet
Save.

To import a file that contains the certificate:

1. From the menu bar, click Operations Import User Certificate.

2. Type the path of the certificate location in the Import User Certificate dialog
box.

3. Click to select the name of the certificate file, for example, cert.txt.

4. Click OK. A message at the bottom of the window informs you that the
certificate was successfully imported into the wallet.

5. Click OK to close the dialog box. You are returned to the Oracle Wallet Manager
main panel, and the certificate is displayed at the bottom of the User Certificates
tree.

6. Save the wallet to the disk now or at any other time by clicking on Wallet
Save.

5.7.3.6 Set Auto Login to ON
The Oracle Wallet Manager Auto Login feature automatically opens a copy of the
wallet. This allows

server authentication to occur without having to provide a password for the wallet.
To set Auto Login to ON:

1. Click Wallet from the menu bar.

What’s Next

5-32 Deploying Forms Applications to the Web

2. Click the check box next to the Auto Login menu item. This will create a file
called cwallet.sso. This file is machine-dependent, and cannot be copied from
one machine to another.

3. A message at the bottom of the window displays "Autologin enabled".

Note: The check box next to the Auto Login menu item can be toggled on and off. Click the check
box again to clear the check mark. This will disable autologin.

Note: Auto Login must be set to ON for all Form Services machines that will provide server
authentication.

5.8 What’s Next
After completing the configuration of Form Services, you can deploy your
applications to the Web. Refer to Chapter 6, "Deploying Forms to the Web" for more
detailed information.

 Deploying Forms to the Web 6-1

6
Deploying Forms to the Web

6.1 Introduction
This chapter contains information about deploying Oracle Forms applications to the
Web. After you have configured Form Services, you can deploy your executable
files and broadcast your application’s URL. For information about configuring
Form Services, see Chapter 5, "Configuring Form Services".

6.2 Deploying a Forms Application
To deploy a Forms application, take these steps:

■ Create your runtime executable files.

■ Deploy the executable files on your server.

■ Broadcast your application’s URL.

6.2.1 Creating your Runtime Executable Files
You must create the .FMX runtime executable files on the same platform as the
application server on which you will deploy them.

For example, if your application server’s operating system is Sun Solaris, you must
use the Solaris version of the Forms Compiler component to create the .FMX files
for deployment on the Web.

To compile .FMX files for the Sun Solaris operating system, use the following
f60genm command line:

f60genm module=mymodule.fmb userid=scott/tiger

For more information about the forms compiler options, refer to the online help.

Deploying a Forms Application

6-2 Deploying Forms Applications to the Web

6.2.2 Deploying the Executable Files on Your Server
You can deploy your Forms application executables from any directory on your
server. This directory must be specified in the FORMS60_PATH environment
variable.

6.2.3 Broadcasting the Application's URL
To broadcast an application’s URL, all you need to do is let your intended users
know what it is. Users can contact the URL with their Java-enabled Web browser
and run the corresponding application. If you created an HTML page for your
application, then the URL you give to users should simply point to that page.

For example, to announce the availability of its new Order Tracking application,
ABC Corp. might broadcast the following URL:

http://www.abc.com:80/servlet/f60servlet?config=order

Note: Use "https" rather than "http" if you are running in HTTPS mode. (This is optional for Oracle
JInitiator.)

ABC’s URL consists of the following components:

■ Protocol: http (or https)

■ Domain: www.abc.com

■ Web server listener port: 80 (implicit)

■ Forms Servlet: /servlet/f60servlet

■ Special configuration set up in formsweb.cfg: config=order

If you created special configurations in the formsweb.cfg file as described in
Section 5.5.2.1, "Creating special configurations in formsweb.cfg", the end-user
launches the application as follows:

http://server:port/servlet/f60servlet?config= specialConfigName
(for a servlet configuration)

http://myhost.mydomain.com/dev60cgi/ifcgi60.exe?config= specialConfigName
(for a CGI configuration on NT)

6.2.4 Servlet Error Log
If you are using the Forms Servlet implementation, any configuration errors in the
formsweb.cfg and FormsServlet.initArgs files are logged to the jserv.log file. This
file is located in <ORACLE_HOME>/apache/Jserv/logs.

What’s Next

 Deploying Forms to the Web 6-3

6.3 What’s Next
After you deploy your executable files on the Web server and broadcast the
application’s URL, you will want to test and optimize your applications from within
a Web browser.

Refer to Chapter 7, "Application Design Considerations" for guidelines and tips on
designing Forms applications for Web deployment.

Refer to Chapter 11, "Performance Tuning Considerations" for more information
about tuning considerations when you deploy an application over the Internet or
other network environment using Form Services.

What’s Next

6-4 Deploying Forms Applications to the Web

 Application Design Considerations 7-1

7
Application Design Considerations

7.1 Introduction
This chapter contains guidelines and tips for designing Forms applications for Web
deployment. It includes the following sections:

■ General Guidelines

■ Guidelines for Designing Forms Applications

■ Deploying Icons and Images Used by Form Services

■ Integrating Reports

■ Feature Restrictions for Forms Applications on the Web

7.2 General Guidelines
Here are some general guidelines for designing applications for Web deployment:

■ Seriously consider network factors that affect the performance of your Web
applications (such as interaction with security firewalls, heavy user loads, and
frequent network roundtrips to application and database servers).

■ Limit the number of image items and background images you include in your
forms and reports. Each time an image is required, it must download from the
application server.

■ Optimize your network connections where possible.

■ Design your queries to execute as efficiently as possible, and ensure PL/SQL
program units are compiled.

Guidelines for Designing Forms Applications

7-2 Deploying Forms Applications to the Web

7.3 Guidelines for Designing Forms Applications
Here are some tips for designing Forms applications for Web deployment. They are
discussed in greater detail in the following sections:

■ Create Your Own Template HTML Files.

■ Create an HTML Application Menu.

■ Use Oracle Designer with Form Services.

■ Reduce Network Traffic.

■ Avoid Unnecessary Graphics and Images.

■ Select Standard Fonts.

7.3.1 Create Your Own Template HTML Files
Consider creating your own HTML file templates (by modifying the templates
provided by Oracle). By doing this, you can hard-code standard Forms Client applet
parameters and parameter values into the template. Your template can include
standard text, a browser window title, or images (such as a company logo) that
would appear on the first Web page users see when they run Web-enabled forms.
Adding standard parameters, values, and additional text or images reduces the
amount of work required to customize the template for a specific application. To
add text, images, or a window title, simply include the appropriate tags in the
template HTML file.

7.3.2 Create an HTML Application Menu
As you deploy additional applications on the Web, try creating a single HTML page
to serve as a centralized menu for your various Web-enabled applications. This
approach eliminates the need to broadcast the URL of every application you deploy
or remove. As you change your roster of available applications, simply modify the
collection of links on the Web menu. Users then contact the menu URL and select
from the list of available applications.

7.3.3 Use Oracle Designer with Form Services
Form Services supports forms generated by Oracle Designer (32-bit, Release 1.3.2 or
higher). If you use the standard Oracle Designer forms generator templates
(ofg4pc1t.fmb and ofg4pc2t.fmb) to generate form and menu definitions, you can
use the Form Services to compile .FMX and .MMX files and immediately run the
applications on the Web.

Guidelines for Designing Forms Applications

 Application Design Considerations 7-3

7.3.4 Reduce Network Traffic
To cut down on the number of network roundtrips required for users to operate
your Form Builder applications on the Web, consider reducing or eliminating the
following Form Builder features in your applications:

■ Mouse triggers. Including When-Mouse-Click, When-Mouse-DoubleClick,
When-Mouse-Down, and When-Mouse-Up triggers in your forms will impact
speed and performance. The Forms Client must communicate with the Form
Services (necessitating a network roundtrip) each time one of these trigger fires.
The When-Mouse-Move trigger is not supported due to the high number of
network roundtrips required each time it fires.

■ Timers. If your form includes a timer that fires every 1/100th of a second, users
face the performance ramifications of 60,000 network roundtrips every minute.
Either reduce the number of timers in your forms, or change the timing interval
on which your timers fire.

7.3.5 Avoid Unnecessary Graphics and Images
Wherever possible, reduce the number of image items and background images
displayed in your applications. Each time an image is displayed to application
users, the image must be downloaded from the application server to the user's Web
browser.

To display a company logo with your Web application, include the image in the
HTML file that downloads at application startup. Do this instead of including it as a
background image in the application. As a background image it must be retrieved
from the database or filesystem and downloaded repeatedly to users' machines.

7.3.6 Select Standard Fonts
Most fonts are not supported across all platforms. For example, Sans Serif is a
commonly-used font in Microsoft Windows applications; however, Sans Serif is not
available in UNIX. When a font is not available on a platform, Form Builder
attempts to use a similar font. As a result, when designing forms to deploy on the
Web, be sure to follow the font guidelines listed below.

At runtime, Form Services maps a form's fonts into their Java equivalents. Java then
renders the font in a font pre-defined for the deployment platform. To convert your
form's fonts into Java equivalents, Java uses an alias list, located in the file called
Registry.dat.

Deploying Icons and Images Used by Form Services

7-4 Deploying Forms Applications to the Web

The following table lists the Java fonts and their equivalents on the major
deployment platforms:

If a font from your form does not map to a Java font (through the Form Builder font
alias table), Java automatically assigns a Java font to the unmapped application font.

7.4 Deploying Icons and Images Used by Form Services
This section explains how to specify the default location and search paths for icons
and images.

7.4.1 Icons
When deploying a Forms application on the Web, the icon files in ICO format
(specified for an iconic button, a menu, or a window) are not used. The only file
formats accessible through the Web are GIF or JPG files (GIF is the default format).

By default, the icons are found relative to the DocumentBase Directory, which is the
directory containing the HTML file. If you want to store your icons in another
location, you have to create an application file to specify the virtual directory where
the icon files reside and the file format they use (GIF or JPG). This application file
must be referenced in the HTML file.

To create a custom application file:

1. Copy the registry.dat text file found in the <ORACLE_
HOME>/6iserver/forms60/java/oracle/forms/registry directory to another
directory. This directory must be mapped to a virtual directory for your Web
server (/appfile, for example).

2. Rename this new file (myapp.dat, for example).

Table 7–1

Java Font Windows Font X Windows Font Macintosh Font

Courier Courier New adobe-courier Courier

Dialog MS Sans Serif b&h-lucida Geneva

DialogInput MS Sans Serif b&h-lucidatypewriter Geneva

Helvetica Arial adobe-helvetica Helvetica

Symbol WingDings itc-zapfdingbats Symbol

TimesRoman Times New Roman adobe-times Times Roman

Deploying Icons and Images Used by Form Services

 Application Design Considerations 7-5

3. Modify the iconpath parameter specifying your icon location:

default.icons.iconpath=/mydir or http://myhost.com/mydir
(for an absolute path)

or

default.icons.iconpath=mydir
(for a relative path, starting from the DocumentBase Directory)

4. Modify the iconextension parameter:

default.icons.iconextension=gif

or

default.icons.iconextension=jpg

To reference the application file in the HTML file:

In the formsweb.cfg file or your HTML file, modify the value of the serverApp
parameter and set the value to the location and name of your application file.

<PARAM NAME="serverApp" VALUE="/appfile/myapp">

(for an absolute path)

or

<PARAM NAME="serverApp" VALUE="appfile/myapp">
(for a relative path, relative to the CodeBase directory)

7.4.2 SplashScreen and Background Images
When you deploy your applications to the Web, you have the ability to specify a
splash screen image (displayed during the connection) and a background image file.

Those images are defined in the HTML file or in the formsweb.cfg file:

<PARAM NAME="splashScreen" VALUE="splash.gif">

<PARAM NAME="background" VALUE="back.gif">

Deploying Icons and Images Used by Form Services

7-6 Deploying Forms Applications to the Web

The default location for the splash screen and background image files is in the
DocumentBase directory containing the base HTML file.

7.4.3 Using a Custom JAR File Containing Icons and Images
Each time you use an icon or an image (for a splash screen or background), an
HTTP request is sent to the Web server. To reduce the HTTP roundtrips between the
client and the server, you have the ability to store your icons and images in a Java
archive (JAR) file. Using this technique, only one HTTP roundtrip is necessary to
download the JAR file.

7.4.3.1 Creating a JAR File
The SunSoft JDK comes with an executable called jar. This utility enables you to
store files inside a Java archive. See www.java.sun.com for further information.

For example:

jar -cvf myjar.jar Splash.gif Back.gif icon1.gif

This command store three files (Splash.gif, Back.gif, icon1.gif) in a single JAR file
called myjar.jar.

7.4.3.2 Using Files Within the JAR File
The default search path for the icons and images is relative to the DocumentBase.
However, when you want to use a JAR file to store those files, the search path must
be relative to the CodeBase directory, the directory which contains the Java applet.

If you want to use a JAR file to store icons and images, you must specify that the
search path is relative to CodeBase using the imageBase parameter in the base
HTML file.

This parameter accepts two different values:

■ DocumentBase The search path is relative to the DocumentBase directory. It is
the default behavior.

■ CodeBase The search path is relative to the CodeBase directory, which gives
the ability to use JAR files.

In this example, we use a JAR file containing the icons and we specify that the
search should be relative to CodeBase. If the parameter "imageBase" is not set, the
search is relative to DocumentBase and the icons are not retrieved from the JAR file.

Deploying Icons and Images Used by Form Services

 Application Design Considerations 7-7

For example:

<PARAM NAME="archive" VALUE="icons.jar">

<PARAM NAME="imageBase" VALUE="CodeBase">

7.4.4 Search Path for Icons and Images
The icons and images search path depends on:

■ What you specify in your custom application file (for the icons)

■ What you specified in the SplashScreen and Background parameters of your
HTML file (for the images)

■ What you specify in the imageBase parameter in your HTML file (for both icons
and images)

Form Services searches for the icons depending on what you specify. This example
assumes :

■ host is the host name.

■ documentbase is the URL pointing to the HTML file.

■ codebase is the URL pointing to the location of the starting class file (as specified
in the HTML file).

■ mydir is the URL pointing to your icons or images directory.

7.4.4.1 DocumentBase
The default search path is relative to the DocumentBase. In this case, you do not
need to specify the imageBase parameter:

Table 7–2

Location specified Search path used by Form Services

Icons default http://host/documentbase

iconpath=mydir

(specified in your application file)

 http://host/documentbase/mydir

(relative path)

iconpath=/mydir

(specified in your application file)

 http://host/mydir

(absolute path)

Images file.gif

(specified in your HTML file)

 http://host/documentbase/file.gif

Deploying Icons and Images Used by Form Services

7-8 Deploying Forms Applications to the Web

7.4.4.2 CodeBase
Use the imageBase=CodeBase parameter in the base HTML file to enable the search
of the icons and images in a JAR file:

mydir/file.gif

(specified in your HTML file)

 http://host/documentbase/mydir/file.gif

(relative path)

/mydir/file.gif

(specified in your HTML file)

 http://host/mydir/file.gif

(absolute path)

Table 7–3

Location specified Search path used by Form Services

Icons default http://host/codebase or root of the JAR file

iconpath=mydir

(specified in your application file)

http://host/codebase/mydir or in the mydir directory
in the JAR file

(relative path)

iconpath=/mydir

(specified in your application file)

http://host/mydir

(absolute path)

 No JAR file is used

Images file.gif

(specified in your HTML file)

http://host/codebase/file.gif or root of the JAR file

mydir/file.gif

(specified in your HTML file)

http://host/codebase/mydir/file.gif or in the mydir
directory in the JAR file

(relative path)

/mydir/file.gif

(specified in your HTML file)

http://host/mydir/file.gif

(absolute path)

No JAR file is used.

Table 7–2

Location specified Search path used by Form Services

Integrating Reports

 Application Design Considerations 7-9

7.5 Integrating Reports
To invoke Reports from a Web-enabled form, use the RUN_PRODUCT built-in
subprogram.

To use RUN_PRODUCT to run a report from a form running on the Web, you must
set three environment variables:

On Windows NT, you define your environment variables in the Registry. On UNIX,
you define your environment variables in the command shell. For more information
on setting up environment variables, refer to Appendix A, "Form Services
Parameters".

After you set the environment variables above, the following sequence occurs
automatically when a form running on the Web calls RUN_PRODUCT to invoke
Reports.

If the output format of the report is SCREEN or PREVIEW:

■ The resulting output is stored (as a temporary file with an auto-generated
filename) in the physical directory specified by the FORMS60_OUTPUT
environment variable.

■ The Web server looks for the temporary filename (in the virtual directory
defined by the FORMS60_MAPPING environment variable).

■ The Web server checks the desired display format specified by the FORMS60_
REPFORMAT environment variable, and displays the report in that format in
the user's browser.

If the output format of the report is FILE:

Table 7–4

Environment Variable Description

FORMS60_OUTPUT Physical directory on the application server in which to store
generated Reports files.

For example: <ORACLE_
HOME>/6iserver/tools/web60/temp

FORMS60_MAPPING Virtual directory pointing to the physical directory defined by
the FORMS60_OUTPUT variable.

For example: /dev60temp/

FORMS60_REPFORMAT Format in which to store generated Reports output.

For example: PDF or HTML

Feature Restrictions for Forms Applications on the Web

7-10 Deploying Forms Applications to the Web

■ The report does not display in the user's browser.

■ The resulting file is stored in the physical directory specified by the FORMS60_
OUTPUT environment variable.

■ The filename of the report file is the same name that is defined in the form
definition.

7.6 Feature Restrictions for Forms Applications on the Web
When designing forms for eventual deployment on the Web, keep in mind that
certain Forms features behave differently—or not at all—when a form is deployed
on the Web. Table 7–5 lists Forms features, whether the feature is supported on the
Web, and any guidelines or notes about the feature.

Table 7–5

Feature Support Guidelines and Notes

ActiveX, OCX, OLE, VBX No Third-party controls that display screen output on the application
server are not supported because users cannot view the output.

When-Mouse-Enter /
Leave / Move triggers

No Each execution of the trigger requires a network roundtrip, which
would downgrade performance.

console Yes To display the console (includes the status and message lines) to
users, set the form-level property Console Window to the window in
which you wish to display the console.

firewall Yes You must run Form Services in HTTP or HTTPS mode and have a
firewall supporting HTTP 1.1. protocol.

HOST_COMMAND,
ORA_FFI, USER_EXIT

Yes Calls to these functions often display visual output or GUI elements
on users' machines in client/server mode. In a Web implementation,
the same calls will display the output and GUI elements on the
application server (where users cannot see or interact with them).

iconic buttons Yes Icon image files must be in GIF format (and not in ICO format).

NLS, BIDI Yes Supported for 8-bit languages only.

 Migrating Legacy Applications to the Web 8-1

8
Migrating Legacy Applications to the Web

8.1 Introduction
If you are currently using the client/server version of Forms Server, migrating
applications to Form Services for the Web is straightforward. This chapter briefly
describes the differences between client/server and Web implementations, and then
gives guidelines to migrate your current applications from client/server-based to
Web-based Form Services.

Traditionally, load balancing services in Oracle Forms Server were supplied via a
cartridge. If you wanted to deploy forms on the Web via a servlet implementation in
lieu of a cartridge, load balancing was not an option.

With the release of Oracle9i Application Server Form Services, you can now use
load balancing with forms applications that are deployed on the Web via a servlet
implementation. With load balancing, when you approach the usage limits of your
hardware, rather than upgrading or replacing a machine, you can simply add more
machines to run your application and balance the load of server traffic across
several machines.

If you have already deployed Web-based Forms Developer applications via a
cartridge and you wish to switch to servlet, you will need to install Form Services
and configure it for servlets. The purpose of this chapter is to help those with
existing cartridge-based implementations install or reconfigure from cartridges to
servlets.

Introduction

8-2 Deploying Forms Applications to the Web

8.1.1 Client/Server-Based Architecture
In the client/server-based implementation, shown in Figure 8–1, the Forms Server
Runtime Engine and all application logic are installed on the user’s desktop
machine. All user interface and trigger processing occurs on the client, except for
database-server-side triggers and logic that may be included in some applications.

Figure 8–1 Forms Server client/server-based architecture

Introduction

 Migrating Legacy Applications to the Web 8-3

8.1.2 Web-Based Architecture
In a Web-based implementation, shown in Figure 8–2, the Form Services Runtime
Engine and all application logic are installed on application servers, and not on
client machines. All trigger processing occurs on the database and application
servers, while user interface processing occurs on the Forms client, located on users’
machines.

Figure 8–2 Form Services Web-based architecture

Comparing Cartridge and servlet Implementations

8-4 Deploying Forms Applications to the Web

8.1.3 Who Should Read this Chapter?
This chapter will be useful to you if the following statements apply to your
deployment environment:

■ You currently deploy Web-based Oracle Forms Developer applications.

■ You use Oracle Application Server for Web server support.

■ You deploy Web-based Oracle Forms Developer applications using cartridges.

■ You want to move from cartridge deployment to servlets.

8.2 Comparing Cartridge and servlet Implementations
Cartridge and servlet implementations both require that you set server operational
parameters that define values for such things as port numbers and locations of
relevant files. The difference is in where you set them. In Oracle Application Server,
you open the Oracle Application Server Manager and navigate to various
destinations to set parameters for different deployment entities. In Form Services,
configuration complexity is more centralized. You set many operational parameters
automatically through configuration choices you make during installation. You can
revise and set additional operational parameters in Form Services's formsweb.cfg
file, which is created during installation.

Cartridge and servlet implementations both produce an HTML file on-the-fly that is
rooted in a standard base HTML file. In a cartridge implementation, the HTML file
is created through a combination of the cartridg.html file, cartridge configuration
settings, and the application's URL. In a Forms servlet implementation, the HTML
file is created through a combination of the base.htm or basejini.htm file, the
formsweb.cfg file, and the application's URL.

In both cartridge and servlet base HTML files, you can define a parameter with a
variable and then define the variable value in the application's cartridge settings
(Oracle Application Server), the formsweb.cfg file (Form Services), or via a query
string in the application's URL (both Oracle Application Server and Form Services).

The major differences between cartridge and servlet implementations are in the
types of services and level of performance offered through your non-Oracle
Application Server Web server (as compared to those offered through Oracle
Application Server), the broader range of operational parameters now available
through Form Services, and the vastly simplified process of setting forms
parameters via Form Services installation and the formsweb.cfg file.

Reconfiguration Strategies

 Migrating Legacy Applications to the Web 8-5

8.3 Reconfiguration Strategies
This section provides a high-level overview of the reconfiguration process. It is
suitable for users who have a technical understanding of Oracle Application Server,
Form Services, base HTML files, and the like.

There are two basic strategies for reconfiguring cartridge deployments to servlets:

■ Keep everything the same, replicating cartridge parameters in the formsweb.cfg
file.

■ Use the default Oracle9i Application Server installation.

The first strategy is appropriate for users with complex base HTML files, that is,
files that contain much extraneous text, images, and other objects in addition to the
Forms applet tags. The second strategy is appropriate for users with simple base
HTML files.

8.3.1 Strategy for Users with Complex Base HTML Files
The strategy for users with complex base HTML files is to keep everything the
same.

1. Stop all instances of Oracle Application Server you will no longer use.

2. Install Oracle9i Application Server.

3. In the formsweb.cfg file, reproduce the parameters that were used for cartridge
configuration.

To locate current cartridge parameters, launch Oracle Application Server and
navigate to each forms application's Cartridge Configuration folder. Within
each folder, click Cartridge Parameters. This displays the cartridge parameter
settings. Additionally, you will find parameter settings in the base HTML file(s)
you created for Forms cartridge applications.

4. If you were using several cartridge definitions for the Forms cartridge (that is,
you were using several base HTML files), define separate configuration sections
in the formsweb.cfg file-one for each cartridge. (With both strategies, the better
practice is to create new configuration sections for cartridge parameters in the
formsweb.cfg file rather than specify the parameters at the start of the
formsweb.cfg file, outside a named section.)

5. For a non-Oracle Application Server Web listener, define the same virtual paths
you used with Oracle Application Server. Add a new virtual path for scripts
that point to the directory containing the servlet, as follows:

Reconfiguration Strategies

8-6 Deploying Forms Applications to the Web

virtual_path_name = /servlet/
physical_path = <ORACLE_HOME>/6iserver/forms60/java/oracle/forms/servlet

6. Change all the URL's you use to run forms to point to the servlet rather than the
cartridge. For example, if the original URL was:

http://servername.my.domain.com/developerforms/forms60cart?module=emp.fmx

It should become:

http://server:port/servlet/f60servlet?config= emp

Note: If you are using the HTTPS communication mode, use "https" rather than "http" in the
examples above. (This is optional for Oracle JInitiator.)

In this example, "myconfig" is the name of the configuration section you
defined in the formsweb.cfg file that contains the parameters equivalent to your
old cartridge parameters.

8.3.2 Strategy for Users with Simple Base HTML Files
The strategy for users with simple base HTML Files is to use the default Oracle9i
Application Server installation.

If your cartridge implementation used simple base HTML files, your
reconfiguration to servlets can easily benefit from the default configuration that is
created automatically during the installation.

1. Stop all Oracle Application Server instances you will no longer use.

2. Install Oracle9i Application Server.

3. Adapt the URLs you used to run your forms to achieve the same effect as you
had with the cartridge. Use the parameters that are defined for you in the
formsweb.cfg file. These allow you to change just about every conceivable
HTML and Forms Applet parameter value by specifying the value in the
application's URL. The same URL will work for users of the AppletViewer, a
Web browser in combination with Oracle JInitiator, or Internet Explorer 5.0.

4. Use the runform.htm file to experiment with different parameter settings in the
application's URL. For example, this might be the URL you would use to run a
form with a page title "My Form," a page width of 400, and a page height of 550:

http://server:port/servlet/f60servlet?pagetitle=

Reconfiguring Forms Web Cartridge to Servlets

 Migrating Legacy Applications to the Web 8-7

My+Form&width=400&height=550

Note: If you are using the HTTPS communication mode, use "https" rather than "http" in the
examples above. (This is optional for Oracle JInitiator.)

In these examples, the question mark signals the start of the query string in the
application URL. The query string specifies the values for the pagetitle, width,
and height parameters.

8.4 Reconfiguring Forms Web Cartridge to Servlets
Take these steps to reconfigure forms deployments from cartridge to servlets:

1. Stop the Oracle Application Server Web Listener instances you will no longer
use.

2. Install Oracle9i Application Server.

3. Configure the Form Services formsweb.cfg file.

4. Optionally, configure the Form Services base.htm and basejini.htm files.

5. Broadcast the application's URL.

8.4.1 Stopping Oracle Application Server Web Listener Instances
There are two scenarios for stopping Oracle Application Server:

■ Stop it completely.

■ Stop only specific instances while Oracle Application Server continues to
support other instances.

8.4.1.1 Stopping Oracle Application Server Completely
Use this technique if you wish to stop using all services offered through Oracle
Application Server:

1. Launch Oracle Application Server.

2. Open the Oracle Application Server Manager.

3. Navigate to the top-level site of the Oracle Application Server installation.

4. Select All.

5. Click the Stop button.

Reconfiguring Forms Web Cartridge to Servlets

8-8 Deploying Forms Applications to the Web

8.4.1.2 Stopping Specific Instance of Oracle Application Server
Use this technique if you wish to stop only some Oracle Application Server HTTP
Listeners and leave others running:

1. Launch Oracle Application Server.

2. Open the Oracle Application Server Manager.

3. Navigate to HTTP Listeners.

4. Select those HTTP Listeners running on ports you are planning to convert from
cartridge to servlets.

5. Click the Stop button.

8.4.2 Configuring the formsweb.cfg File
The formsweb.cfg file is a powerful new convenience included with Form Services.
Use it as a repository for all the settings you need to run Oracle forms on the Web in
a servlet implementation. The installer places this file in <ORACLE_
HOME>/6iserver/forms60/server.

The formsweb.cfg file is a text file that contains configuration parameters for
running Forms applications on the Web in a servlet implementation. The
configuration parameters in the formsweb.cfg file are the equivalent of the cartridge
parameters used with the Forms cartridge. The formsweb.cfg file is divided into
three main sections:

■ System Parameters

■ User Parameters

■ Specific Configurations

Refer to Chapter 5.5.2, "formsweb.cfg" for more specific information about
configuring the formsweb.cfg file.

8.4.2.1 System Parameters
The System Parameters section provides information required by the Forms servlet.
Unlike many other parameters in formsweb.cfg, System Parameters cannot be
specified in a URL query string. However, you can override their values by placing
an alternate parameter/value set in a Specific Configuration section in
formsweb.cfg, then calling that configuration in the application URL.

Reconfiguring Forms Web Cartridge to Servlets

 Migrating Legacy Applications to the Web 8-9

8.4.2.2 User Parameters
The User Parameters section is where you specify the actual values for parameters
that are defined with variables in the base HTML file. For example, in the base.htm
file you might have:

<PARAM NAME="separateFrame" VALUE="%separateFrame%">

In the formsweb.cfg you would set the specific value for the variable
%separateFrame%:

separateFrame=false

You can override specified User Parameter values in a Specific Configuration
section in formsweb.cfg or in a query string in the application's URL.

For example:

http://server:port/servlet/f60servlet?separateFrame=true

Note: If you are using the HTTPS communication mode, use "https" rather than "http" in the
examples above. (This is optional for Oracle JInitiator.)

In these examples, the query string ?separateFrame=true will override the value for
separateFrame that is specified in the formsweb.cfg file.

When a specific value for a parameter is defined in both the formsweb.cfg file and
the application's URL, the value defined in the URL is used.

8.4.2.3 Specific Configurations
If you want to run the same form with multiple configurations, you can define
custom configurations with custom values in the Specific Configurations section of
the formsweb.cfg file.

When you call the custom configuration with a query string in the application's
URL, the custom values will override the parameters defined in the User
Parameters section of formsweb.cfg. When you set up a Specific Configurations
section, you need only specify the parameters you want to change. The default
values that are specified in the User Parameters section will be used for all other
parameters.

Use the "config" parameter in the application's URL to call a particular Specific
Configuration section. For example, the following URLs call the Specific
Configuration section [myconfig]:

http://server:port/servlet/f60servlet?config=myconfig

Reconfiguring Forms Web Cartridge to Servlets

8-10 Deploying Forms Applications to the Web

Note: If you are using the HTTPS communication mode, use "https" rather than "http" in the
examples above. (This is optional for Oracle JInitiator.)

Refer to Chapter 5.5.2, "formsweb.cfg" for more specific information about
configuring the formsweb.cfg file.

8.4.3 Configuring the base.htm or basejini.htm File
When you start a Web-enabled application (by clicking a link to the application's
URL), the Forms servlet reads a special file that contains all necessary applet tags,
parameters, and parameter values (or variables for those values) that are required to
run the selected application on the Web. This is the base HTML file.

The Oracle Universal Installer places two base HTML files in the following
directory: <ORACLE_HOME>/6iserver/FORMS60/server

■ basejini.htm

This file contains the tags required to run the Forms applet using a combination
of the user's Web browser and Oracle JInitiator.

■ base.htm

This file contains the tags required to run the Forms applet in the AppletViewer
or in any Web browser certified by Oracle whose native JVM is certified to work
with Forms.

Refer to Chapter 5.5.3, "base.htm, basejini.htm, and baseie.htm" for more specific
information about the base.htm and basejini.htm files.

In a Forms Web servlet implementation, as the application launch process gets
started, any variables (%variablename%) in the base HTML file are replaced with
the appropriate parameter values that are specified either in the formsweb.cfg file
or in a query string included in the application's URL. Once all values are defined,
the HTML file is generated and then downloaded to the user's Web browser, and
the selected forms application launches.

When a specific value for a parameter is defined in both the formsweb.cfg file and
the application's URL, the value defined in the URL is used.

In most cases, you will not need to modify the default base HTML files. Instead,
you can define their parameters with variables. Then you can define the actual
values for the variables in formsweb.cfg or in the application's URL.

For example, you can define the parameter splashScreen in the base HTML file as:

Reconfiguring Forms Web Cartridge to Servlets

 Migrating Legacy Applications to the Web 8-11

<PARAM NAME="splashScreen" VALUE="%splashScreen%">

Then define the actual value in the formsweb.cfg file as:

splashScreen=virtual_path/mysplashscreen.gif

Note: If you are using the HTTPS communication mode, use "https" rather than "http" in the
examples above. (This is optional for Oracle JInitiator.)

Using variables instead of values in the base HTML file allows you to use the same
generic base HTML file for all your forms applications and to manage configuration
complexity from one location: formsweb.cfg (or the application's URL).

If you decide to specify parameter values in the base HTML file, do not modify the
original base HTML file that is provided by Oracle. Instead, modify a renamed
copy. Be sure to update the baseHTML (or the basejiniHTML) parameter in the
formsweb.cfg file to point to the location of the modified file.

8.4.4 Broadcasting the Applications’s URL
To broadcast the application's URL, simply notify your intended users. Your users
can contact the URL with their Java-enabled Web browsers and run the
corresponding application. For example, to announce the availability of its new
Order Tracking application, ABC Corp. might notify employees via e-mail of the
following URL:

http://server:port/servlet/f60servlet?config=myconfig&form=tracker.fmx

Note: If you are using the HTTPS communication mode, use "https" rather than "http" in the
examples above. (This is optional for Oracle JInitiator.)

ABC's URL consists of the following components:

http or https Connection protocol

server:port Name of the machine that hosts the application server

servlet The virtual path, defined in the Web server, that points to
servlets

f60servlet Forms servlet

Reconfiguring Forms Web Cartridge to Servlets

8-12 Deploying Forms Applications to the Web

?config=myconfig&form=tracker.fmx The query string that points to a custom configuration defined
in the user-created "myconfig" section of the formsweb.cfg file
and to the form module tracker.fmx

The parameter "form" is used here because "form" was defined
as the variable value for "module" in the base HTML file. That
is:

<PARAM NAME="serverArgs" VALUE="module=%form%">

The syntax is slightly different in the base HTML JInitiator file:

serverArgs="module=%form%"

Guidelines for Migration

 Migrating Legacy Applications to the Web 8-13

8.5 Guidelines for Migration
When migrating your applications from client/server deployment to the Web, note
that a Web-based application:

■ Supports JPEG and GIF image types only, so convert existing images to these
formats.

■ Supports the use of compressed JAR (Java Archive) files for file transfer, so use
JAR files whenever the transfer of large files is required between the Form
Services and Java client.

■ Does not support ActiveX, OCX, OLE, or VBX controls in the user interface.
Instead, use JavaBeans to duplicate functionality in the user interface. Any
other Microsoft Windows user interface dependencies should also be replaced
with JavaBeans.

■ Does not support MouseMove triggers, such as When-Mouse-Enter,
When-Mouse-Leave, and When-Mouse-Move.

■ Does not natively support write access to the client hard drive. This can be
accomplished by writing a JavaBean for the pluggable Forms user interface.

■ Supports Java fonts only, so check applications for the types of fonts used. If
necessary, switch to Java fonts. Java uses a font alias list, located in the
Registry.dat file. The font aliases described in Table 8–1 are supported:

In this chapter we have provided information about reconfiguring forms cartridge
implementations to servlets. We've kept to a fairly narrow path of configuration
options to ensure a smooth and successful migration.

Table 8–1 Font support for Web-based applications

Java font Windows font XWindows font Macintosh font

Courier Courier New adobe-courier Courier

Dialog MS San Serif b&h-lucida Geneva

DialogInput MS San Serif b&h-lucidatypewriter Geneva

Helvetica Arial adobe-helvetica Helvetica

Symbol Wingdings itc-zapfdingbats Symbol

Times Roman Times New Roman adobe-times Times Roman

Guidelines for Migration

8-14 Deploying Forms Applications to the Web

 Network Considerations 9-1

9
Network Considerations

9.1 Introduction
For the best implementation of Form Services, you need to determine:

■ The type of network on which you will deploy Web applications

■ How your network and security issues will be managed

■ The number and types of users that you expect will need to access your
network

This chapter describes the types of networking implementations upon which you
can deploy Web applications, and the things you need to consider when deploying
Web applications on each type.

9.2 Network Topologies
There are a number of terms used to describe the various networking
implementations upon which you can deploy applications. In general, networks can
be grouped into the following categories:

■ Internet is a network that is open to anyone with access to an Internet Service
Provider (ISP). It uses data transmission standards drafted by the Internet
Engineering Task Force (IETF).

■ Intranet is a network that is "owned" by a single organization that controls its
security policies and network management.

■ Extranet is a network that is "owned" by multiple organizations, each of which
may have their own network infrastructure, security policies, and users, thereby
requiring an integrated approach to network management and security.

Network Topologies

9-2 Deploying Forms Applications to the Web

The primary difference between the Internet, intranets, and extranets is that an
intranet and extranet are well defined by the controlling organization(s) and have a
known body of users. Conversely, the Internet has an unknown body of users.
Computers and networks that communicate via the Internet are unknown to each
other until the time of connection. This means that there can be no previous
coordination of encryption standards, user authentication, authorization, and so on.

These implementations are discussed in greater detail in the following sections:

■ Internet

■ Intranet

■ Extranet

9.2.1 Internet
The Internet is a network that is open to anyone with access to an Internet Service
Provider (ISP). By connecting to the Internet, a user has access to other networked
computers all over the world. If a computer that is connected to the Internet is not
secured using hardware or software security methods, data on that computer is
potentially accessible to anyone on the Internet.

9.2.2 Intranet
An intranet is a network that is "owned" by a single organization that controls its
security policies and network management. Networked computers may be housed
within a single physical location (for example, computers used for inventory control
in a manufacturing plant), or they may be in different physical locations (for
example, computers used at various branches of an insurance company).

Because the intranet is controlled by a single organization, all users who will
attempt to access the network are known, and there is freedom in selecting the
network structure, security policy, and software.

The following are examples of intranet-style networks:

■ Local-area network (LAN)

■ Wide-area network (WAN) that is comprised of a LAN that extends usage to
remote employees with dial-up access

■ WAN that is comprised of interconnected LANs using dedicated
communication lines

Deploying Form Services in your Network Environment

 Network Considerations 9-3

■ Virtual private network (VPN) that is comprised of a LAN or WAN that extends
usage to remote employees or networks using special "tunneling" software that
creates a secure, usually encrypted connection over public lines, sometimes via
an Internet Service Provider (ISP)

9.2.3 Extranet
An extranet is a network that is "owned" by multiple organizations, each of which
may have their own network infrastructure, security policies, and users. The
networked computers are usually housed in different physical locations. In most
cases, the different organizations share portions of their network data with each
other. For example, the travel industry uses an extranet that allows travel agents to
book flights and make other travel arrangements using data from networks owned
by airlines and tour operators.

Like an intranet, there is a known body of users in an extranet. However, because
the extranet is controlled by multiple organizations, an integrated approach to
network management and security is required. In the travel industry example, the
travel agencies and airlines would have to coordinate networking and security
issues in order for travel agents to access airline booking information.

The following are examples extranet-style networks:

■ LANs or WANs belonging to multiple organizations and interconnected and
accessed using remote dial-up

■ LANs or WANs belonging to multiple organizations and interconnected and
accessed using dedicated lines

■ Virtual private network (VPN) that is comprised of LANs or WANs belonging
to multiple organizations, and that extends usage to remote users using special
"tunneling" software that creates a secure, usually encrypted network
connection over public lines, sometimes via an ISP

Organizations sharing networked data and applications via an extranet must agree
on the security protocols for user authentication, authorization, and data
encryption. Security hardware, such as firewalls and routers, must be compatible.

9.3 Deploying Form Services in your Network Environment
After studying how the Form Services function and determining the type of
network setup that would work best for your company, you can implement Form
Services on your network. The following five sections describe networking options
and some associated risks:

Deploying Form Services in your Network Environment

9-4 Deploying Forms Applications to the Web

■ Deploying Over the Internet

■ Deploying On a Local Area Network (LAN)

■ Deploying On a Network with Remote Dial-Up Access

■ Deploying On a Network via Telecom-Provided VPN Access over Public Lines

■ Deploying On a Network via VPN Access over the Internet

9.3.1 Deploying Over the Internet
Form Services allows you to deploy your Forms applications over the Internet by
encapsulating Forms messages in HTTP 1.1 packets. HTTP is one of the most
widely used protocols for deploying applications on the Internet.

Many organizations have "locked-down" their firewalls by allowing only HTTP
traffic, which greatly enhances the security of their private networks. (Most firewall
companies support the HTTP standard in their products, and many organizations
are willing to allow HTTP traffic in and out of their private networks.) Sites that
allow only HTTP traffic will be able to easily deploy Form Services through their
existing firewall with little or no change to their configuration and with complete
transparency to the client.

Although a strict security policy is still required to protect the internal company
network, you can put application servers behind a firewall and in a demilitarized
zone (DMZ) within the company network. The HTTP filter within the firewall is
sufficient to restrict incoming traffic without the use of a VPN.

In addition, you can use SSL (secure sockets layer) with HTTP 1.1 for even more
secure communications. SSL is a transport protocol that provides privacy, integrity,
and authentication. SSL works at the transport level, which is one level below the
application level. This means that SSL can encrypt and decrypt messages before
they are handled by application-level protocols such as HTTP.

Deploying Form Services on the Internet makes your application available to
individual users on the Web, as well as to extranet customers, at a relatively low
cost when compared to the other network deployment options. It enables
organizations to run scalable, secure, and sophisticated new or existing Forms
applications over the Internet.

9.3.1.1 Risks
To deploy applications on the internet with an HTTP socket connecion, CPU
requirements for the user’s Forms Client PC are slightly higher than for previous
versions of Form Services in order to provide equivalent performance.

Deploying Form Services in your Network Environment

 Network Considerations 9-5

Sending Forms data in an HTTP wrapper will likely increase network traffic, and
may have an impact on the number of sessions that can be run simultaneously on
lower speed connections.

9.3.1.2 Other Internet Deployment Options
If you do not choose to use the HTTP socket connection method, your other option
is to set up a DMZ outside of your protected network that contains the application
server. You can set up an IP-router to block all incoming packets except those
destined for ports 80 (HTTP traffic) and 9001 (default port for the Forms Listener) in
order to protect the DMZ. The risk with this approach is that the Form Services
Listener port is still vulnerable. If multiple Form Services Listeners are used (for
example, when hosting multiple applications or multiple languages) the risks
increase.

In addition, the IP router should be backed by a multi-homed firewall residing in
the DMZ that re-routes all incoming traffic from the IP router to the application
servers in the DMZ. The application servers need to connect to the database in the
trusted corporate network, so the multi-homed firewall also needs to re-route all
Net8 traffic to the data server in the trusted corporate network.

A rotation schedule can be set up where different Form Services Listeners are used
at different times to reduce the chance of break-in, although this will not deter a
serious hacker.

To shield the internal network from attacks, we recommend that you set up an extra
firewall between the multi-homed firewall and the internal network to filter the IP
packets and only pass Net8 traffic.

9.3.2 Deploying On a Local Area Network (LAN)
If all users who will access your Forms applications are located within your LAN,
then basic internal network security is sufficient, and the Form Services will not
require any special configuration.

9.3.3 Deploying On a Network with Remote Dial-Up Access
If some users are located outside your LAN or secure WAN and will dial in for
access to your Forms applications, then you will need a server designed specifically
for remote access security. This scenario is ideal for employees who work offsite or
for trusted customers who must access your LAN or WAN. This solution is not
appropriate for implementations where more than 1000 users would need to access
the LAN remotely.

Deploying Form Services in your Network Environment

9-6 Deploying Forms Applications to the Web

Valid users are those who have been registered in your remote access server.
Unregistered users do not have access. Remote Access Service (RAS) is a feature of
Windows NT servers. A Windows NT RAS server can be used in this scenario as the
remote access server.

A private WAN is often constructed with leased lines.To break in, an intruder
would have to know the location of the leased lines and the wire codes of the lines
used to transmit data. Under these conditions, a breach is unlikely.

If dial-up is via public phone lines, we recommend that you encrypt confidential
data during transmission. Windows NT RAS servers include the
Point-to-Point-Tunneling Protocol (PPTP), which can be used for encryption of
confidential data over public dial-up lines. If you are not using a remote access
server that provides an encryption protocol, see the following sections for other,
more secure options for configuring Form Services on your network.

There is a very small risk that an intruder can randomly dial the phone number for
a remote access server, and then attempt multiple username/password
combinations to log in to the LAN. However, remote access servers are more
vulnerable to disgruntled ex-employees or customers who already know how to
access the server.

 To avoid this situation, we recommend the following precautions:

■ Rigorous security record maintenance, which will ensure that entries for former
employees and customers are removed from the remote access server,
auto-dialback unit, and all internal systems

■ Caller ID verification, which is a technique that only allows registered phone
numbers to reach the remote access server

■ Auto dial back unit, which calls back the caller using a previously registered
phone number

9.3.4 Deploying On a Network via Telecom-Provided VPN Access over Public Lines
As mentioned in the previous section, a conventional WAN is usually constructed
with leased lines. However, if dial-up is via public phone lines, we recommend that
you have a more secure method of user authentication and data transmission.

One option is to use a VPN, or virtual private network, available from your
telecommunications provider. The telecommunications provider keeps a list of
allowed users, and creates the VPN whenever an approved user dials in. Your
network would still need a remote access server, as described in the previous
section, so all of the security benefits and risks of the previous section apply here.

Deploying Form Services in your Network Environment

 Network Considerations 9-7

(This solution is not appropriate for implementations where more than 1000 users
would need to access the LAN remotely.)

The primary risk is vulnerability to disgruntled ex-employees or customers who
already know how to access the server and are already on the VPN provider's
registered users list. To eliminate this risk, be sure to keep current the list of
approved users for both the remote access server and the VPN provider's registered
users list.

9.3.5 Deploying On a Network via VPN Access over the Internet
If you plan to use the Internet as your means of dial-up access, we recommend that
you have a secure method of user authentication and data transmission. One option
is to use the Form Services HTTP socket configuration, or HTTPS (HTTP 1.1 socket
configuration with secure sockets layer for improved privacy, integrity, and
authentication.) For more information about HTTP sockets, see Section 3.2, "Sockets,
HTTP, or HTTPS".

Another option is to use a VPN over the Internet. With this method, data is
transferred over the Internet in the form of IP (Internet protocol) packets. An IP
packet is a group of bits (your data) along with a source and destination IP address.

If you set up a VPN over the Internet, you can save telecommunication costs.
Remote users dial a local ISP rather than leased lines or an 800 number. You must
configure and maintain the VPN software at your network, and the users who dial
in must have compatible VPN software. If you set up an extranet connection where
two LANs communicate via the Internet, all parties need to use compatible
firewalls. If you have remote workers, some vendors offer mobile firewalls that can
be used by remote workers; however, this adds significant cost and administrative
time.

Most major firewall vendors have options for implementing a VPN over the
Internet. Preferred VPNs use:

■ Strong user authentication, which includes a challenge/response mechanism
rather than simply a username/password mechanism

■ Internal firewalls to control the access to more secure parts of the network

■ Data encryption to protect the data during its transport across the public
network (This is called "IP tunneling," where the data in each IP packet is
encrypted during its transport across the public network and decrypted at the
destination.)

Guidelines for Maintaining Network Security

9-8 Deploying Forms Applications to the Web

Risks involved with setting up a VPN over the Internet include:

■ If you do not use an HTTP socket connection, then your firewall may not allow
data to pass. In some cases, you can configure your firewall and Form Services
to work around this problem by setting up a generic proxy.

■ Network performance is likely to degrade because of the extra processing
required for strong authentication and data encryption.

■ Keys must be properly configured and managed.

■ Firewall configuration must be strictly managed so that ex-employees and
ex-customers are de-registered.

■ Spoofing the firewall is a potential risk. (Spoofing is when an intruder arrives
disguised as a trusted node on the network by forging a false address in IP
packets, and sending those packets to your network. The intruder gets the false
address by monitoring the traffic on your network and determining addresses
that have been accepted by your network.) You can deter spoofing by using
filters on your firewall.

9.4 Guidelines for Maintaining Network Security
If you are planning to implement a mission-critical application using Form Services,
security is a key issue. After determining the type of network environment you
need, formulate a security policy to protect it. Refer to Chapter 10, "Security
Considerations" for more detailed information.

After your application servers are up and running, you must continually maintain
security. This is true particularly if your applications are accessed through the
Internet because your site will likely be visited by hackers. The enforcement of a
security policy is an ongoing process.

We have described several deployment options for intranet, extranet, and Internet
Forms applications, and have looked at the associated impact on security. From this
we can draw the following conclusions:

■ Intranet and extranet implementations using a dial-up WAN or dial-up VPN
can be made reasonably safe with medium effort. As with a LAN, most attacks
will be from the inside, so it pays to improve server protection and database
user management. Encryption mechanisms should be used to protect
confidential data from unauthorized users.

■ For intranet and extranet implementations over an Internet VPN, use strong
authentication and encryption, as well as strong access control. Most major

Guidelines for Maintaining Network Security

 Network Considerations 9-9

firewall vendors have VPN options to block access to unauthorized users,
encrypt data over public networks, and provide user authentication.

A realistic implementation of security measures on the Internet is based on a
combination of the following elements:

■ HTTP or HTTPS socket communications

■ Application servers in a DMZ

■ Firewalls that shield the internal network from the DMZ

■ Data encryption wherever possible

Guidelines for Maintaining Network Security

9-10 Deploying Forms Applications to the Web

 Security Considerations 10-1

10
Security Considerations

10.1 Introduction
Before the great explosion of interest in the World Wide Web, it was common
practice to run utilities or programs on the Internet that would interrogate specified
remote computers to locate friends or colleagues and see if they were logged on.
You could then communicate with them in real-time over the network or connect
temporarily to their disk drive to exchange files.

The Internet was virtually wide open, operating with a high level of trust and a low
level of security. Now, because there are millions of users, security has become a
huge concern. Companies are securing their networks to prevent uncontrolled or
unsolicited access to their private networks from the outside.

This chapter explores some of the issues surrounding network security.

10.2 Common System Security Issues
The following sections discuss common security issues that you must consider
when setting up Form Services in a networked environment:

■ User Authentication

■ Server Authentication

■ Authorization

■ Secure Transmission (Encryption)

■ Firewall

■ Virtual Private Network (VPN)

■ Demilitarized Zone (DMZ)

Common System Security Issues

10-2 Deploying Forms Applications to the Web

10.2.1 User Authentication
Authentication is the process of verifying that a user who logs into a network or
database has permission to log in. Examples of authentication include the use of a
user name and password when logging into a local-area network (LAN) and the use
of digital certificates when sending or receiving secure e-mail over the Internet. An
organization can use various types of authentication processes depending on the
level of security desired and the type of network or database that is being protected.
But in the end, the goal of authentication is to ensure that only approved users can
access the network or database and its resources.

In the case of Form Services, running a Forms application over the Web resembles
the traditional client/server environment, where the application user logs on as a
database user by identifying him- or herself using a username/password
combination.

Because Form Services allow you to deploy your Forms applications to hundreds of
users over the Internet, there is a risk that unauthorized users may illegitimately
capture data being transmitted on a network (via a sniffer), intercept authentication
information, and gain access to applications or the server environment. Therefore,
you must implement additional security features, such as encryption and firewalls,
when deploying applications over the Internet.

10.2.2 Server Authentication
With server authentication, a client machine verifies that a server is who it claims to
be. For example, when a client sends confidential data to a server, the client can
verify that the server is secure and is the correct recipient of the client’s confidential
data.

If you use the HTTPS communications mode, which uses HTTP 1.1 with SSL
(secure sockets layer), data transmission is encrypted and server authentication is
conducted over the Internet. Server authentication is accomplished using digital
certificates. When a client browser connects to a server, the server presents its
certificate. Servers are issued certificates from certifying authorities (CAs). CAs are
companies that issue certificates to individuals or companies only after verifying
the individual or company’s identity.

■ For client browsers using JInitiator, Form Services HTTPS mode trusts (by
default) certificates issued by the following CAs:

■ VeriSign, Inc. - Class 1, 2, 3 Public Primary Certification Authority

■ RSA Data Security Inc. - Secure Server Authority

Common System Security Issues

 Security Considerations 10-3

■ GTE CyberTrust Solutions Inc.- CyberTrust Global Root

■ GTE Corporation.- CyberTrust Root

If you want to use another CA or another type of certificate, additional
configuration steps are required because the certificate will not automatically be
trusted by Oracle Forms. If you decide to use HTTPS mode with JInitiator, you
will need to install Oracle Wallet Manager in order to create certificate requests
and manage certificates. See Section 5.7, "Setting Up the HTTPS Connection
Mode" for details.

■ For client browsers using Native Internet Explorer, any certificate trusted by
Internet Explorer can be used. If you want to use a CA that is not trusted by
Internet Explorer by default, see the CA’s instructions. See Section 5.7, "Setting
Up the HTTPS Connection Mode" for details.

10.2.3 Authorization
Authorization is the process of giving authenticated users access to the network or
database resources they need. It also prevents them from accessing resources they
don't need or don't have permission to use. For example, a manager may be
authorized to access tables that contain employee payroll information, but a stock
clerk would not be authorized to access this information. The methods used to
enforce network and database resource authorization vary depending on the level
of security desired and the type of network or database being protected.

In the case of Form Services, when a user is authenticated, a database role is
assigned to the user, which grants permission to view or modify data in the
database. (This is a form of authorization.) The user’s identity is also used to set
application roles.

10.2.4 Secure Transmission (Encryption)
When information is transmitted over lines of communication, whether they be
coaxial cable, telephone lines, fiber optics, or satellite, there is the risk that the
communication can be intercepted by third parties. Often, the information can be
intercepted without the sender or receiver ever knowing the data was
compromised.

The most common method of securing transmission is to encrypt the data. When
encryption is used, the sender and receiver of the data have a "key" that can encode
and decode the information. When the data is sent, the sender's key is used to
encode the information using a mathematical algorithm. The receiver's key decodes

Common System Security Issues

10-4 Deploying Forms Applications to the Web

the information. If a third party intercepts the encoded data while it is in transit, the
data is illegible and useless unless the third party gains access to the key or "cracks"
the algorithm's code.

The methods used to encrypt data vary depending on the level of security desired
and the type of network over which the data is being transmitted. For example,
symmetric encryption can be used if network speed is paramount. Popular
symmetric cryptosystems use RC-4 and Data Encryption Standard (DES).
Asymmetric encryption is highly secure, but costs in network performance. Popular
asymmetric cryptosystems use Diffie-Hellman (DH) and Rivest Shamir Adlemen
(RSA).

You should research the encryption methods included with your network, firewall,
and/or VPN. Form Services provide the following encryption options to improve
data transmission security:

■ HTTPS communication mode: This mode uses HTTP 1.1 with SSL (secure
sockets layer). The HTTPS communication mode provides up to 128-bit
encryption. It also provides server authentication using digital certificates. See
Section 5.7, "Setting Up the HTTPS Connection Mode" for information about
how to set up HTTPS mode.

■ ORA_ENCRYPT_LOGIN: Use this environment variable to encrypt usernames
and passwords for Form Services login.

■ DBLINK_ENCRYPT_LOGIN: Use this environment variable to encrypt
usernames and passwords for database login.

■ FORMS60_MESSAGE_ENCRYPTION: Use this environment variable to encrypt
Forms messages using RC4 40-bit encryption. Applies only to socket and HTTP
communication modes. (By default, communication is encrypted.)

■ FORMS60_HTTPS_NEGOTIATE DOWN: Use this environment variable to
direct 128-bit servers on how to handle clients that are configured for
lower-level encryption. A TRUE setting will cause the server to use the highest
level of encryption available to the client. A FALSE setting will cause the server
to reject the client requests unless the client uses 128-bit encryption.

■ DSA (Digital Signature Algorithm): This algorithm is used by the Form Services
applet for digital signatures.

■ Net8 SNS/ANO: This encryption scheme is used to encrypt transmission
between the database and Form Services.

Common System Security Issues

 Security Considerations 10-5

10.2.5 Firewall
A firewall is usually a combination of hardware and software that filters the types
of data that can be received by your network. For example, a firewall can be
configured to allow only HTTP traffic through to the protected network. A firewall
also keeps your network's IP address anonymous so that it is not accessible to
outside computers. Outside traffic that is authenticated and permitted access to
your network is redirected from the firewall IP address to the network IP address.
The firewall is your private network's first line of defense against intrusion.

If your network security system includes a firewall, be sure to configure the Form
Services listener to use the HTTP socket connection or HTTPS socket connection
rather than the standard socket connection. This is because a firewall will disable
many common services at the packet or port level, including standard Forms
messaging. HTTP is a service that is allowed to pass through firewalls.

10.2.6 Virtual Private Network (VPN)
A Virtual Private Network (VPN) is an authenticated connection between two
networks or between a network and a remote user where communication is
considered completely private. Special "tunneling" software on both the network
and the remote user's computer create a secure, encrypted connection over public
lines — even via an Internet Service Provider (ISP). If the remote user does not have
the appropriately configured VPN software, it cannot create a VPN with the
network.

Often, a VPN setup includes a firewall. Be sure to configure the Form Services
listener to use the HTTP socket connection or HTTPS socket connection rather than
the standard socket connection. This is because a firewall will disable many
common services at the packet or port level, including standard Forms messaging.

Note: For more information on HTTP and sockets, see Chapter 3.2, "Sockets, HTTP, or HTTPS".

10.2.7 Demilitarized Zone (DMZ)
A Demilitarized Zone (DMZ) is an isolated environment in your network that does
not contain confidential information. For example, you may have a network where
application servers are within the demilitarized zone, but all database servers are
within the protected network. Then, if the demilitarized zone's security is
compromised, confidential data is not exposed to the intruder.

Simple Steps to Improve Security

10-6 Deploying Forms Applications to the Web

10.3 Simple Steps to Improve Security
Here are some steps that can help reduce the risks associated with network security:

■ Discourage users from lending their username/password to unauthorized
users.

■ Enforce a strict authorization scheme with clear database roles that match
various user profiles, such as Order Entry Clerk, Executive Officer, Product
Marketer, and so on. Each role restricts permissions to modify or even view
data according to the user profile.

■ Carefully manage user accounts by removing users who no longer need to
access servers or databases and by enforcing password aging.

■ Use the HTTPS connection mode for encryption and digital certificate
authentication.

■ Use ORA_ENCRYPT_LOGIN and DBLINK_ENCRYPT_LOGIN to encrypt the
usernames and passwords that are being transmitted.

■ Use encryption, such as FORMS60_MESSAGE_ENCRYPTION and Net8
SNS/ANO, whenever possible to avoid exposing confidential data to intruders.

The following are network security considerations that seem obvious, but are often
overlooked:

■ Control physical access to server machines so that unauthorized people cannot
enter the building and access them.

■ Implement a rigorous data backup system, including the secure storage of
backup media.

■ Remove or minimize the use of easily compromised services such as telnet and
ftp.

■ Install all security-related operating system patches.

 Performance Tuning Considerations 11-1

11
Performance Tuning Considerations

11.1 Introduction
This chapter describes the tuning considerations that arise when you use Form
Services to deploy an application over the Internet or other network environment.
This chapter looks at the network and the resources on the application server. It
includes the following sections:

■ Built-in Optimization Features of Form Services

■ Tuning Form Services Applications

■ Performance Collection Services

■ Trace Collection

Tuning the connection between Form Services and the database server is beyond the
scope of this chapter.

11.2 Built-in Optimization Features of Form Services
The Form Services and Java client include several optimizations that fit broadly into
the following categories:

■ Minimizing Client Resource Requirements

■ Minimizing Form Services Resource Requirements

■ Minimizing Network Usage

■ Maximizing the Efficiency of Packets Sent Over the Network

■ Rendering Application Displays Efficiently on the Client

Built-in Optimization Features of Form Services

11-2 Deploying Forms Applications to the Web

11.2.1 Minimizing Client Resource Requirements
The Java client is primarily responsible for rendering the application display. It has
no embedded application logic. Once loaded, a Java client can display multiple
Forms simultaneously. Using a generic Java client for all Forms applications
requires fewer resources on the client when compared to having a customized Java
client for each application.

The Java client is structured around many Java classes. These are grouped into
functional subcomponents, such as displaying the splash screen, communicating
with the network, and changing the look-and-feel. Functional subcomponents allow
the Forms Developer and the Java Virtual Machine (JVM) to load functionality as it
is needed, rather than downloading all of the functionality classes at once.

11.2.2 Minimizing Form Services Resource Requirements
When a Form definition is loaded from an FMX file, the profile of the executing
process can be summarized as:

■ Encoded Program Units

■ Boilerplate Objects/Images

■ Data Segments

Of these, only the Data Segments section is unique to a given instance of an
application. The Encoded Program Units and Boilerplate Objects/Images are
common to all application users. Form Services maps the shared components into
physical memory, and then shares them between all processes accessing the same
FMX file.

The first user to load a given FMX file will use the full memory requirement for that
Form. However, subsequent users will have a greatly reduced memory
requirement, which is dependent only on the extent of local data. This method of
mapping shared components reduces the average memory required per user for a
given application.

Built-in Optimization Features of Form Services

 Performance Tuning Considerations 11-3

11.2.3 Minimizing Network Usage
Bandwidth is a valuable resource, and the general growth of Internet computing
puts an ever increasing strain on the infrastructure. Therefore, it is critical that
applications use the network's capacity sparingly.

Form Services communicates with the Java client using meta data messages. Meta
data messages are a collection of name-value pairs that tell the client which object to
act upon and how. By sending only parameters to generic objects on the Java client,
there is approximately 90-percent less traffic (when compared to sending new code
to achieve the same effect).

Form Services intelligently condenses the data stream in three ways:

■ When sets of similar messages (collections of name-value pairs) are sent, the
second and subsequent messages include only the differences from the previous
message. This results in significant reductions in network traffic. This process is
called message diff-ing.

■ When the same string is to be repeated on the client display (for example, when
displaying multiple rows of data with the same company name), Form Services
sends the string only once, and then references the string in subsequent
messages. Passing strings by reference increases bandwidth efficiency.

■ Data types are transmitted in the lowest number of bytes required for their
value.

11.2.4 Maximizing the Efficiency of Packets Sent Over the Network
Latency can be the most significant factor that influences the responsiveness of an
application. One of the best ways to reduce the effects of latency is to minimize the
number of network packets sent during a conversation between the Java client and
the Forms Server.

The extensive use of triggers within the Forms Developer model is a strength, but
they can increase the effect of latency by requiring a network round trip for each
trigger. One way to avoid the latency concerns adhering to triggers is by grouping
them together through Event Bundling. For example, when a user navigates from
item A to item B (such as when tabbing from one entry field to another), a range of
pre- and post-triggers may fire, each of which requires processing on the Forms
Server.

Event Bundling gathers all of the events triggered while navigating between the
two objects, and delivers them as a single packet to Form Services for processing.
When navigation involves traversing many objects (such as when a mouse click is

Tuning Form Services Applications

11-4 Deploying Forms Applications to the Web

on a distant object), Event Bundling gathers all events from all of the objects that
were traversed, and delivers the group to Form Services as a single network
message.

11.2.5 Rendering Application Displays Efficiently on the Client
All boilerplate objects in a given Form are part of a Virtual Graphics System (VGS)
tree. VGS is the graphical subcomponent that is common to all Forms Developer
products. VGS tree objects are described using attributes such as coordinates, colors,
line width, and font. When sending a VGS tree for an object to the Java client, the
only attributes that are sent are those that differ from the defaults for the given
object type.

Images are transmitted and stored as compressed JPEG images. This reduces both
network overhead and client memory requirements.

Minimizing resources includes minimizing the memory overhead of the client and
server processes. Optimal use of the network requires that bandwidth be kept to a
minimum and that the number of packets used to communicate between the client
and Form Services be minimized in order to contain the latency effects of the
network.

11.3 Tuning Form Services Applications
An application developer can take steps to ensure that maximum benefits are
gained from Forms Server’s built-in architectural optimizations. The remainder of
this chapter discusses key performance issues that affect many applications and
how developers can improve performance by tuning applications to exploit Forms
Server features.

Issues discussed are:

■ Location of the Form Services with Respect to the Data Server

■ Minimizing the Application Startup Time

■ Reducing the Required Network Bandwidth

■ Other Techniques to Improve Performance

11.3.1 Location of the Form Services with Respect to the Data Server
The Java client connection to the Form Services can use features such as Event
Bundling to effectively counteract the effects of network latency. It uses message

Tuning Form Services Applications

 Performance Tuning Considerations 11-5

diff-ing to reduce network bandwidth. On the other hand, the client/server
relationship that exists between the Form Services and the data server is much less
tolerant of round-trip delays and network congestion.

For these reasons, it is best to locate the Form Services on the same high speed LAN
as the data server, which may consequently locate the Form Services more remotely
from the users. This may seem contrary to the standard convention of placing
servers in close proximity to users, but it is a consequence of Form Services'
improved efficiency over a network as compared to a traditional client/server
implementation.

In an optimal configuration, as shown in Figure 11–1, the Form Services and data
server are co-located in a Data Center, which is the recommended set-up, while
clients access the server over low-bandwidth (modem) and high-latency (satellite)
connections.

Figure 11–1 Co-Locating the Form Services and Data Server

Tuning Form Services Applications

11-6 Deploying Forms Applications to the Web

11.3.2 Minimizing the Application Startup Time
First impressions are important, and a key criterion for any user is the time it takes
to load an application. Startup time is regarded as overhead. It also sets an
expectation of future performance. When a business uses thin-client technologies,
the required additional overhead of loading client code may have a negative impact
on users. Therefore, it is important to minimize load time wherever possible.

After requesting a Forms application, several steps must be completed before the
application is ready for use:

1. Invoke Java Virtual Machine (JVM).

2. Load all initial Java client classes, and authenticate security of classes.

3. Display splash screen.

4. Initialize Form:

a. Load additional Java classes, as required.

b. Authenticate security of classes.

c. Render boilerplate objects and images.

d. Render all elements on the initial screen.

5. Remove splash screen.

6. Form is ready for use.

An application developer has little influence on the time it takes to launch the JVM.
However, the Java deployment model and the structure of the Form Developer Java
client allow the developer to decide which Java classes to load and how. This, in
turn, minimizes the load time required for Java classes.

The Java client requires a core set of classes for basic functionality (such as opening
a window) and additional classes for specific display objects (such as LOV items).
These classes must initially reside on the server, but the following techniques can be
used to improve the time it takes to load these classes into the client's JVM:

■ Using JAR Files

■ Using Caching

■ Deferred Load on Demand

Tuning Form Services Applications

 Performance Tuning Considerations 11-7

11.3.2.1 Using JAR Files
Java provides the Java Archive (JAR) mechanism to create files that allow classes to
be grouped together and then compressed (zipped) for efficient delivery across the
network to the client. Once used on the client, the files are cached for future use.

Form Services provide the following pre-configured JAR files to support typical
deployment scenarios:

To specify one or more JAR files for an applet, specify the ARCHIVE parameter in
the <APPLET> tag of the referencing HTML file. For example:

<APPLET CODEBASE="http://www.server.com/webcode/"
ARCHIVE="f60all.jar, icons.jar"
CODE="oracle.forms..">

File name Usage Description

f60all_jinit.jar Optional For Oracle JInitiator only, contains an extra-compressed set of
Java class files for all runtime situations.

f60all.jar Optional Contains the entire set of Java class files for all runtime
situations.

f60common.jar Required Required by the applet.

f60generic_laf.jar Optional Must be loaded if the application is deployed with the Generic
lookAndFeel runtime setting or if no lookAndFeel setting is
specified.

<APPLET ...>
<PARAM NAME="lookAndFeel" VALUE="Generic">
...
</APPLET>

f60oracle_laf.jar Optional Must only be loaded if the application is deployed with the
Oracle lookAndFeel runtime setting.

<APPLET ...>
<PARAM NAME="lookAndFeel" VALUE="Oracle">
...
</APPLET>

f60splash.jar Required Required by the applet.

f60tree.jar Optional Must only be loaded if the Forms application uses the
hierarchical tree control.

Tuning Form Services Applications

11-8 Deploying Forms Applications to the Web

11.3.2.2 Using Caching
Both of the supported JVMs for Form Services (Oracle JInitiator and Oracle JDK)
support the caching of JAR files. When the JVM references a class, it first checks the
local client cache to see if the class exists in a pre-cached JAR file. If the class exists
in cache, JVM checks the server to see if there is a more current version of the JAR
file. If there isn't, the class is loaded from the local cache rather than from across the
network.

Be sure that the cache is of proper size to maximize its effectiveness. Too small a
cache size may cause valid JAR files to be overwritten, thereby requiring that
another JAR file be downloaded when the application is run again. The default
cache size is 20MB. This size should be compared with the size of the cache contents
after successfully running the application.

JAR files are cached relative to the host from which they were loaded. This has
implications in a load-balancing architecture where identical JAR files from
different servers can fill the cache. By having JAR files in a central location and by
having them referenced for each server in the load-balancing configuration, the
developer can ensure that only one copy of each JAR file is maintained in the
client's cache. A consequence of this technique is that certain classes within the JAR
file must be signed to enable connections back to servers other than the one from
which they were loaded. The Oracle-supplied JAR files already pre-sign the classes.

11.3.2.3 Deferred Load on Demand
One downside of the JAR method is that all classes within a JAR file need to be
loaded and validated by the JVM before execution continues. A useful feature of the
JAR file is the ability to refer to other JAR files, thus limiting the number of classes
stored within the given archive. The JVM is able to navigate to the required JAR
files in the order required by the application.

The Oracle-supplied f60splash.jar file contains enough logic to initialize the client
and display a welcoming splash screen. It also contains deferred references to files
that are contained in the other JAR files, which are subsequently loaded on demand.
In order to use deferred load on demand, the f60splash.jar file must be the first JAR
file referenced in the HTML page.

Tuning Form Services Applications

 Performance Tuning Considerations 11-9

11.3.3 Reducing the Required Network Bandwidth
The developer can design the application to maximize data stream compression by
using message diff-ing, which sends along only the information that differs from one
message to another. The following steps can be taken to reduce the differences
between messages:

■ Control the order in which messages are sent. The order in which messages
are sent is governed by two criteria:

■ For the initial display, the display order in the Object Navigator

■ During execution, the order of program changes to item properties

Where the result does not impact usability, you should strive to place similar
objects that are on the same canvas after each other in the Object Navigator. For
example, place buttons with buttons, text items with text items, and so on. (If
you use the item property Next Navigation Item, the same order of navigation
will be used for the items in the Form.) By ordering similar items together on
the Object Navigator, the item properties sent to the client to display the first
Form will include many similar items in consecutive order, which allows the
message diff-ing algorithm to function efficiently.

In addition, when triggers or other logic are used to alter item properties, then
you should group properties of similar items together before altering the item
properties of another display type. For example:

set_item_property(text_item1_id, FONT_WEIGHT, FONT_BOLD);
set_item_property(text_item2_id, FONT_WEIGHT, FONT_BOLD);
set_item_property(text_item3_id, FONT_WEIGHT, FONT_BOLD);
set_item_property(button_item1_id, LABEL, ’Exit’);
...

■ Promote similarities between objects. Using similar objects improves message
diff-ing effectiveness (in addition to being more visually appealing to the user).
The following steps encourage consistency between objects:

■ Accept default values for properties, and change only those attributes
needed for the object.

■ Use Smart Classes to describe groups of objects.

■ Lock the look-and-feel into a small number of visual attributes.

Tuning Form Services Applications

11-10 Deploying Forms Applications to the Web

■ Reduce the use of boilerplate text. As a developer, you should use the
PROMPT item property rather than boilerplate text wherever applicable. Forms
Developer 6.0 and higher includes the Associate Prompt feature, which allows
boilerplate text to be re-designated as the prompt for a given item.

■ Reduce the use of boilerplate items (such as arcs, circles, and polygons). All
boilerplate items for a given Form are loaded at Form initialization. Boilerplate
items take time to load and use resources on the client whether they are
displayed or not. Common boilerplate items, namely rectangles and lines, are
optimized. Therefore, restricting the application to these basic boilerplate items
reduces network bandwidth and client resources while improving startup
times.

■ Keep navigation to a minimum. An Event Bundle is sent each time a
navigation event finishes, whether the navigation extends over two objects or
many more. Design Forms that do not require the user to navigate through
fields when default values are being accepted. A Form should encourage the
user to quickly exit once the Form is complete, which causes all additional
navigation events to fire as one Event Bundle.

■ Reduce the time to draw the initial screen. Once the Java client has loaded the
required classes, it must load and initialize all of the objects to be displayed
before it can display the initial screen. By keeping the number of items to a
minimum, the initial screen is populated and displayed to the user more
promptly. Techniques that reduce the time to draw the initial screen include:

■ Providing a login screen for the application with a restricted set of objects
(such as a title, small logo, username, and password).

■ On the Form's initial display, hiding elements not immediately required.
Use the canvas properties:

RAISE ON ENTRY = YES (Canvas only)
VISIBLE = NO

Pay attention to TAB canvases that consist of several sheets where only one will
ever be displayed. For responsive switching between tabs, all items for all
sheets on the canvas are loaded, including those that are hidden behind the
initial tab. Consequently, the time taken to load and initialize a TAB canvas is
related to all objects on the canvas and not just to those initially visible.

■ Disable MENU_BUFFERING. By default, MENU_BUFFERING is set to True.
This means that changes to a menu are buffered for a future "synchronize" event
when the altered menu is re-transmitted in full. (Most applications make either

Tuning Form Services Applications

 Performance Tuning Considerations 11-11

many simultaneous changes to a menu or none at all. Therefore, sending the
entire menu at once is the most efficient method of updating the menu on the
client.) However, a given application may make only minimal changes to a
menu. In this case, it may be more efficient to send each change as it happens.
You can achieve this using the statement:

Set_Application_Property (MENU_BUFFERING, ’false’);

Menu buffering applies only to the menu properties of LABEL, ICON, VISIBLE,
and CHECKED. An ENABLE/DISABLE event is always sent and does not
entail the retransmission of an entire menu.

11.3.4 Other Techniques to Improve Performance
The following techniques may further reduce the resources required to execute an
application:

■ Restrict the use of MOUSE-UP, MOUSE-DOWN triggers. In the Java model,
an event must be triggered when a mouse button action is detected. The event
is passed to the Form Services to determine whether this is a MOUSE-UP or a
MOUSE-DOWN event. A given application may define only one trigger (for
example, MOUSE-DOWN), but an event is still generated by the client for the
associated (MOUSE-UP) event, even though there is no trigger code specified to
handle the event. Mouse events are asynchronous, so they are processed
outside of the usual Event Bundling model.

■ Examine timers and replace with JavaBeans. When a timer fires, an
asynchronous event is generated. There may not be other events in the queue to
bundle with this event. Although a timer is only a few bytes in size, a timer
firing every second generates 60 network trips a minute and almost 30,000
packets in a typical working day. Many timers are used to provide clocks or
animation. Replace these components with self-contained JavaBeans that
achieve the same effect without requiring the intervention of Form Services and
the network.

■ Consider localizing the validation of input items. It is common practice to
process input to an item using a When-Validate-Item trigger. The trigger itself is
processed on the Form Services. You should consider using pluggable Java
components to replace the default functionality of standard client items, such as
text boxes. Then, validation of items, such as date or max/min values, are
contained within the item. This technique opens up opportunities for more

Performance Collection Services

11-12 Deploying Forms Applications to the Web

complex, application-specific validation like automatic formatting of input,
such as telephone numbers with the format (XXX) XXX-XXXX.

■ Reduce the application to many smaller Forms, rather than one large Form.
By providing a fine-grained application, the user's navigation defines which
objects are loaded and initialized from the Form Services. With large Forms, the
danger is that the application is delayed while objects are initialized, many of
which may never be referenced. When chaining Forms together, consider using
the built-ins OPEN_FORM and NEW_FORM:

■ With OPEN_FORM, the calling Form is left open on the client and the
server, so that the additional Form on both the client and the server
consumes more memory. However, if the Form is already in use by another
user, then the increase in server memory is limited to just the data
segments. When the user returns to the initial Form, it already resides in
local memory and requires no additional network traffic to redisplay.

■ With NEW_FORM, the calling Form is closed on the client and the server,
and all object properties are destroyed. Consequently, it consumes less
memory on the server and client. Returning to the initial Form requires that
it be downloaded again to the client, which requires network resources and
startup time delays. Use OPEN_FORM to display the next Form in an
application unless it is unlikely that the initial form will be called again
(such as a login form).

11.4 Performance Collection Services
The Forms runtime diagnostics have been enhanced with the addition of
Performance Collection Services. These provide you with information you can use
to better understand and improve your application's runtime performance.

11.4.1 How to Use Performance Collection Services
To activate Performance Collection Services, include ‘record=performance’ in the
command line argument (for runtime in a client/server environment), or as a part
of ‘serverArgs’ parameter in the HTML file (for web deployment).

For example, if running in the client/server mode, use:

ifrun60 module=.. userid=.. record=performance log=yourlogname

Performance Collection Services

 Performance Tuning Considerations 11-13

The results are written onto the file yourlogname. If the file name is not specified, a
file with a unique filename is created. This name is in the format ‘perf_xxxx’ where
‘xxxx’ is the ProcessId of the runtime process running.

In the HTML file, this invocation will be:

<param name= "serverArgs" value = "module=.. userid=.. record=performance
log=yourlogname">

11.4.2 Events Collected by Performance Services
The following events are collected by Performance Services:

11.4.3 Analyzing the Performance Data
The data collected by Performance Services is analyzed using PERL scripts,
f60parse.pl, which are located in the <ORACE_HOME>\6iserver\forms60\perl\
directory.

To start the data collection, enter the following command:

perl f60parse.pl -input=infile -eventf=’evfile’ -outputf=’ofile’

Where:

■ infile is the recorded data while running the application.

■ evfile is the event description file.

■ ofile is the results file generated by the PERL script.

■ eventf and outputf are optional parameters.

Event Description

ClientTime Time spent at the Client

Logon Time Time to logon to the Database Server

Logoff Time Time to logoff from the Database Server

DB Time Time for any database operations

APServerTime Processing time at Form Services

Trace Collection

11-14 Deploying Forms Applications to the Web

By default, the output appears in the following HTML files, which can be viewed in
a browser:

When specified, an XLS output file is created with the given name.

11.5 Trace Collection
When you develop and deploy a Forms application, you may want to know what
parts of the application can be optimized and what actions are taking time or
resources. Oracle Trace integration allows you to analyze in depth the performance
and the resource consumption of your Forms application.

Oracle Trace is part of Oracle Enterprise Manager (OEM). Oracle Trace is the Oracle
tool to gather and analyze the performance of the Oracle Database, Form Services,
and other products which implement the Oracle Trace API for tracing. To take full
advantage of Oracle Trace, you must install Diagnostics Pack, one of the optional
packs provided in the Oracle Enterprise Manager product suite. The Diagnostics
Pack contains a set of tools to administer the Oracle Trace collections remotely
through a GUI interface and to efficiently view the Oracle Trace output.

In this section, we discuss:

■ Types of Forms Events Traced Using Oracle Trace

■ Using Forms and Oracle Trace without the Diagnostics Pack

■ Using Forms and Oracle Trace with the Diagnostics Pack

■ Setting Up the Load Balancer Server Trace Log

11.5.1 Types of Forms Events Traced Using Oracle Trace
Oracle Trace only collects data for predefined events, of which there are two types:

■ Duration Events

■ Point Events

File name Description

index.html Summary of user action

detailed1.html Detailed events

detailed2.html Detailed event collection

event.html Event definitions

Trace Collection

 Performance Tuning Considerations 11-15

Duration events have a begin point and an end point. For example, a transaction is
a duration event. Nested events can occur in a duration event, such as if an error
occurs within a transaction. Point events represent an instantaneous occurrence in
the product. For example, the display of a canvas or a dialog are point events.

For Form Services, those events are defined in a binary file (oforms.fdf), shipped as
part of Form Services and located in the following directory:

NT: <ORACLE_HOME>\6iserver\net80\admin\fdf

UNIX: <ORACLE_HOME>/6iserver/network/admin/fdf

11.5.1.1 Forms Duration Events and Items
The following table lists the Forms duration event number and name, describes the
event and the specific and generic items associated with it. The items are the
information displayed for this particular event.

Event Number and Name Description and Items

1. Session Total time spent by the end user in the Forms Session,
including login and logout.

Specific items = Session Name, IPAddress.

Generic items = UCPU, SCPU, INPUT_IO, PAGEFAULTS,
PAGEFAULTS_IO, MAXRS_SIZE

2. Form Total time spent by the end user in the specific form and the
forms called from this form.

Specific item = Form Name.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

3. Query Total time spent by the end user in a specific query.

Specific item = Block Name.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

4. Trigger Total time spent by the end user in a specific trigger.

Specific items = Block Name, Item Name, Trigger Id.

Generic items =Generic items = UCPU, SCPU, MAXRS_SIZE,
CROSS_FAC (Session id).

Trace Collection

11-16 Deploying Forms Applications to the Web

5. LOV Total time spent by the end user in a LOV.

Specific items = LOV Name, Blockname, Itemname

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

11. Built-in Total time spent by the end user in a built-in.

Specific item = Built-in Name.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

12. User Exit Total time spent by the end user in a user exit.

Specific item = User Exit Name.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

13. SQL Total time spent by the end user in SQL code.

Specific item = SQL Statement.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

14. Menu Create Total time spent by the end user in creating a menu.

Specific item = Menu Name.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

41. ServerTime Time spent in processing at Form Services.

Specific item = none.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

42. DBTime Total time spent at the database

Specific item = SQL statement.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

43. DBLogon Time spent logging on to the database.

Specific item = none.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

Event Number and Name Description and Items

Trace Collection

 Performance Tuning Considerations 11-17

Note: Each point event also has a Timestamp. Duration events have a Start Timestamp
and an End Timestamp.

11.5.1.2 Forms Point Events and Items
The following table lists the Forms point event number and name, and describes the
event and both specific and generic items associated with it.

44. DBLogoff Time spent logging off from the database.

Specific item = none.

Generic items = UCPU, SCPU, MAXRS_SIZE, CROSS_FAC
(Session id).

Event Number and Name Description and Items

1. Alert Instant when an alert occurs.

Specific item = Alert Name.

Generic items = UCPU, SCPU, CROSS_FAC (FormID).

2. Editor Instant when an editor is invoked.

Specific item = Editor Name.

Generic items = UCPU, SCPU, CROSS_FAC (FormID).

3. Window Instant when a window is created.

Specific item = Window Name.

Generic items = UCPU, SCPU, CROSS_FAC (FormID).

4. Canvas Instant when the user visits a canvas from the user
perspective.

Specific item = Canvas Name.

Generic items = UCPU, SCPU, CROSS_FAC (FormID).

5. Timer Instant when a timer activates.

Specific item = Timer Name.

Generic items = UCPU, SCPU, CROSS_FAC (FormID).

11. Dialog Instant when a dialog activates.

Specific item = Dialog Name.

Generic items = UCPU, SCPU, CROSS_FAC (FormID).

Event Number and Name Description and Items

Trace Collection

11-18 Deploying Forms Applications to the Web

11.5.2 Using Forms and Oracle Trace without the Diagnostics Pack
Even if you have not installed Oracle Enterprise Manager and Oracle Diagnostics
Pack, you can still use Oracle Trace to profile your Forms application. When you
install Form Services, the command line trace executables are automatically
installed in your <ORACLE_HOME> and provide a manual way to analyze your
Forms application performance.

To use Forms and Oracle Trace without the Diagnostics Pack, you must:

■ Start the Trace Collection using a command line and run your Form application
in trace mode

■ Format the Trace output to produce text files containing the information about
your Forms application

11.5.2.1 Starting the Collection
Without the Oracle Diagnostics Pack installed, you need to use the Command Line
Interface (CLI) to manage your data colections. The CLI is available from a
MS/DOS window on Windows-based systems or from the console on Unix-based
systems.

1. Start the collection with the otrccol command.

To start the data collection, enter the following command:

otrccol start job_id input_parameter_file

Where:

■ job_id can be any numeric value (1234, for example)

■ input_parameter_file is a text file containing specific parameter values that are
required to start the collection.

This file must use the following format:

col_name = my collection
col_name is the unique name you want to give to the collection.

dat_file= <usually same as collection name>.dat
dat_file is the name of the trace file that will be created.

cdf_file= <usually same as collection name>. cdf
cdf_file is the name of the trace definition file that will be created.

fdf_file= oforms.fdf

Trace Collection

 Performance Tuning Considerations 11-19

fdf-file is the name of the file containing the forms events that will be traced.
This file is always oforms.fdf.

regid= 1 192216243 0 0 45 <database SID>

regid is the registration identifier which contains the code for the company
(192216243 is Oracle, the code for the product (45=Forms) and other internal
information. The <SID> is mandatory but is not used when the Diagnostics
Pack is not present.

Once you have started the collection, a process is running and waiting for a Forms
application to run in trace mode.

2. Start your Forms in Trace mode

To start your form in Trace mode, you need to add the parameter pecs=trace to the
command line.

■ In client/server mode on Windows NT:

ifrun60 module=myModule userid=scott/tiger@orcl pecs=trace

■ On the Web using Form Services, in the HTML page:

Include pecs=trace as part of the serverArgs parameter defined in the HTML
file used for running the form.

■ On the Web using Form Services and the Forms servlet:

Include otherParams=pecs=trace as part of your specific section in the
formsweb.cfg file.

Your application should now be running in trace mode, and all the events occurring
during the execution of the aplication are written to two output files specified in the
parameter file used to start the collection.

3. Locate the output

Once you have run your Forms application in trace mode, two files will have been
generated:

■ A file with the .DAT extension containing the trace output in binary format.

■ A file with the .CDF extension containing the trace definition.

Those files are located in the following directory:

NT: <ORACLE_HOME>\6iserver\otrace80\admin\cdf

Trace Collection

11-20 Deploying Forms Applications to the Web

Unix: <ORACLE_HOME>/6iserver/otrace/admin/cdf

4. Stop the collection with the otrccol command

To stop the data collection, enter the following command:

otrccol stop job_id input_parameter_file

where job_id and input_parameter_file are the same parameters as the ones used to
start the collection.

11.5.2.2 Formatting the Output
Once you have generated the trace files, you are ready to fromat the output to view
the information you have gathered diring the Forms session. When you don’t have
the Oracle Diagnostics Pack installed, you can produce text files from the trace files
using the Oracle Trace statistics reporting utility.

The Oracle Trace statistics reporting utility displays statistics for all items associated
with each occurrence of a server event. These reports can be quite large. You can
control the report output by using command parameters. Use the following
command and optional parameters to produce a report:

otrcrep [optional parameters] collection_name.cdf

Oracle Trace creates one text file per event and includes the entire set of items in
that event. For example, one file for the triggers, one file for the built-ins, one file for
the network, and so on.

11.5.2.3 Using Optional Report Parameters
You can manipulate the output of the Oracle Trace reporting utility by using the
following optional report parameters:

Parameters Description

output_path Specifies a full output path for the report files. If not specified,
the files will be placed in the current directory.

-p [<pid>] Organizes event data by process. If you specify a process ID
(pid), you will create on file with all the events generated by
that process in chronological order. If you omit the process ID,
you will create one file for each process that participated in the
collection.

The output files are named as follows: collection Ppid.txt

Trace Collection

 Performance Tuning Considerations 11-21

11.5.3 Using Forms and Oracle Trace with the Diagnostics Pack
If you have the Oracle Diagnostics Pack installed, you can take advantage of the
tools provided to manage the Oracle Trace collections remotely with Oracle Trace
Manager and view the collected data with the Trace Data Viewer.

11.5.3.1 Starting the Collection
To use Oracle Trace Manager, you first have to install Oracle Enterprise Manager on
a middle tier machine and install the Intelligent agent on the nodes where you want
to collect the data.

For more information about now to install OEM, please refer to the Oracle
Enterprise Manager docmentation.

From the Oracle Trace Manager, you are able to:

■ remotely discover the node where you will run the Data Collection.

■ start the collection on this node using a wizard asking for the name of the
collection and some optional parameters.

Once you have started the collection on a node, you can see that the collection is
running from the Oracle Trace Manager main screen, and you can stop it at any
time remotely from the same tool. Once the Data Collection is running, you can run
your Forms applications in trace mode.

 - P Creates a report called collection_PROCESS.txt that lists all
processes that participated in the collection. It does not include
event data. You could created this report first to determine the
specific processes for which you might want to create more
detailed reports.

-w# Sets report width, such as -w132; the default is 80 characters.

-i# Sets the number of report lines per page; the default is 63 lines
per page.

-h Suppresses all event and item report headers, producing a
shorter report.

-s Used only with Net8 data (or SQL*Net for Oracle7).

-a Creates a report containing all the events for all products, in
the order they occur in the data collection (.dat) file.

Parameters Description

Trace Collection

11-22 Deploying Forms Applications to the Web

11.5.3.2 Formatting the Output
The Trace output generated when using the Trace Manager is the same as when
using Oracle Trace from the command line utilities. Only the way you start the
collection differs. This means that after the application has been run in trace mode,
the two trace files are generated (.CDF and .DAT files) in the CDF directory.

To be able to view the content of the trace with the Trace Data Viewer, the trace
output needs to be formatted to a datagase schema. To do this using Oracle Trace
Manager, right click on the collection you want to upload to the database and
choose the format option. This will automatically format the trace to the database in
the schema specified in th Trace Manager preferences.

11.5.3.3 Using the Trace Data Viewer
The trace output is now stored in the database within a specific schema. To view
and analyze the content of this trace, launce the Trace Data Viewer and connect to
the database with the user name that uploaded the data.

From the Trace Data Viewer, you can analyze:

■ The network traffic

■ The time spent in the different events

■ The CPU consumption for those events

From the Trace Data Viewer main screen, you can drill down to specific information
about Forms sessions. For instance, the Network Traffic Statistics contain the
number of bytes and packets sent or received, the IP address connected, and the
number of roundtrips during the session.

You can drill down to the level of detail you want, going from an overview to a
drill-down analysis of specific events, such as: Server, Triggers, Builti-ins, Query,
and other types of events. For each of these events, you have a detailed view of the
time spent and the CPU consumption for the events. When you choose a detailed
view, you can sort the information displayed by CPU consumption or time elapsed
by clicking on the column header of the column you want to sort by. For instance,
this is very helpful in determining which trigger takes the most time to execute or
which built-in consumes the most CPU resouces.

Finally, Trace Data Viewer summarizes all the duration events and point events that
occurred during the execution of each form with an average and standard deviation
of CPU and elapsed time for all the duration events.

Trace Collection

 Performance Tuning Considerations 11-23

11.5.4 Setting Up the Load Balancer Server Trace Log
This section describes the format of Load Balancer Server trace messages. To start a
trace, you must restart the Load Balancer Server and specify the <traceLevel>
parameter in the forms60_server shell script. The <traceLevel> defaults to 0 for no
tracing. Specifying 10 allows you to create trace output for the Laod Balance Server.

11.5.4.1 Trace level 1
Trace level 1 contains a header as follows:

HOSTNAME: neko.us.oracle.com IP ADDRESS: 144.25.83.146
Data port number: 1234 Request port number: 1235
Maximum number of clients: 10 Trace level: 2

■ Hostname and IP Address: Indicate the D2LS server host name and address.

■ Data port number: Indicates the port number where the D2LS server listens for
D2LC client messages. This port should be used to configure the D2LC client
processes.

■ Request port number: Indicates the port number where the server listens for
requests for least loaded host information.

■ Maximum number of clients: Indicates the number of slots allocated for D2LC
clients. One slot is required for each client.

■ Trace level: Indicates the amount of Trace information printed to the server log
file.

11.5.4.2 Trace level 2
At Trace level 2, messages are given in the following format from a D2LC client. A
description of each field follows.

 D:000 144.25.83.92:1236 922541864 1 2 45 3 [cogito]
 | | | | | | | | | |
 ^ | | | | | | | | | Packet type recv'd
 ^̂ ^ | | | | | | | | Client index
 ^̂ ^̂ ^^̂ ^^̂ ^̂ | | | | | | | D2LC IP Address
 ^̂ ^̂ | | | | | | D2LC Port number
 ^̂ ^̂ ^^̂ ^^ | | | | | Time msg recv'd
 ^ | | | | Scale factor
 ^ | | | Sequence number
 ^̂ | | Number of processes
 ^ | Last selected
 ^ D2LC Hostname

Trace Collection

11-24 Deploying Forms Applications to the Web

The description of each field of the trace log is as follows:

■ Packet Type Received: Indicates what type of packet was received. The
following types are possible:

■ D: Data Received from D2LC Client. For packets with type "D", the
remaining data on the trace line corresponds to information communicated
from the client.

■ S: Selected client for Least Loaded Host. For packets with type "S", the
remaining data on the trace line corresponds to the client selected and
returned as the least loaded host.

■ Client index: The client index is the internal index for the D2LC client. This
index is assigned when a request is first received from the client, starting at 0.

■ D2LC IP Address: The IP Address for the client sending the message.

■ D2LC Port number: The IP Port number used by the client to send the message.

■ Time message received: This is the time that the message was received from the
client, in seconds since 00:00:00 UTC, January 1, 1970.

■ Scale factor: The scale factor assigned for the client. The scale factor is used as a
multiplier against the number of processes in choosing the least loaded host.

■ Sequence number: The sequence number is the number of times the client has
attempted to send messages to the D2LS server.

■ Number of processes: The number of processes reported by the client.

■ Last selected: This number indicates the last time a client was selected as a least
loaded host. An internal counter in the server is incremented over time. When a
client is selected as least loaded host, this counter is stored in the Last Selected
field. The D2LC client with the lowest Last Selected field is known to be least
recently used. When a request for a least loaded host results in a tie for least
number of processes, then the least recently used client is selected to break the
tie.

■ D2LC Hostname: Shows the hostname of the D2LC client.

11.5.4.3 Sample Trace File
The following is a sample trace file for a two server configuration. Formsvr1 runs a
D2L client and D2L server. Formsvr2 runs a D2L client.

HOSTNAME: formsvr1.us.oracle.com IP ADDRESS: 144.25.87.101

Trace Collection

 Performance Tuning Considerations 11-25

Data port number: 1234 Request port number: 1235
Maximum number of clients: 10 Trace level: 2

D:000 144.25.87.101:1000 925260387 1 2 0 0 [formsvr1]
D:000 144.25.87.101:1000 925260387 1 3 43 0 [formsvr1]
D:001 144.25.87.102:1001 925260388 1 2 0 0 [formsvr2]
D:001 144.25.87.102:1001 925260388 1 3 43 0 [formsvr2]
S:000 144.25.87.101:1000 925260387 1 3 44 1 [formsvr1]
D:000 144.25.87.101:1000 925260387 1 4 45 1 [formsvr1]
D:001 144.25.87.102:1001 925260388 1 4 45 0 [formsvr2]
S:001 144.25.87.102:1001 925260388 1 4 46 2 [formsvr2]
D:000 144.25.87.101:1000 925260387 1 5 45 1 [formsvr1]
D:001 144.25.87.102:1001 925260388 1 5 45 2 [formsvr2]
S:000 144.25.87.101:1000 925260387 1 5 46 3 [formsvr1]
D:000 144.25.87.101:1000 925260387 1 6 47 3 [formsvr1]
D:001 144.25.87.102:1001 925260388 1 6 47 2 [formsvr2]
S:001 144.25.87.102:1001 925260388 1 6 48 4 [formsvr2]
D:000 144.25.87.101:1000 925260387 1 7 47 3 [formsvr1]
D:001 144.25.87.102:1001 925260388 1 7 47 4 [formsvr2]

Trace Collection

11-26 Deploying Forms Applications to the Web

 Load Balancing Considerations 12-1

12
Load Balancing Considerations

12.1 Introduction
This chapter discusses load balancing considerations for Form Services. Load
balancing allows you to maintain a pool of middle tier machines (a "server farm")
and balance the load of server traffic among these machines. Load balancing is
implemented using a servlet that can run on any Web server.

This chapter contains information about the following topics:

■ Load Balancing Terminology

■ Load Balancing in Action

■ Configuring for Form Services Load Balancing

12.2 Load Balancing Terminology
Here are some terms you will want to understand before you set up load balancing:

■ Load Balancer Server: This is the component that keeps track of all Form
Services in the various load balancing pools. It tracks the status of the servers in
a given pool and keeps statistics indicating their loads. It is responsible for
directing each Form execution request to the least loaded server that is able to
service requests in the given pool.

■ Load Balancer Client: This is the component that sends load information to the
Load Balancer Server, such as the number of Forms processes that are currently
running on that machine. The Load Balancer Client runs on each machine with
Form Services.

■ Servlet: The Forms Servlet is implemented as a single jar file.

Load Balancing Terminology

12-2 Deploying Forms Applications to the Web

■ Primary Node: This is the Forms Listener (plus any related software) where all
URL requests to execute Forms are addressed. If load balancing is in use, each
Form execution request is routed to the least loaded machine where Form
Services is running. It gets the least loaded machine name from the Load
Balancer Server.

■ Secondary Node: These are machines on which the Form Services, runtime
client, and load balancer client are running. Forms execution requests are
directed to them from the Primary Node when load balancing is being used.

In many cases, the Primary Node will also act as a Secondary Node (for
example, if it has Form Services installed and running on it).

Load Balancing in Action

Load Balancing Considerations 12-3

12.3 Load Balancing in Action
Figure 12–1 illustrates the events that occur when you use load balancing:

Figure 12–1 Form Services load balancing

Load Balancing in Action

12-4 Deploying Forms Applications to the Web

The following events occur when you use Form Services load balancing:

1. Load Balancer Clients periodically send load information to the Load Balancer
Server. This load information includes the total number of processes running on
each Load Balancer Client.

2. A user accesses a URL pointing to the Forms servlet.

3. The Forms servlet asks the Load Balancer Server for the name of the
least-loaded system that is available.

4. The Forms servlet dynamically creates an HTML page with the name of the
least-loaded system specified as the system on which to run the Form Services,
and returns that HTML page to the user’s Web browser.

5. The user’s Web browser then requests the Java applet to be downloaded from
the host specified in the HTML page.

6. The Java applet sends a request to the Form Services asking for a particular
Form Builder application (that is, an .FMX).

7. The server contacts a Form Services Runtime Engine. (The server maintains a
pool of available Runtime Engines to minimize application startup delays.)
Each active user receives a dedicated Runtime Engine.

8. The server establishes a direct socket, HTTP, or HTTPS connection with the
Runtime Engine, and sends the socket, HTTP, or HTTPS information to the Java
applet. The Java applet then establishes a direct socket, HTTP, or HTTPS
connection with the Runtime Engine. The Java applet and the Runtime Engine
now communicate directly, freeing the server to accept startup requests from
other users. (At this point, neither the application server nor the Form Services
is involved in the communication between the applet and the Runtime Engine.)
The Java applet displays the application’s user interface in the main window of
the user’s Web browser.

9. The Runtime Engine communicates directly with the database through Net8 or
ODBC (Open Database Connectivity), depending on the data source.

10. Load Balancer Clients continue to send load information to the Load Balancer
Server. All new service requests are routed based on that information.

Note: If the Load Balancer Server is unavailable, at Step 3 the Forms servlet will not get any
information back about which is the least-loaded system. Instead, the Forms servlet will redirect the
user’s browser to the URL specified by the MetricsServerErrorURL parameter. The user does not
necessarily know this is happening because the redirect is behind the scenes from the user’s
viewpoint.

Configuring for Form Services Load Balancing

Load Balancing Considerations 12-5

12.4 Configuring for Form Services Load Balancing
You can implement load balancing using the following executables provided with
Form Services:

■ Form Services Listener (f60ctl)

■ Load Balancing Server (d2ls60)

■ Load Balancing Client (d2lc60)

You will need to install and configure the load balancing components on each
machine that will be load balanced. This includes the machine with the primary
node and any other machines containing secondary nodes.

You will also need to edit the forms60_server shell script on each machine that is
using load balancing. The forms60_server shell script is found in the <ORACLE_
HOME>/6iserver directory.

Be sure that:

■ The Data Port value for the Load Balancer Server matches the Data Port values
for ALL Load Balancer Clients.

■ All Form Services that are to be load balanced have the same Form Services Port
value.

You will need administrator privileges to make the changes, and will need to stop
and restart the process in order for the configuration changes to take effect.

To configure for load balaning, you must set the following paramaters on each
machine within the forms60_server shell script:

■ Form Services Listener Parameters

■ Load Balancer Server Parameters

■ Load Balancer Client Parameters

Configuring for Form Services Load Balancing

12-6 Deploying Forms Applications to the Web

12.4.1 Form Services Listener Parameters
Set the port number and protocol to be used by the Form Services Listener by
editing the forms60_server shell script found in the <ORACLE_HOME>/6iserver
directory. The following syntax is used to start the Form Services Listener:

f60ctl start port=<Forms Server Port> mode=<Protocol>

For example:

f60ctl start port=9001 mode=socket

Form Services Port: The default is 9001. Enter the TCP/IP port number to which the
Form Services will listen for form execution requests.

Note: All Form Services that are to be load balanced must have the same Form Services Port value.

Protocol: The default is socket. This is the protocol that will be used for
communication between the Forms Runtime Engine and the Forms Java applet.
The value should only be changed to HTTP or HTTPS if communications must pass
through a firewall. (For example, select HTTP if this machine is inside a firewall and
the Forms applications must be available to users outside the firewall. Select HTTPS
to use HTTP 1.1 with SSL, secure sockets layer.)

You can accept the default parameters values, or modify the startup parameter
values for the Form Services. Change the port number only if it is already being
used by another program.

12.4.2 Load Balancer Server Parameters
Set the port numbers to be used by the Forms Load Balancer Server by editing the
forms60_server shell script found in the <ORACLE_HOME>/6iserver directory.
The following syntax is used to start the Load Balancer Server:

d2ls60 <Data Port> <Request Port> <Maximum Clients> <Trace Level>

For example:

d2ls60 9011 9021 1000 0

Data Port: The default is 9011. Enter the TCP/IP port number on which to listen for
load data from Load Balancer Clients (which will run on Secondary Nodes).

The Data Port value for the Load Balancer Server must match the Data Port values
for ALL Load Balancer Clients.

Configuring for Form Services Load Balancing

Load Balancing Considerations 12-7

Request Port: The default is 9021. Enter the TCP/IP port number on which to listen
for requests for the "least loaded host" made by the Forms servlet. This value is
written to the formsweb.cfg file as the MetricServerPort parameter.

The serverHost parameter is set to the value %LeastLoadedHost% (i.e.
serverHost=%LeastLoadedHost%). You should append your domain name to the
serverHost parameter if a domain name is required in your network for name
resolution. For example, serverHost=%LeastLoadedHost%.us.oracle.com.

Maximum Clients. The default is 1000. Specifies the maximum number of Load
Balancer Clients that will be running and sending load information to the Load
Balancer Server.

Trace Level: The default is 0 for no tracing. Specifying 10 allows you to create
output for the Load Balancer Server.

Note: For all machines that are being used and configured as secondary nodes only, you will have to
edit the forms60_server shell script and remove the section related to the Load Balancer Server.

This section includes the lines from

Stop load lalancing server

until the line

Stop load balancing client.

12.4.3 Load Balancer Client Parameters
Set the Load Balancer host name and data port number to be used by the Forms
Load Balancer Client by editing the forms60_server shell script found in the
<ORACLE_HOME>/6iserver directory. The following syntax is used to start the
Load Balancer Client:

d2lc60 <Load Balancer Host> <Data Port> 0 [<Scale Factor> <Process Name>]

For example:

d2lc60 neko 9011 0 1 f60webm

Load Balancer Host: The default value is originally set to the name of the local
machine you installed the software on. This name needs to be changed to the name
of the host containing the Load Balancer Server. Enter the full host name of the
Primary Node (the machine on which the Load Balancer Server is running). The
value can contain up to 256 characters.

Configuring for Form Services Load Balancing

12-8 Deploying Forms Applications to the Web

Data Port: The default is 9011. Enter the TCP/IP port number to which the load
balancer server is listening for load data. The Data Port value for each Load
Balancer Client must match the Data Port value for the Load Balancer Server.

Scale Factor: The default is 4 for Windows NT and 1 for UNIX. The scale factor
allows you to reduce the imbalances resulting from varying capacities of Load
Balancer processes running on each Load Balancer Client. A system that appears to
be the least-loaded system may not necessarily be the best place to run a new
process. You should assign a higher value for the scale factor for your
lower-capacity systems.

Process Name: The default is f60webm. Setting the value tells the Load Balancer
Client to count processes (for load balancing pruposes_ whose executable name
matches the name specified. If a value is not specified, all proceses on the machine
are counted.

 Oracle Enterprise Manager Forms Support 13-1

13
Oracle Enterprise Manager Forms Support

13.1 Introduction
This chapter describes how to install and configure Oracle Enterprise Manager
(OEM) for use with Forms. It also describes the features and functions of OEM.
OEM is a system management tool that consist of a graphical Java console,
management server, agents, and tools that provide you with an integrated systems
management platform for managing Oracle products.

This chapter contains the following sections:

■ Why Should I Use OEM?

■ OEM Components

■ Installing and Configuring OEM Components for Use with Forms

■ Managing Form Services from the OEM Console

■ OEM Menu Options

Detailed OEM documentation is located in:

■ Oracle Enterprise Manager - Concepts Guide

■ Oracle Enterprise Manager - Administration Guide

■ Oracle Enterprise Manager - Configuration Guide

Why Should I Use OEM?

13-2 Deploying Forms Applications to the Web

13.2 Why Should I Use OEM?
The OEM Forms administrator interface provides the following basic functions:

■ Automatic node and service discovery: Forms Listener, Form Services, Load
Balancer Server, and Load Balancer Client are automatically discovered by
OEM’s Intelligent Agent on the node to be administered, and appears in the
Navigator tree of the OEM console.

■ Node and service control: Some basic controls such as startup and shut down
are provided for discovered nodes and services.

■ Node and service monitoring: Discovered Forms Listeners, Form Servicess,
Load Balancer Servers, and Load Balancer Clients are monitored for the
following events: Service down, Excessive memory usage, and Excessive CPU
usage. When one of these events occurs, a pre-programmed action is taken to
either alert the system administrator, or to try and fix the problem
automatically.

13.3 OEM Components
There are three OEM components that you need to install in order to manage Form
Services:

■ OEM Management Server (OMS): This is the software that controls and acts as
the central repository for OEM. Install OMS on only one machine. This OMS
machine will manage the other machines.

■ OEM Console: This software provides the user interface for OMS.

■ OEM Agent: This software collects Form Services data and sends it back to
OMS. The OEM Agent must be installed on every Form Services machine that is
to be managed by OMS.

13.4 Installing and Configuring OEM Components for Use with Forms
The OEM Management Server (OMS), OEM Console, and OEM Agent software are
installed as part of Oracle9i Application Server.

13.4.1 Configuring Forms Support for OEM
After Forms and OMS are installed, do the following. Be sure that the OMS service
is not running while performing the following steps.

Managing Form Services from the OEM Console

 Oracle Enterprise Manager Forms Support 13-3

1. On the machine where OMS is installed, change directories to $ORACLE_
HOME\sysman\admin.

2. Connect to the OEM repository database using a login that has system
privileges (e.g. system).

3. Run the "createOEMFormsUser.sql" script to create an OEM Forms User who
will support Forms specific data in the OEM repository. (You can modify this
script to add default tablespace, quota, and so on. However, you cannot change
the user name and password in the script.)

4. Connect to the database as the OEM Forms User. (See the SQL script you just
ran for the user name and password.)

5. Run the "createOEMFormsTables.sql" script to create the necessary tables in the
OEM repository.

6. On the machine where the console is installed, create a TNS entry in the
Tnsnames.ora file to connect to the OEM repository database. Use the same
TNS alias as the one used to connect to the EM repository on the OMS machine.

13.4.2 Starting the OMS Service
To start the OMS Service, type:

oemctrl start oms

or start the service from the control panel on Windows NT.

13.5 Managing Form Services from the OEM Console
You cannot manage a pre-existing Forms Listener from OEM. You must create it
first from the OEM console.

13.5.1 Locating Nodes
Before OEM can manage a remote Form Services machine, it has to locate it. To do
this:

1. In the OEM Console, choose Discover Node from the menu.

2. Enter the node name. For example, formssrv-pc.

Managing Form Services from the OEM Console

13-4 Deploying Forms Applications to the Web

13.5.2 Entering the Administrative User’s Credentials in the OEM Console
To enter the administrative user’s credentials in the OEM console:

1. Start the OEM Console.

2. Choose Preferences from the System menu.

3. Choose the Preferred Credentials tab.

4. Find the name of the remote Form Services machine you want to administer in
the Service Name column. Be sure to select a row where the Service Type is
Node.

5. Enter the operating system user name and password for the user that has
performed the Oracle9i Application Server instalation on this node.

Note: On Windows NT, the user needs to be granted the "Log on as a service"
user right in the User Manager.

13.5.3 Viewing Forms Runtime Instances from the OEM Console
To view Forms Runtime Instances from the OEM Console:

1. From the OEM Console, select Developer Servers, Forms_Listeners_
<RemoteMachineName>, .

2. Right-click and select List Runtime Processes.

OEM Menu Options

 Oracle Enterprise Manager Forms Support 13-5

13.6 OEM Menu Options
The following menu options are available for managing Forms Listeners, Form
Servicess, Load Balancer Servers, and Load Balancer Clients.

13.6.1 Controlling Forms Listeners Group
The commands available from the right mouse menu are:

■ Create New: You are prompted for a list of parameters before a new listener
process is created. Once the listener process is created, an entry is displayed in
the Navigator tree, and the listener is started.

■ List Runtime Processes: This will bring up a separate window with a list of
Forms runtime processes running on this node. See Runtime Processes List
Window.

■ Refresh: This will discover existing Forms Listeners running on this node, and
will also refresh the running/not running status of all Forms Listener instances
on this node.

13.6.2 Controlling Forms Listeners Instance
The commands available from the right mouse menu are:

■ Start: The listener starts, if the listener is currently down.

■ Stop: The listener is shut down, and the Listener instance is marked as down
with a special icon.

■ Create Like: Much like a copy command, it creates another listener with the
same parameters as the current one. You are prompted by a dialog similar to the
Create New command to make any necessary changes.

■ Modify: A dialog box allows you to modify the startup parameters and
environment variables.

■ Delete: The Listener instance is deleted from the navigator tree. A Forms
Listener instance can only be deleted if there are no Runtime processes
associated with this listener. A deleted listener is shut down from the node
automatically.

■ Properties: Brings up a list of parameters, environment variables, and runtime
processes associated with this Forms Listener instance.

OEM Menu Options

13-6 Deploying Forms Applications to the Web

13.6.3 Runtime Processes List Window
This is a table type listing of all the current Forms Runtime processes on a particular
node. Each row represents a Runtime process. The following fields are displayed:

■ Listener name

■ Node name

■ IP address

■ User

■ PID

■ Connect time

■ Dynamic logging status

■ Memory usage

■ CPU %

13.6.4 Controlling Forms Runtime Processes
The commands available from the right mouse menu are:

■ Kill: A kill signal is sent to the Runtime instance to stop its execution. This is
mainly used to stop a malicious runtime process from doing further damage.

■ Logging ON: Turns on dynamic logging for the Runtime instance. The log will
be written to a temporary file with a generated file name. The file format is the
same as the one generated by Forms Runtime Diagnostic (FRD).

■ Logging OFF: Turns off dynamic logging for the Runtime instance.

■ View Log: Displays the log file generated from the dynamic logging command.

13.6.5 Controlling Load Balancer Server Group
The command available from the right mouse menu is:

■ Create New: A Load Balancer Server instance is created. Supported parameters
are: <port #1> <port #2> <max. no. of client> <trace level>.

Load Balancer Server is also known as Metrics Server.

OEM Menu Options

 Oracle Enterprise Manager Forms Support 13-7

13.6.6 Controlling Load Balancer Server Instance
The commands available from the right mouse menu are:

■ Start: Load Balancer Server is started.

■ Stop: The server is shut down.

■ Create Like: Much like a copy command, it creates another Load Balancer
Server with the same parameters as the current one.

■ Modify: A dialog box is displayed to allow you to modify the start up
parameters and environment variables.

■ Delete: Deletes Load Balancer Server from the Navigator tree. A deleted server
is shut down from the node automatically.

■ Properties: Bring up a separate window that shows any relevant information
about this Load Balancer Server.

Load Balancer Server is also known as Metrics Server.

13.6.7 Controlling Load Balancer Client Group
The commands are exactly the same as the Load Balancer Server object type. The
supported parameters are:

<Master Server host name> <Remote port> <Local port> <Scale Factor>

Load Balancer Client is also known as Metrics Client.

13.6.8 Controlling Load Balancer Client Instance
The commands are exactly the same as the Load Balancer Server object instance.

Load Balancer Client is also known as Metrics Client.

13.6.9 Monitoring Functions
Events are listed in the Events Management window of the OEM console. They can
be turned on or off by registering or un-registering with OEM. Once an event is
created and registered with OEM, OEM can notify the system administrator or run
a fixit job when an event occurs.

The following events are available for you to register:

■ Listener down: This event can be scheduled with or without a Listener fixit job.
A Listener fixit job is available to restart the Listener when this event occurs.

OEM Menu Options

13-8 Deploying Forms Applications to the Web

Whenever a Listener goes down, an entry is written to the Event log, which is
viewable from the OEM console.

Note: You must schedule a fixit job before you can schedule an event with a fixit job.

■ Load Balancer server down: Similar to Listener down. This event can be
scheduled with or without a Load Balancer server fixit job.

■ Load Balancer client down: Similar to Load Balancer server down. This event
can be scheduled with or without a Load Balancer client fixit job.

■ Excessive CPU usage by Runtime Process: The system administrator is notified
when a Runtime Process consumes too much CPU time. This event is checked
every X seconds; you set the time interval. You can select an Alert threshold,
Warning threshold, and the number of occurrences.

■ Excessive virtual memory usage by Runtime Process: When virtual memory is
consumed beyond a certain amount by a Runtime process, the system
administrator is notified. This is similar to the Excessive CPU usage event. You
can set the following parameters: event interval, warning threshold (in KB of
virtual memory), alert threshold (in KB of virtual memory), and number of
occurrences.

 Capacity Planning Considerations 14-1

14
Capacity Planning Considerations

14.1 Introduction
This chapter explores Form Services’ scalability features. We researched the
server’s scalability by conducting a number of benchmark tests using popular
hardware platforms and operating systems.

We measured these benchmarks:

■ RAM per user

■ Users per CPU

We got the following results for Forms Server 6.0:

For Windows NT:

For Sun Solaris:

Table 14–1 Benchmarks for Windows NT

Application
size/complexity RAM per user (MB) Users per CPU

medium/moderate 2.5-6.0 100-300

small/simple 1.0-2.5 150-300

Table 14–2 Benchmarks for Sun Solaris

Application
size/complexity RAM per user (MB) Users per CPU

medium/moderate 2.0-5.0 200-400

small/simple 1.0-2.0 300-500

What Is Scalability?

14-2 Deploying Forms Applications to the Web

Note: The results described in this chapter are specific to the 6i release of Form Services and should
not be used for any of the previous releases of the product. The performance of this release has
improved in comparison to earlier releases. This is due to a number of architectural and code
optimizations, such as:

■ Improved dynamic link library sharing under Windows NT

■ Improved middle-tier record caching

■ Improved messaging layer, thus reducing the overall processing on the server

Benchmark testing is an ongoing process at Oracle Corporation. The figures presented here represent
the information available at the time of writing. Additional results will be published as they become
available.

14.2 What Is Scalability?
Scalability is the ability to accommodate an increasing user population on a single
system by adding more hardware resources to the system without changing the
underlying software. A scalable system can accommodate the growing needs of an
enterprise.

Choosing both hardware and software that can grow with your performance needs
is a much better strategy than purchasing new software every time your
performance needs change.

Consider these questions:

■ How well does the application or operating system take advantage of
additional system resources?

■ How much memory do I need to support n number of users?

■ Can I easily upgrade to a faster processor or multiple processors?

■ How much incremental processing power does an additional processor
provide?

■ Are there additional features I can add later to boost performance (such as
additional cache or a drive array controller)?

Answers to these questions depend heavily on the hardware, operating systems,
and application software being used.

Criteria for Evaluating System Capacity

 Capacity Planning Considerations 14-3

14.3 Criteria for Evaluating System Capacity
The scalability of a networked application is tied to the ability of the application
server and the network topology to predictably accomodate an increase in user
load.

It will be useful to understand the role of each component described in this section
and how they can affect the overall scalability of a system, especially in a Form
Services environment.

This chapter uses as examples the two most commonly used server hardware and
operating system combinations: Sun Solaris, running on Sun UltraSparc
architecture, and Microsoft Windows NT, running on Intel architecture.

These areas are important in the evaluation of a Form Services-based system:

■ Processor

■ Memory

■ Network

■ Shared Resources

■ User Load

■ Application Complexity

14.3.1 Processor
Work faster or work smarter? Processor technology has explored both paths.
Typically, a company will release new generation architectures (working smarter)
every two to three years. In between those releases, it will increase the processor
speed (working faster). The speed of a processor, also called clock speed, is usually
represented in megahertz (MHz). Processor speed is a good indication of how fast a
computer system can run. Typically, computers used as servers employ more than
one processor and are called multi-processor systems.

The metric that we are really interested in with regard to the Form Services is the
number of simultaneous users on each processor, sometimes called Users per
Processor. This number will vary greatly for different types of processors. For an
example of this variability, see Table 14–1 on page 14-1 and Table 14–2 on
page 14-1.

From empirical data collected in the benchmark, a computer with a 400MHz Intel
Pentium II Xeon processor with 1MB of L2 cache could support approximately
twice as many users as compared to a 200MHz Pentium Pro system.

Criteria for Evaluating System Capacity

14-4 Deploying Forms Applications to the Web

14.3.2 Memory
Memory is the amount of RAM that a computer system has available to launch and
run programs. The amount of RAM in computer systems is usually represented in
megabytes (MB).

In the normal execution of a program, the program is loaded in RAM, and the
operating system swaps the program to disk whenever the program is inactive. The
operating system brings the program back into RAM when it becomes active.

This activity is generally called swapping. Most operating systems, such as Sun
Solaris or Microsoft Windows NT, perform swapping during normal operation.
Swapping places additional demands on the processor. Excessive swapping tends to
slow down a system considerably. To prevent slowed performance, include enough
RAM in the server host machine.

The important metric is RAM that is required for every additional user that
connects and runs an application via the Form Services. This metric is also called
the Memory per User. Often, performance-measuring tools do not provide an
accurate measure of Memory per User. Study this metric carefully to determine
memory requirements. For an example of memory per user, see Table 14–1 and
Table 14–2 on page 14-1.

14.3.3 Network
In a multi-tier, Internet-based architecture such as Form Services, the physical
network that connects clients to the Form Services and the connection between the
Form Services and the database are key factors in the overall scalability of the
system. When you measure the performance of your Form Services based system,
pay careful attention to the performance of the physical network.

14.3.4 Shared Resources
The performance of an individual process in a multi-user, multi-process
environment is directly proportional to the individual process’ ability to be
processed from main memory. That is, if required pages are swapped out to virtual
memory in order to make room for other processes, performance will be impacted.
One technique to increase the likelihood of finding the required page in main
memory is to implement a shared memory model using Image Mapped Memory.
Image Mapped Memory associates a file's contents in memory to a specific address
space that is shared across processes.

Criteria for Evaluating System Capacity

 Capacity Planning Considerations 14-5

Form Services uses Image Mapped Memory. Individual Forms processes share a
significant portion of the FMX file image, which reduces individual memory
requirements and increases overall scalability.

14.3.5 User Load
In a benchmark scenario, it is impractical to configure a number of client machines
(and users) that accurately represents a live application environment. In
benchmarks, load simulators are used to simulate real users that perform
transactions on the application server. The Oracle Tools Development Organization
has developed a load simulator that mimics real-world Form Services users by
sending messages to the Server to simulate load. The load simulator is a small Java
application that sits between the Form Services and the UI client, intercepting the
message traffic that passes between these two components.

Once event messages from the client are recorded, it is possible to play them back to
the server. This simulates an actual user session. (Note that the UI client is not
involved in playback mode.) During playback to the server, the load simulator is
capable of playing back many user sessions. In this manner, the load simulator is
able to calculate the total response time for a user by determining the total round
trip time for messages between client and server. By summing the Total Response
Time throughout an entire business transaction, it is possible to get a measurable
metric for application performance.

14.3.6 Application Complexity
We performed tests against Forms applications of various complexity, from a simple
single Form containing List of Values (LOVs) and pop-up windows, to complex
applications containing multiple Forms and PL/SQL libraries (PLLs) open
simultaneously. We tied application complexity to the number of modules that a
user may be accessing at one time, rather than to the inherent complexity of any one
module.

A good method for determining complexity is to look at all the dependencies
appended to a Form. For example, a form may call other forms through the CALL_
FORM or OPEN_FORM built-in. Additionally, it may have attached menus (MMX
files) and load external business logic through the use of PL/SQL libraries (PLL
files). All of these factors contribute to memory usage per user.

Criteria for Evaluating System Capacity

14-6 Deploying Forms Applications to the Web

The following table classifies the level of complexity of Oracle Forms applications.

We tested two applications of different complexity:

■ The first was a simple Customer-Order-Entry screen that contained appropriate
menus and List of Values. Only a single form was active at any given time.

■ The second was a moderate to complex application. We used an actual
customer application, a help desk and customer support system. This
application had numerous modules open simultaneously and complex business
logic within individual modules.

To represent a realistic user community, that is, one where there is a mixed
workload, the test encompassed a number of transactions that mimicked the
activities performed by a Service Desk Clerk in a 45-minute scenario.

Step by step definition of the tasks implemented.

Table 14–3 Determining Application Complexity

Application size/complexity
Total size of concurrent
modules in memory

large/complex > 10MB

medium/moderate 2MB – 10MB

small/simple < 2MB

Step Task performed

1 Launch Service View Application – Login

2 [NAVIGATE] to Notifications Screen

3 [CALL] Progressions Screen

Transactions: Enter a Parameterized query

4 [OPEN] Problem Screen

[NAVIGATE] to the various Tabs (PL/SQL execution)

[NAVIGATE] to all the fields on the screen

5 [CALL] Services Screen

Transactions: Enter a Blind Query

[NAVIGATE] to all the queried records

6 [REPEAT] Scenario 2 – 5

Determining Scalability Thresholds

 Capacity Planning Considerations 14-7

14.4 Determining Scalability Thresholds
To get a feel for the decrease in performance with increasing user loads, it is first
necessary to determine the time taken by a given user to perform a given
application task. This Total Response Time metric differs from merely testing
response time for a given physical transaction or network round trip. It looks at the
total time taken (by an average user) to perform the business task at hand (that is,
the sum of all interactions with the Form Services and database that takes place as
part of the business transaction).

To gain some empirical information about overall system resources, the scalability
testing also uses the native operating system monitoring utilities (such as Windows
NT performance monitor) to determine values for both physical and virtual
memory usage, and for total CPU utilization.

By using the Total Response Time metric with the empirical measurements, it was
possible to determine the point at which, given an increasing user load,
performance for a given user significantly degraded. Having determined the
number of users that can be supported with acceptable performance, individual
memory consumption becomes a simple equation of the total memory available
divided by the number of users accessing the application.

For example:

On a given hardware platform with 512MB of RAM, performance is constant for up
to 60 concurrent users. Then it degrades significantly. From this, we can specify
that the maximum number of users supported is 60.

Allowing for a nominal operating system overhead (~32MB), individual memory
usage would be (512-32) / 60 or 8MB per user.

Sample Benchmark Results

14-8 Deploying Forms Applications to the Web

14.5 Sample Benchmark Results
The following sections define the systems we tested, the results of the tests, and a
brief analysis for the following scenarios:

■ Medium-Complex Application on a Low-Cost Intel Pentium-Based System

■ Medium-Complex Application on an Intel Pentium II Xeon-Based System

■ Medium-Complex Application on an Entry-Level Sun UltraSparc Server

■ Simple Application on an Intel Pentium II Xeon-Based System

■ Simple Application on an Entry-Level Sun UltraSparc Server

14.5.1 Medium-Complex Application on a Low-Cost Intel Pentium-Based System
Parameters:

Results:

Analysis:

This system is one of the cheapest systems we used to test the scalability of a
medium-complexity application. The system could handle about 200 users very
efficiently. Performance degraded dramatically beyond 200 users. This system is
cost effective as a small departmental server for up to 200 users with applications
that fall in the medium complexity class.

Application
size/complexity CPU RAM Operating System Swap

medium (between
2MB and 10MB)

2-200 MHz
Pentium Pro

512MB Windows NT 4.0
Server (SP 3)

2GB

Users per CPU Memory per user

100 2.4MB

Sample Benchmark Results

 Capacity Planning Considerations 14-9

14.5.2 Medium-Complex Application on an Intel Pentium II Xeon-Based System
Parameters:

Results:

Analysis:

This system is one of the newest Intel Pentium II Xeon based servers we used to test
the scalability of a medium complexity application. The system handled about 400
users very efficiently. Performance degraded dramatically beyond 400 users. The
system is cost-effective as a large departmental server or as an entry-level
Enterprise Server for small to medium businesses.

14.5.3 Medium-Complex Application on an Entry-Level Sun UltraSparc Server
Parameters:

Results:

Analysis:

The system handled about 375 users very efficiently. Performance degraded
dramatically beyond 375 users. The system seemed to slow down due to excessive
paging and swapping activity, which indicates that the real bottleneck was physical

Application
size/complexity CPU RAM Operating System Swap

medium (between
2MB and 10MB)

2-400 MHz Pentium II
Xeon with 1MB L2 cache

512MB Windows NT 4.0
Server (SP 3)

2GB

Users per CPU Memory per user

200 1.2MB

Application
size/complexity CPU RAM Operating System Swap

medium 2-248 MHz Ultra Sparc 512MB Solaris 2.5.1 2GB

Users per CPU Memory per user

200 1.3MB

Sample Benchmark Results

14-10 Deploying Forms Applications to the Web

memory. This system is cost-effective for larger departments or small to medium
businesses running medium-complexity applications.

14.5.4 Simple Application on an Intel Pentium II Xeon-Based System
Parameters:

Results:

Analysis:

The Pentium II Xeon based server handled about 500 users very efficiently with a
small application.

14.5.5 Simple Application on an Entry-Level Sun UltraSparc Server
Parameters:

Results:

Analysis:

This system is an entry-level Sun Ultra Sparc System. The system handled about 480
users very efficiently. Performance degraded dramatically beyond 480 users.

Application
size/complexity CPU RAM Operating System Swap

small (less than
2MB)

2-400 MHz Pentium II
Xeon with 1MB L2 cache

512MB Windows NT Server
4.0 (SP 3)

2GB

Users per CPU Memory per user

250 1MB

Application
size/complexity CPU RAM Operating System Swap

small (less than 2MB) 2-248 MHz Ultra Sparc 512MB Solaris 2.5.1 2GB

Users per CPU Memory per user

240 1MB

 Troubleshooting Solutions 15-1

15
Troubleshooting Solutions

15.1 Introduction
This chapter contains information about troubleshooting solutions for the Form
Services in the following sections:

■ Checking the Status of the Form Services

■ Starting the Form Services

■ Stopping the Form Services Process

■ Starting the Form Services Log

■ Troubleshooting FAQ

15.2 Checking the Status of the Form Services
To check the status of the Form Services:

On Microsoft Windows NT:

1. Press Control+Alt+Delete to display the Windows NT Security dialog.

2. Choose Task Manager.

3. In the Task Manager, click the Processes tab.

If a server process is running, the Task Manager will display a process called
IFSRV60.EXE, and multiple occurrences of a process called IFWEB60.EXE (one for
every active connection).

On UNIX:

At the UNIX prompt, type: ps -ef | grep f60srvm and press Enter.

Starting the Form Services

15-2 Deploying Forms Applications to the Web

A list of process IDs will appear on the screen. If the Listener is running, the list will
include a process called f60srvm, and multiple occurrences of the f60webm process.
(There is one process for every active connection, plus one spare connection ready
for the next user if the default value of pool is being used. If pool is set to 5, there will
be 5 spare connections.)

15.3 Starting the Form Services
To start the Form Services:

As a service on Microsoft Windows NT:

You can remove an existing Form Services service and reinstall it using new start-up
parameters.

1. From a command window, type the following:

ifsrv60 -remove <FormsServerServiceNameToBeRemoved>

2. Type the following:

ifsrv60 -install <NewFormsServerServiceName> port=<portNum>
mode=<socket/http/https> [pool=<numOfRunforms> log=<logfilePath>
exe=<RunformexeName>]

3. Press Enter. A server process starts running on the specified port number.

See Section 5.4, "Description of Form Services Startup Parameters" for startup
parameter definitions.

In console mode on Microsoft Windows NT:

1. On the taskbar, choose Start Run.

2. Type:

<ORACLE_HOME>\6iserver\bin\ifsrv60 <FormsServerName> port=<portNum>
mode=<socket/http/https> [pool=<numOfRunforms> log=<logfilePath>
exe=<RunformexeName>]

3. Press Enter. A server process starts running on the specified port number.

See Section 5.4, "Description of Form Services Startup Parameters" for start-up
parameter definitions.

Stopping the Form Services Process

 Troubleshooting Solutions 15-3

On UNIX:

1. From the UNIX prompt, type:

cd <ORACLE_HOME>.

2. Press Enter.

3. Type

forms60_server start

4. Press Enter. The server starts running in the background.

See Section 5.4, "Description of Form Services Startup Parameters" for start-up
parameter definitions.

15.4 Stopping the Form Services Process
To stop the Form Services process:

As an NT service on Microsoft Windows NT:

1. Go to the Control Panel, and select Services.

2. Locate and select the Form Services process.

3. Click Stop.

In console mode on Microsoft Windows NT:

1. Check the status of the Form Services. If the server is running, the Task
Manager will display a process called IFSRV60.EXE.

2. Select IFSRV60.EXE, and click End Process.

On UNIX:

1. Check the status of the Form Services. A list of process IDs will appear on the
screen. Note the process ID for the f60srvm process.

2. At the UNIX prompt, type

kill process_ID

or type

kill -g

Starting the Form Services Log

15-4 Deploying Forms Applications to the Web

3. Press Enter.

15.5 Starting the Form Services Log
The Form Services will create a log file if you start the server using the log option,
as follows:

ifsrv60 -install Forms60Server log=<\PathName\LogFileName> port=<portNum>
mode=<socket/http/https>

The log contains diagnostic information.

15.6 Troubleshooting FAQ

Problem Solution

You cannot run Web-enabled Forms
applications with a non-Java-enabled
Web browser.

If you are not sure your Web browser is Java-enabled, check your
Web browser’s network preferences. The Enable Java and Enable
JavaScripts check boxes must be checked.

You see the error message "Cannot bind
to port 9000" when you try to start the
Form Services.

Another process may be using the port. It could be another
occurrence of the Form Services; check that the Form Services are
not already running. If you just stopped the Form Services, it may
take a minute or two for existing connections to port 9000 to
reopen.

The Forms Client does not download to
your Web browser.

Check that you have defined a virtual directory to point to the
Oracle Java class files (codebase).

The server will not allow the client to
connect, although all connection data is
correct.

If the server is using 128-bit encryption and the client cannot
support this (because it uses 40-bit encryption), check the
FORMS60_HTTPS_NEGOTIATE_DOWN environment variable. If
this variable is set to FALSE, the server will reject client connection
requests. If needed, check the Java console and the server log file (if
one is available) to see the level of encryption being used by the
client and server.

The Form Services seem to ignore the
user ID, password, and database SID
parameter values you pass in your
application base HTML file.

Make sure you preface the values with the parameter "userid=".
For example:

userid=scott/tiger@inventory

The Form Services seem to not pick up
your variable changes.

Stop and restart the Form Services.

Troubleshooting FAQ

 Troubleshooting Solutions 15-5

You experience problems when using a
security firewall, and you are using a
proxy server to access anything outside
the firewall.

Make sure your proxies are set to manual configuration.

The HTML page and applet download at
startup, and the applet starts running,
but nothing else seems to happen.

Check the following:

First, ensure that the Forms Client indeed is running; if it is, you
should see a message in the status bar of your Web browser: applet
oracle.forms.engine.Main running.

If you see this message, but your application still does not appear,
check the following:

1. Make sure the Form Services and your Web server are installed
on the same application server. Due to a current Java restriction,
they must be installed on the same server.

2. Check your application base HTML file and configuration file to
make sure you specified a valid directory path and filename for the
.FMX file. You must use a physical directory path, not a virtual
directory path.

3. Try setting a preference in your Web browser to display the Java
console. This allows you to view runtime Java error messages.

Applet not able to connect to Form
Services.

Make sure that the "mode" setting on the server matches the
"connectionType" in the base HTML file.

You experience trouble connecting to a
local database.

It could be a result of the following:

* If you do not specify a Net8 v2 connect string, you will receive
errors. The Form Services runtime engine will not accept connect
strings of type LOCAL, TWO_TASK, and so on.

* If you are using a Net8 v2 connect string and you still cannot
connect to the database, make sure the Form Services is running;
on most installations, the Server is not automatically restarted after
a reboot.

* You must have the valid connect string in the TNSNAMES.ORA
file on your application server, not on your client machine. The
application logic is running on an application server, not on users’
client machines.

You experience unpredictable behavior
after modifying the CLASSPATH
environment variable.

Changing the setting of the CLASSPATH environment variable on
your application server or on a user’s machine can produce
unpredictable results. Setting the variable to a directory that
overlaps with the directory tree where Forms Java class files are
located can cause filename overlap.

Problem Solution

Troubleshooting FAQ

15-6 Deploying Forms Applications to the Web

There appear to be several unused
processes running on the server.

Recall that for each user running a Web-enabled Form Builder
application, a Form Services runtime process (ifweb60.exe and
ifsrv60 on Windows; f60webm and f60srvm on UNIX) starts on
your application server. Each runtime process should end when
the user exits the application. The process will remain on the server
if a user exits the browser without cleanly exiting the application.
To cleanly exit the application, use the menu or the [Exit/Cancel]
key function, then exit the browser.

Problem Solution

Part II
 Appendices

 Form Services Parameters A-1

A
Form Services Parameters

A.1 Introduction
This appendix contains the parameters you use to configure Form Services.

A.2 Windows 95 and Windows NT Registry
For Windows 95 and Windows NT, the Oracle Univerasal Installer creates a new
ORACLE section in your registry. The Oracle registry contains configuration
parameters that control such things as the name of the Oracle home directory, the
location of the product preference file, and the location of the help files. If you use
Net8 for Windows, the configuration parameters also determine the driver to be
used for network communications and the values that Net8 should use for its
operating parameters.

A.2.1 Viewing and Modifying the Registry
You can view and optionally edit the Microsoft Windows Registry with the Registry
Editor. This editor is located in the directory where your Windows software is
installed.

To start the editor:

1. Choose Start Run.

2. Type REGEDIT.

3. Click OK.

4. In the Registry Editor, expand the HKEY_LOCAL_MACHINE node.

5. Expand the SOFTWARE node.

6. Click the ORACLE key to display the Oracle configuration parameters.

Configuration Parameters

A-2 Deploying Forms Applications to the Web

7. You can modify any parameter value by double-clicking the parameter name to
display the Edit String dialog.

8. Change the value in the Value data text box.

9. Click OK to accept the new value.

A.3 Configuration Parameters
The Oracle Installer automatically sets many parameters. Some of the parameters
are required by Oracle products, and are listed in Table A–1. Other parameters
allow you to customize product behavior. They are described in Section A.3.2,
"Customizable Parameters".

A.3.1 Required Parameters
The parameters listed in this section are automatically set or removed by the Oracle
Installer. They are required by various Oracle products to function properly.

Caution: Do not change the settings of parameters listed in this section. Doing so may cause one or
more Oracle products to stop functioning correctly.

The appearance of nn in the parameters listed below specifies a product or
component release number. This number may change when you upgrade to a new
release of an Oracle product.

Table A–1 Required parameters

Parameter Setting

BROWSERnn <ORACLE_HOME>\6iserver\BROWSEnn

DEnn <ORACLE_
HOME>\6iserver\TOOLS\COMMONnn

FORMSnn <ORACLE_HOME>\6iserver\FORMSnn

GRAPHICSnn <ORACLE_HOME>\6iserver\GRAPHnn

MMnn <ORACLE_
HOME>\6iserver\TOOLS\COMMONnn

OCLnn <ORACLE_HOME>\6iserver\GRAPHnn

PROnn <ORACLE_HOME>\6iserver\PROnn

RDBMSnn <ORACLE_HOME>\6iserver\RDBMSnn

RWnn <ORACLE_HOME>\6iserver\REPORTnn

Configuration Parameters

 Form Services Parameters A-3

A.3.2 Customizable Parameters
The parameters listed in this section control various aspects of your Oracle
products. You may change the settings of these parameters to customize behavior.

The sections below list the default setting (if any) of each parameter. Parameters
that are not automatically set with default values are noted. The parameter listings
include descriptions of valid values and examples.

FORMS60_PATH
Default: <ORACLE_HOME>\6iserver\FORMS60\PLSQLLIB

Valid Values: any directory on any drive

Example:

FORMS60_PATH=C:\oracle\apps\forms;C:\myfiles

This parameter specifies the search path for files used in a Form Builder runtime
application. These include form files (.fmx), menu files (.mmx), PL/SQL libraries
(.pll), and other objects that the application attempts to load from a file at runtime.
For example, if you import the image file scooter.tif, Form Builder searches in the
directories specified by FORMS60_PATH to find that file.

FORMS60_PATH can specify multiple directories. Use a semicolon (;) to separate
directory names in a list of paths.

FORMS60_REPFORMAT
Default: none

Valid Values: HTML, PDF

Example:

FORMS60_REPFORMAT=HTML

TKnn <ORACLE_
HOME>\6iserver\TOOLS\COMMONnn

VGSnn <ORACLE_
HOME>\6iserver\TOOLS\COMMONnn

Table A–1 Required parameters

Parameter Setting

BROWSERnn <ORACLE_HOME>\6iserver\BROWSEnn

Configuration Parameters

A-4 Deploying Forms Applications to the Web

If you are invoking a browser to run a report from a form via RUN_PRODUCT, you
must set the FORMS60_REPFORMAT environment variable. This parameter
specifies the report format.

FORMS60_TIMEOUT
Default: 15

Valid Values: 1 – 1440 (1 day)

Example:

FORMS60_TIMEOUT=1440

This parameter specifies the amount of time in elapsed minutes before the Form
Services process is terminated when there is no client communication with the Form
Services.

GRAPHICS60_PATH
Default: none

Valid Values: any directory on any drive

Example:

GRAPHICS60_PATH=C:\oracle\apps\graphics;C:\myfiles

This parameter specifies the search path for files used in a Graphics runtime
application. These include display files (.ogr), images, external queries, and other
objects that the application attempts to load from a file at runtime. For example, if
you import the image file scooter.tif, Graphics Builder searches in the directories
specified by GRAPHICS60_PATH to find that file.

GRAPHICS60_PATH can specify multiple directories. Use a backslash (\) to
separate directories in a path, and a semicolon (;) to separate complete paths.

NLS_LANG
Default: AMERICAN_AMERICA.WE8ISO8859P1

Valid Values: See the NLS Reference Manual for a current list of available values, or
see the following file on your CD: \bonus\nls\nlsd2r1.wri

Example:

NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1

Configuration Parameters

 Form Services Parameters A-5

This parameter sets the language in which message files appear. The syntax for
NLS_LANG is as follows:

NLS_LANG=<language>_<territory>.<char_set>

Where:

■ Language specifies the language and its conventions for displaying messages
and day and month names.

■ Territory specifies the territory and its conventions for calculating week and day
numbers.

■ Char_set specifies the character set used for the UPPER, LOWER, and INITCAP
functions, and the type of sort used by an ORDER BY query. This argument also
controls the character set used for displaying messages.

ORACLE_HOME
Default: C:\ORAWIN95 on Window95 or C:\ORANT on Windows NT

Valid Values: any directory on any drive

Example:

ORACLE_HOME=C:\orawin95

This parameter specifies the home directory in which Windows Oracle products are
installed. This directory is the top directory in the Oracle directory hierarchy.

Configuration Parameters

A-6 Deploying Forms Applications to the Web

 Client Browser Support B-1

B
Client Browser Support

B.1 Introduction
Users can view Oracle Forms applications on the Web using one of the following
browser configurations:

■ Internet Explorer 5 with Native JVM

■ Oracle JInitiator plug-in (using Netscape Navigator or Internet Explorer)

■ AppletViewer

Note: For client browsers using AppletViewer, the HTTPS connection mode is not supported.

Note: For client browsers using Oracle JInitiator, version 1.1.7.30 of JInitiator is required to use the
HTTP and HTTPS modes.

B.2 How Configuration Parameters and Base HTML Files are Tied to
Client Browsers

When an end-user starts a Web-enabled application (by clicking a link to the
application’s URL):

1. The Forms servlet or CGI detects which browser the end-user is using.

2. Reads the formsweb.cfg file to determine the IE50 parameter setting (if the
end-user is using the Internet Explorer 5 browser).

3. Selects the appropriate base HTML file using the table that follows:

Browser detected
IE50 parameter
setting Base HTML file used

Applicable section in this
appendix

Internet Explorer 5 native baseie.htm Section B.3, "Internet Explorer 5
with Native JVM"

Internet Explorer 5 with Native JVM

B-2 Deploying Forms Applications to the Web

4. Replaces variables (%variablename%) in the base HTML file with the appropriate
parameter values specified in the FormsServlet.initArgs file (for servlet
implementations only), formsweb.cfg file (for both servlet and CGI
implementations), and from query parameters in the URL request (if any).

5. Sends the HTML file to the end-user’s browser.

B.3 Internet Explorer 5 with Native JVM
Oracle provides a Microsoft-specific signed CAB file (f60all.cab) that allows the
Oracle Forms Java applet to run as a trusted applet inside of Internet Explorer 5.
This browser option alleviates the need to perform any end user configurations of
the browser.

B.3.1 Software Installation
This section describes the software that you must install on client machines to run
Forms applications natively in Microsoft Internet Explorer 5.

Install Microsoft Internet Explorer 5 on the client machine. You can download this
browser from the Microsoft Web site at http://www.microsoft.com/ie.

When you install Microsoft Internet Explorer 5, you must also install the Microsoft
Virtual Machine for Java component. Choose either the Full or Custom installation
option. If you choose Custom installation, you must manually select Microsoft
Virtual Machine for Java from the list of available components.

B.3.2 Testing Microsoft Internet Explorer
Verify the existence and version level of the Microsoft VM for Java that the browser
is using. You will also want to verify the execution of JDK 1.1 applets running
natively in the browser.

Internet Explorer 5 jinitiator basejini.htm Section B.4, "Oracle JInitiator"

Netscape Navigator or
Internet Explorer version
preceding version 5

not applicable basejini.htm Section B.4, "Oracle JInitiator"

All other browsers not applicable base.htm Section B.5, "AppletViewer"

Internet Explorer 5 with Native JVM

 Client Browser Support B-3

B.3.2.1 Checking Microsoft JVM
1. Launch Microsoft Internet Explorer 5.

2. Choose View Java Console to display the Java Console.

3. The Java Console should display and should report that the Microsoft VM for
Java version is 5.0.0.3167 (or higher).

B.3.2.2 Java 1.1 Applet Testing
Use the examples on the JavaSoft Web site
(http://www.javasoft.com/applets/jdk/1.1/index.html) to test the browser’s
ability to run Java 1.1 applets. If the applets do not appear, re-check each of the
steps you took to configure your browser and check your JVM, then repeat the test.

B.3.3 Launching Oracle Forms Applications
Once you have completed installation and configuration and successfully tested the
execution of Java applets in the browser, you should be able to run Oracle Server
applications successfully in Microsoft Internet Explorer 5.

Use standard Java <APPLET> tags in the application’s base HTML file. Do not use
the Oracle JInitiator specific <EMBED> and <OBJECT> tags. See Section B.3.5,
"Modification of the baseie.htm file" for an example of an HTML file with standard
Java <APPLET> tags.

B.3.4 Troubleshooting
The Oracle Form Services application does not display when it is run.

This is typically caused by an error in the configuration of Internet Explorer 5. Look
at the Java Console output to see more informative error messages. Select
View Java Console from the top level menu. Check the output in the console
against typical error messages, which are discussed below.

The Applet does not start and the error message
"java.lang.ClassNotFoundException: sun.applet.AppletViewer" is displayed.

This error message indicates that the version of Oracle Form Services is not
6.0.5.30.2. Earlier versions of Oracle Forms Server 6.0 required that this class file be
present on the client machine. Install Oracle Form Services 6i Release 2.

The Applet does not start and, the error message
"com.ms.security.SecurityException[oracle/forms/engine/Main.init]: cannot access
file C:\WINNT\Java\.hotjava" is displayed.

Oracle JInitiator

B-4 Deploying Forms Applications to the Web

This error message indicates that the security settings have not been configured to
allow Java applications in the Intranet Zone to run outside of the Java sandbox.
Microsoft Internet Explorer 5 indicates which Zone the page was loaded from in the
bottom right-hand corner. This should display the words Intranet Zone. If you are
using a proxy server, check to see that the host Form Services is running on will
bypass the proxy server.

B.3.5 Modification of the baseie.htm file
This is an example of a base HTML file that uses the standard Java <APPLET> tags
to launch the Form Services Java client. An example of an HTML page suitable for
use with standard Applet tags, baseie.htm is shipped with the Form Services
product.

<HTML>
<BODY>
<APPLET

CODEBASE="/web_forms/"
CODE="oracle.forms.engine.Main"
WIDTH="800"
HEIGHT="600">
<PARAM NAME="serverPort" VALUE="9000">
<PARAM NAME="CABBASE" VALUE="f60all.cab">
<PARAM NAME="serverArgs" VALUE="module= grid2.fmx userid=scott/tiger ">
<PARAM NAME="lookAndFeel" VALUE="oracle">
<PARAM NAME="colorScheme" VALUE="Titanium">

</APPLET>
</BODY>
</HTML>

B.4 Oracle JInitiator
This section describes the benefits of using Oracle JInitiator as a plug-in for your
users’ Web browsers. Oracle JInitiator makes it possible for users to run Form
Services applications using Netscape Navigator or Internet Explorer. It provides the
ability to specify the use of a specific Java Virtual Machine (JVM) on the client,
rather than using the browser's default JVM.

Oracle JInitiator runs as a plug-in for Netscape Navigator and as an ActiveX
component for Internet Explorer. Oracle JInitiator does not replace or modify the
default JVM provided by the browser. Rather, it provides an alternative JVM in the
form of a plug-in.

Oracle JInitiator

 Client Browser Support B-5

Oracle provides two JAR files (f60all.jar and f60all_jinit.jar). f60all.jar is a standard
JAR file, and f60all_jinit.jar is a JAR file with extra compression that can only be
used with Oracle JInitiator.

B.4.1 Why Use Oracle JInitiator?
Oracle JInitiator delivers a certified, supportable, Java Runtime Environment (JRE)
to client desktops, which can be launched transparently through a Web browser.

Oracle JInitiator is Oracle's version of JavaSoft’s Java Plug-in. The JavaSoft Plug-in
is a delivery mechanism for a JavaSoft JRE, which can be launched from within a
browser. Likewise, Oracle JInitiator is providing a delivery mechanism for an Oracle
certified JRE, which enables Forms Developer applications to be run from within a
browser in a stable and supported manner.

In addition to providing a certified platform for the execution of Forms Developer
applications, Oracle JInitiator provides a number of additional features over and
above the standard JavaSoft Java Plug-in. These include JAR file caching,
incremental JAR file loading, and applet caching.

B.4.2 Benefits of Oracle JInitiator
Oracle JInitiator provides these benefits:

■ It allows the latest Oracle-certified JVM to run in older browser releases.

■ It ensures a consistent JVM between different browsers.

■ It is a reliable deployment platform. JInitiator has been thoroughly tested and
certified for use with Form Services.

■ It is a high-performance deployment environment. Application class files are
automatically cached by JInitiator, which provides fast application start-up.

■ It is a self-installing, self-maintaining deployment environment. JInitiator
automatically installs and updates itself like a plug-in or an Active-X
component. Locally cached application class files are automatically updated
from the application server.

B.4.3 Using Oracle JInitiator
The first time the client browser encounters an HTML file that specifies the use of
Oracle JInitiator, it is automatically downloaded to a client machine from the
application server. It enables users to run Forms and Graphics applications directly

Oracle JInitiator

B-6 Deploying Forms Applications to the Web

within Netscape Navigator or Internet Explorer on the Windows 95 and Windows
NT 4.0 platforms.

The installation and updating of Oracle JInitiator is performed using the standard
plug-in mechanism provided by the browser. Oracle JInitiator installation performs
the required steps to run Forms Developer applications as trusted applets in the
Oracle JInitiator environment.

Note: For client browsers using Oracle JInitiator, version 1.1.7.30 of JInitiator is required to use the
HTTP and HTTPS modes.

B.4.4 Supported Configurations
Oracle JInitiator supports the following configurations:

B.4.5 System Requirements
The minimum system requirements for Oracle JInitiator are:

■ Windows 95 or Windows NT 4.0

■ Pentium 90 mHz or better processor

■ 12MB free hard disk space (recommended 20MB)

■ 16MB system RAM (recommended 24MB)

B.4.6 Using Oracle JInitiator with Netscape Navigator
Oracle JInitiator leverages the Netscape Navigator plug-in architecture in order to
run inside the browser in the same way other plug-ins, such as QuickTime movies
or Shockwave animations operate. Using the Netscape HTML <EMBED> tag, Web
application developers can specify that plug-ins run as part of a Web page. This is
what makes it possible for Oracle JInitiator to run inside the Web browser with
minimal user intervention.

When Navigator first encounters an HTML page that specifies the use of Oracle
JInitiator, users will see a "Plug-in Not Loaded" dialog on the HTML page, which
directs the user to the Oracle JInitiator download page. Users can then download
the version of Oracle JInitiator for their operating system and install it.

Internet Explorer 4.0 Internet Explorer 5 Navigator 4.0 Navigator 4.5

Windows 95 X X X X

Windows NT X X X X

Oracle JInitiator

 Client Browser Support B-7

Once Oracle JInitiator is installed, users must shut down Navigator, restart it, and
then revisit the original HTML page. Oracle JInitiator will then run and use the
parameters in the <EMBED> tag to render the applet. The next time Navigator
encounters a Web page that specifies Oracle JInitiator, Navigator will seamlessly
load and run the plug-in from the local disk, without user intervention.

B.4.7 Using Oracle JInitiator with Microsoft Internet Explorer
Oracle JInitiator leverages the Microsoft Internet Explorer extension mechanism for
downloading and caching ActiveX controls and COM components. Using the
HTML <OBJECT> tag, Web application developers can specify that ActiveX
controls or COM components should run as part of a Web page. Such components
include Oracle JInitiator.

When Internet Explorer first encounters an HTML file that has been modified to
specify the use of Oracle JInitiator, Internet Explorer will ask the user if it is okay to
download an ActiveX control signed with a VeriSign digital signature by Oracle
Corporation. If the user clicks "Yes," Internet Explorer will begin downloading
Oracle JInitiator. Oracle JInitiator will then run and use its parameters in the
<OBJECT> tag to render the applet. The next time Internet Explorer encounters a
Web page modified to support Oracle JInitiator, it will seamlessly load and run
Oracle JInitiator from the local disk, without user intervention.

B.4.8 Setting up the Oracle JInitator Plug-in
To set up the Oracle JInitiator plug-in:

■ Add Oracle JInitiator HTML markup to your base HTML file.

■ Install Oracle JInitiator on your server (for server-based testing purposes only).

■ Customize the Oracle JInitiator download file.

■ Make Oracle JInitiator available for download.

B.4.8.1 Adding Oracle JInitiator Markup to Your Base HTML File
To add Oracle JInitiator markup to your base HTML file:

1. Open your base HTML file within a text editor.

2. Add the OBJECT and EMBED tags.

For examples of added markup, refer to Section B.4.10, "Oracle JInitiator tags for
a base HTML file".

Oracle JInitiator

B-8 Deploying Forms Applications to the Web

B.4.8.2 Customizing the Oracle JInitiator Download File
The Oracle JInitiator download file (JINIT_DOWNLOAD.HTM) is the template
HTML file that allows your users to download the Oracle JInitiator file.

To customize the Oracle JInitiator download file:

1. Open the JINIT_DOWNLOAD.HTM file within an HTML or text editor.

2. Modify the text as desired.

3. Save your changes.

B.4.8.3 Making Oracle JInitiator available for download
To make Oracle JInitiator available for download:

1. Copy jinit11x.EXE to your Web server.

You must copy jinit11x.EXE to the location that was specified within the base
HTML file.

2. Copy JINIT_DOWNLOAD.HTM to your Web server.

You must copy JINIT_DOWNLOAD.HTM to the location that was specified
within the base HTML file.

B.4.9 Modifying the Oracle JInitiator plug-in
To modify the Oracle JInitiator plug-in:

■ Modify the cache size for Oracle JInitiator.

■ Modify the heap size for Oracle JInitiator.

■ Check and modify the proxy server setting for Oracle JInitiator.

■ View Oracle JInitiator output.

B.4.9.1 Modifying the cache size for Oracle JInitiator
To modify the cache size for Oracle JInitiator:

1. From the Start menu, choose Start Programs Oracle JInitiator Control
Panel.

2. Click the Basic tab.

Oracle JInitiator

 Client Browser Support B-9

3. In the Java Run Time Parameters field, specify the Dcache size. For example,
specifying Dcache.size=20000000 sets the cache size to 20MB.

The default cache size for Oracle JInitiator is 20000000. This is set for you when you
install Oracle JInitiator.

B.4.9.2 Modifying the heap size for Oracle JInitiator
To modify the heap size for Oracle JInitiator:

1. From the Start menu, choose Start Programs Oracle JInitiator Control
Panel.

2. Click the Basic tab.

3. In the Java Run Time Parameters field, specify the mx size. For example,
specifying mx64m means setting maximum heap size to 64MB.

The default maximum heap size for Oracle JInitiator is 64MB. This has been set for
you when you install Oracle JInitiator.

B.4.9.3 Check and modify the proxy server setting for Oracle JInitiator
To check and modify the proxy server setting for Oracle JInitiator:

1. From the Start menu, choose Start Programs Oracle JInitiator Control
Panel.

2. Click the Proxies tab.

3. Select the Use Browser Settings checkbox to allow Oracle JInitiator to use the
settings in your browser’s configuration dialog box. If you want to use another
proxy server setting, be sure the box is not checked. Then, enter the host name
for the proxy server in the Proxy Address field.

B.4.9.4 Viewing Oracle JInitiator output
To view Oracle JInitiator output:

1. From the Start menu, choose Start Programs Oracle JInitiator Control
Panel.

2. Click the Basic tab.

3. Check the Show Java Console check box to enable debug output.

Oracle JInitiator

B-10 Deploying Forms Applications to the Web

B.4.10 Oracle JInitiator tags for a base HTML file
This example illustrates the Oracle JInitiator markup for both Microsoft Internet
Explorer and Netscape Navigator. Adding these tags to your base HTML file will
enable your applications to run within both Netscape and Microsoft browsers.

 <HTML>
 <BODY>
 <P>
 <OBJECT classid="clsid:9F77a997-F0F3-11d1-9195-00C04FC990DC"
 WIDTH=600
 HEIGHT=480
 codebase="http://acme.com/jinit11711.exe#Version=1,1,7,11">
 <PARAM NAME="CODE" VALUE="oracle.forms.engine.Main" >
 <PARAM NAME="CODEBASE" VALUE="/forms60code/" >
 <PARAM NAME="ARCHIVE" VALUE="/forms60code/f60all.jar" >
 <PARAM NAME="type" VALUE="application/x-jinit-applet;version=1.1.7.11">
 <PARAM NAME="serverPort" VALUE="9000">
 <PARAM NAME="serverArgs" VALUE="module=order.fmx">
 <PARAM NAME="serverApp" VALUE="default">
 <COMMENT>
 <EMBED type="application/x-jinit-applet;version=1.1.7.11"
 java_CODE="oracle.forms.engine.Main"
 java_CODEBASE="/forms60code/"
 java_ARCHIVE="/forms60code/f60all.jar"
 WIDTH=600
 HEIGHT=480
 serverPort="9000"
 serverArgs="module=order.fmx"
 serverApp="default"
 pluginspage="http://acme.com/jinit_download.htm">
 <NOEMBED>
 </COMMENT>
 </NOEMBED></EMBED>
 </OBJECT>
 </BODY>
 </HTML>

Oracle JInitiator

 Client Browser Support B-11

B.4.11 Oracle JInitiator FAQ
The most frequently asked questions about Oracle JInitiator are discussed in detail
in the following sections:

■ Certification and Availability

■ Support

■ Installation

■ Operation of Oracle JInitiator

■ Caching

B.4.11.1 Certification and Availability
When will Oracle JInitiator be available?

Oracle JInitiator has been available since September 1998 for the deployment of
custom Forms Developer applications. Oracle Applications completed certification
of Oracle JInitiator in February 1999.

How is Oracle JInitiator distributed?

Starting with release 6i of Forms Developer, Oracle JInitiator will be shipped as part
of the Forms Developer distribution CD. Oracle JInitiator is also available for
download from the Forms Developer section of the Oracle Web site:
http://www.oracle.com/tools/dev_server. Updates for Oracle JInitiator may also
be obtained through the Oracle Worldwide Support Organization.

Will Oracle JInitiator work on non-Windows platforms?

Oracle has no current plans for porting Oracle JInitiator to non-Microsoft Windows
platforms. However, we are working very closely with a number of hardware
vendors to provide support and certification for running Forms Developer
applications on non-Microsoft Windows platforms.

What versions of Netscape Navigator and Internet Explorer is Oracle JInitiator
certified with?

Oracle JInitiator will be certified with the latest production releases of these
browsers when each Oracle JInitiator release undergoes final QA testing. Oracle
will also be providing support for earlier releases of the browsers. The exact
browser versions that have been certified will be contained in the accompanying
documentation for an Oracle JInitiator release.

Oracle JInitiator

B-12 Deploying Forms Applications to the Web

What is the difference between the JavaSoft Java Plug-in and Oracle JInitiator?

The primary difference is that Oracle JInitiator includes the Oracle certified JRE
whereas the JavaSoft Java Plug-in is shipped with a JavaSoft JDK reference
implementation. JavaSoft’s implementation has not been certified with Forms
Developer applications. Forms Developer places extreme demands on the JRE; so
we have modified JavaSoft’s JRE to perform under extreme conditions.

While Oracle is diligent in notifying JavaSoft of its enhancements, it is not possible
to wait until JavaSoft can provide a new version with the included enhancements.

The JavaSoft Plug-in is a delivery mechanism for a JavaSoft JRE which can be
launched from within a browser. Likewise, Oracle JInitiator is providing a delivery
mechanism for an Oracle certified JRE, which enables Forms Developer applications
to run within a browser in a stable and supported manner.

Since Oracle is responsible for the production of Oracle JInitiator, we provide full
product support for it. Through the Oracle World Wide Support Organization,
Oracle customers can obtain the relevant level of support required to support their
applications.

In addition to providing a certified platform for the execution of Forms Developer
applications, Oracle JInitiator provides a number of additional features over and
above the standard JavaSoft Java Plug-in. These features include JAR file caching,
incremental JAR file loading, and applet caching.

Why is Oracle certifying and delivering a specific JRE rather than using the JRE
provided by JavaSoft?

Forms Developer has responded to its customers who are moving to server-based
deployment as a way to reduce computing costs, but also realize the need to protect
their investment in existing applications that are essential to their business.

Providing our customers with the ability to run their existing applications
completely unchanged on a Java platform places unique demands on Java,
especially given that many of these applications are large and complex.

Can the JavaSoft Java Plug-In be used to run Forms Developer applications?

Using the JavaSoft Plug-In to deploy Forms Developer applications has not been
certified and is therefore not a supported deployment configuration. Today, the JRE
provided by Oracle JInitiator includes a number of enhancements that are not yet
available in the JRE provided by JavaSoft. In addition, Oracle is able to provide full
support for the Oracle JInitiator through the Oracle Worldwide Support
Organization.

Oracle JInitiator

 Client Browser Support B-13

Does Oracle intend to support native browser deployment?

The primary problem with providing native browser support is the dependence on
browser vendors and platform providers to support the same version and quality
level of Java that is required by Form Services. This dependency has prevented
Oracle from certifying native browser deployment as a deployment option in the
timeframe that our customers require. Therefore, we are fully endorsing Oracle
JInitiator as our Internet application deployment strategy. This ensures a stable and
supported platform on which to deploy Form Services applications.

B.4.11.2 Support
Who will provide support for Oracle JInitiator?

Oracle Corporation provides full support for Oracle JInitiator through the Oracle
Worldwide Support Organization.

Which versions of Form Services does Oracle JInitiator support?

Oracle will support Form Services Release 1.6 and later with Oracle JInitiator
running on the client.

Is Oracle JInitiator supported with Oracle Applications?

Yes. The Oracle Applications group has certified the use of Oracle JInitiator for the
running of Oracle Applications within Netscape Navigator 4.06 and later and
Microsoft Internet Explorer 4.0 and later.

B.4.11.3 Installation
What do I need to install on the client in order to run Forms Developer
applications in the Web browser?

By leveraging the standard browser extension mechanisms provided by both
Netscape Navigator and Microsoft Internet Explorer, Oracle JInitiator is able to
automatically download itself to the client machine when the browser first
encounters an HTML page that requires it. Oracle JInitiator is then installed using
the method required for the addition of Plug-ins or ActiveX Objects by the browser
currently in use.

Oracle JInitiator

B-14 Deploying Forms Applications to the Web

How large is Oracle JInitiator when it is downloaded to the client?

The compressed Oracle JInitiator distribution is approximately 8MB and expands to
approximately 10MB when completely installed on the client.

Is it possible to perform a silent installation of Oracle JInitiator where the user
does not have to enter any details?

Oracle JInitiator supports a silent installation mode in which the user doesn’t need
to actively step through the installation process provided by the InstallShield. To
perform the silent installation, the user must download the Oracle JInitiator
distribution to their machine and then specify "-s -sm" from the command line or
from the Windows Run dialog when running the downloaded executable.

For example to perform a silent installation from the command line, the user would
open a DOS shell and type:

C:\TEMP> jinit.exe -s -sm

To perform a silent installation using the Windows Run dialog, the user would click
Start Run and then enter jinit.exe -s -sm in the Run dialog window that
appears:

Is it possible to perform the Oracle JInitiator installation from a central server
such that user interaction is not required?

Using the facilities provided by the host operating systems, it is possible to install
Oracle JInitiator on each client desktop without user intervention. This involves the
System Administrator accessing each client machine and running the silent,
non-GUI installation option of Oracle JInitiator.

Can I force Oracle JInitiator to use the same configurations for Proxy Servers, etc.
as the browser in which it is running?

The operation of Oracle JInitiator is controlled via the Oracle JInitiator Control
Panel. The Oracle JInitiator Control Panel is installed at the same time Oracle
JInitiator is installed and can be accessed from the Start Programs menu.

With the Oracle JInitiator Control Panel, you can configure Oracle JInitiator to use
either its own specific Proxy settings or the defaults supplied by the browser from
which it is invoked. Select the Proxies tab and insert the appropriate settings.

How can I force my browser clients to download and install a new version of
Oracle JInitiator?

Oracle JInitiator functions as a Netscape Plug-in or a Microsoft ActiveX object
depending on the type of browser being used. The browser uses a MIME type to
provide a mapping between an HTML page request and the required

Oracle JInitiator

 Client Browser Support B-15

Plug-in/ActiveX object. Each Oracle JInitiator installation has a specific MIME type
associated with it. When a browser loads an HTML page that contains a MIME type
that it is not aware of, the browser informs the user that it does not have the
required Plug-in/ActiveX object and will open a dialog that will help the user
retrieve it.

By changing the MIME type specified in your application’s HTML page to be a later
version, the browser will detect that it does not have a valid Plug-in/ActiveX object
for that MIME type and will prompt the user to download a new file so it can serve
the request completely.

For example:

An HTML page HR.HTML allows users to run the HR application. The HR.HTML
page indicates to the browser that it should use Oracle JInitiator version 1.1.5.21.1
through the MIME type value.

If a later release of Oracle JInitiator is obtained and placed on the server, the client
browser can be forced to use the newer version by modifying the version specific
lines in the HR.HTML file with the newer version release information.

I pressed the Cancel button on the Netscape "Plug-in Not Loaded" dialog and
now I never get prompted to install Oracle JInitiator. How do I install the
Plug-in?

Netscape uses the Windows registry to store information about installed Plug-ins.
As soon as the "Plug-in Not Loaded" dialog appears, Netscape writes the details for
the Plug-in into the registry, irrespective of whether the Plug-in is actually installed
or not. When a page is encountered that calls for the use of that specific Plug-in, it
will appear to Netscape that the Plug-in is installed because the registry says it was.
This results in the "Plug-in Not Loaded" dialog box not being shown again. To
overcome this, you can force Netscape to load a Plug-in by clicking the Plug-in
missing icon. This will result in Netscape displaying the Plug-in download dialog.

I have a lot of HTML pages that have different MIME types in them. Will the
latest Oracle JInitiator release still run with these earlier MIME types?

Currently the Netscape browser has limit of 256 characters that may be used to store
the recognized MIME types for a particular Plug-in. Microsoft Internet Explorer
does not have this restriction with their extensible browser Objects architecture.
Working within this limit, Oracle JInitiator will provide backward support for as
many earlier MIME types as is possible.

The accompanying documentation and release notes for an Oracle JInitiator release
will provide an accurate description of what MIME types are supported for that
specific release.

Oracle JInitiator

B-16 Deploying Forms Applications to the Web

Is it possible to make Forms Developer applications run in any version of Oracle
JInitiator?

Yes. Oracle provides a generic MIME type that will allow any installed version of
Oracle JInitiator to run the Forms Developer Application. This MIME type
application, x-jinit-applet, is recognized by every version of Oracle JInitiator.
Always using this MIME type will enforce the upgrading of later Oracle JInitiator
versions by the browser.

B.4.11.4 Operation of Oracle JInitiator
Can the Forms Applet window be run within the same browser window from
which it was launched?

Forms Server Release 6i supports the running of the Forms applet both within the
same browser window and in a new window. This is a configurable option and is
set as a parameter in the base HTML file.

What happens to the running Forms Developer application if the user navigates
off of the current browser page?

Oracle JInitiator contains an additional feature that allows a running Java
application to be cached and retrieved when required during the current browser
session. This means that when a Forms application is run and the user navigates to
a different page and then comes back to the Forms application page, the running
Forms application will appear exactly as it was when the user left it.

Can I use the Oracle JInitiator to run my custom developed Java applications?

Oracle JInitiator uses a standard JavaSoft JVM that has been enhanced by the Oracle
development team. It should be capable of running custom Java applications.
However at this time, Oracle only provides support for Oracle JInitiator when
running Oracle Java-based applications, such as Forms Developer, Oracle Enterprise
Manager, and Oracle Discoverer. The use of Oracle JInitiator to run custom Java
applications is not supported by Oracle.

Can Oracle JInitiator and the JavaSoft Java Plug-in coexist on the same machine?

Yes. They can coexist in the same browser installation because they use different
MIME types to launch the plug-in.

Will Oracle JInitiator coexist and operate correctly when used at the same time as
the Javasoft Plug-in, in the same browser instance?

No. Due to the way that dynamically loadable libraries are loaded and the JVM
dynamically loadable libraries are named, the Oracle JRE and the JavaSoft JRE can
not be run simultaneously from within the same browser instance. This means that

Oracle JInitiator

 Client Browser Support B-17

a browser user cannot switch from using the JavaSoft Java Plug-in to Oracle
JInitiator in the same browser instance. The browser must be stopped and restarted
when switching between the different applications that use Oracle JInitiator and
Java Plug-in from JavaSoft.

With the JavaSoft Java Plug-in and Oracle JInitiator there is an option to use a
different JRE. Can I use the JavaSoft Java Plug-in when it is configured to use
the Oracle certified JRE to run Forms Developer applications?

The only certified and supported combination is Oracle JInitiator with Oracle JRE.
The Oracle JRE, while conforming to the JavaSoft standard, contains bug fixes to the
JavaSoft JRE that allow Forms Developer applications to run correctly. Oracle works
closely with Javasoft to ensure that Oracle’s enhancements are communicated to
JavaSoft and applied to the standard JRE, but is unable to wait for the improved
JavaSoft JRE to be released.

The figure below shows the Oracle JInitiator Control Panel and the correct settings
for the Java Run Time Environment value.

B.4.11.5 Caching
Can Oracle JInitiator cache the Java class files downloaded when an application
is run? If so, does this mean the Java class files are downloaded only once and
not each time the application is started?

Yes. Oracle JInitiator provides a persistent caching mechanism for JAR files that it
downloads when running Java applications. A JAR file is a standard Java archive
that contains a series of Java class files that are used by the Java application. By
putting all the required class files into a single JAR file, a single download is
performed rather than multiple downloads for each individual class file required.

By caching the JAR files on the client, Oracle JInitiator alleviates the need to
download the JAR files each time they are required for an application. The first
time a JAR file is required it is downloaded from the Web server and then saved to
the local client machine. The next time it is required, Oracle JInitiator will look into
the cache directory to see if the file is stored there; if it is, it will use it from the local
directory and avoid having to re-download the file from the Web server. This saves
a lot of user time and network traffic for commonly used applications. For example,
if your application uses a 2MB JAR file and you have a fast Ethernet connection that
is capable of downloading a 2MB file in 5 seconds then you will save 5 seconds at
application startup. If you are running on a slow dial-up network that takes 10
minutes to download a 2MB file, then you will save 10 minutes at application
startup.

Oracle JInitiator

B-18 Deploying Forms Applications to the Web

How does Oracle JInitiator caching technology work?

Oracle JInitiator provides browser-session-independent caching of JAR files. Oracle
JInitiator stores the downloaded JAR files on the local client machine so that it does
not need to download them the next time they are required.

When a JAR file is requested, Oracle JInitiator will check the cache directory to
determine if the file has been previously requested, downloaded, and stored. If the
JAR file is not present, Oracle JInitiator will download the JAR file from the Web
server and then store it for future use in the cache. Some additional information is
stored in the cache file to enable Oracle JInitiator to uniquely identify the JAR file as
well as the Last-Modified date of the requested file as reported by the Web server.

If the file is present in the cache, then the Web server must be checked to determine
if the stored JAR file is current. Oracle JInitiator takes the Last-Modified date
contained in the cached JAR file and asks the Web server (using standard HTTP
interactions) if the file on the server has been modified. The Web server uses the
given Last-Modified date and the timestamp on the file stored on the server. Then it
either serves the newer file to Oracle JInitiator with a status code of 200 or returns a
status code of 304, which indicates that the file in the cache is current.

If the cached JAR file is not current, a new one is downloaded and stored for future
use in the cache directory. If the file is current, Oracle JInitiator loads it from the
cache directory and updates the timestamp on the cached file to indicate the last
time it was used.

Where do the cached JAR files get stored?

By default, Oracle JInitiator stores the downloaded JAR files in the jcache
subdirectory, which is located in the Oracle JInitiator installation directory.

Why does the jcache directory contain strange names for the cached JAR files?

Since each JAR on a Web server can be identified by a URL (URL = codebase + JAR
filename), the Oracle JInitiator caching mechanism uses this to uniquely identify the
JAR file. On Windows operating systems, since the full URL is not a valid filename
for a file, Oracle JInitiator transforms it via a simple hashing algorithm into an
acceptable filename and then uses this as the stored JAR filename. When a request is
made for a JAR file, Oracle JInitiator performs the hashing algorithm on the
complete URL and then checks to see if the resulting filename exists in the cache.

How does JAR file caching work with server load balancing?

As outlined previously, JAR files are identified in the cache based on the URL from
which they were retrieved. Consequently, the same JAR file from different servers
will be downloaded from each different server. This is done deliberately to ensure

Oracle JInitiator

 Client Browser Support B-19

security and application integrity. If JAR files were cached solely using their name,
then a malicious application could replace the JAR file from another application.
When the original application was run, the Java class files would be different. Also,
since JAR files are not guaranteed to have unique names, it is possible for JAR files
to collide. This would happen where two different applications use the same JAR
filename, but require different class files from the JAR file.

It appears that the timestamp on the cached JAR files is updated every time I run
an Forms Developer application. Is this normal? Does it mean that the file is
being downloaded every time?

No. Oracle JInitiator supports a configurable cache maximum size. Every time a
cached JAR file is used, Oracle JInitiator updates the timestamp to indicate the date
and time that the cached file was last used.

If the cache size grows to the point where files must be removed in order to
maintain the maximum cache size, Oracle JInitiator uses the timestamp of the cache
files to determine which is the least recently used file and then removes that.

How can I tell that my cache is functioning correctly and that the JAR files are not
being downloaded every time?

When Oracle JInitiator needs to download a required file, it does so via the Web
server that has been configured to run Forms Developer applications. Modern Web
servers support the use of log files that enable the tracking of what files have been
downloaded, by whom, and when. The Web server log file uses a standard format
to describe the transactions that have occurred. This log format includes the name
of the requested item and the result of the request. The result of the request is
indicated using a set of standard HTTP status codes.

If the JAR file was downloaded to the client, the log file will contain the name of the
requested JAR file and the HTTP status code 200. If the JAR file was not
downloaded because the timestamp on it was earlier than the cached file
timestamp, then the log file will contain the name of the requested JAR file and the
HTTP status code 304.

The following example shows an entry made in a log file using standard NCSA log
formatting when the JAR file in the cache is not current and must be downloaded
from the Web server.

ferret.us.oracle.com - - [19/Feb/1999:17:40:12 -0800] "GET
/forms_java/f60all.jar HTTP/1.0" 200 -

The following example shows an entry made in a log file using standard NCSA log
formatting when the JAR file in the cache is current and is therefore not
downloaded from the Web server.

AppletViewer

B-20 Deploying Forms Applications to the Web

ferret.us.oracle.com - - [19/Feb/1999:17:42:29 -0800] "GET
/forms_java/f60all.jar HTTP/1.0" 304 -

It seems that when the JAR file is downloaded, a .JCX file is created in the jcache
directory. What is this file?

As the JAR file is being downloaded a temporary copy of it is written to the file
system. This temporary copy is identified by the .jcx file extension. Once the
download has successfully completed, the .jcx file is moved to a .jc file. If the
download is interrupted at any point or the connection is dropped, the operation
will not be complete and the temporary file will remain with a .jcx extension.
Oracle JInitiator will not load a file with a .jcx extension since it is not valid.

I’ve verified that the caching is working correctly, but my application is still
taking longer to start than I’d like. Why is that?

The JAR file caching provided by Oracle JInitiator does not perform any magic to
increase the speed of Java on your system. What it does is save you the time it
requires to download the required JAR files for each application startup. The
operation of unzipping a JAR file, loading the contained classes into memory, and
then authenticating them to ensure that they have not been tampered with takes a
significant amount of the startup time. In fact, on a very fast network the amount of
time taken to download the JAR file will be smaller than the amount of time
required to load the Java classes into memory and perform the authentication. This
means that caching saves you very little in terms of overall application startup. On a
slower network, the time required to download JAR files will become
proportionately larger in the overall startup time, so JAR file caching becomes more
important.

B.5 AppletViewer
This section describes the AppletViewer. The AppletViewer is a JDK component
and an Oracle-supported product that client machines use to view applications
running on the Form Services. Upgraded versions are available for download from
the Forms Developer Web site.

Oracle provides the f60all.jar file for use with AppletViewer.

Note: The AppletViewer is only supported on Windows 95 and Windows NT 4.0.

Note: For client browsers using AppletViewer, the HTTPS connection mode is not supported.

AppletViewer

 Client Browser Support B-21

B.5.1 Running Applications in the AppletViewer
To run applications in the AppletViewer, you must complete the following steps:

■ Prepare to run your application with the AppletViewer.

■ Add the clientBrowser parameter to your base HTML file.

■ Set the clientBrowser parameter.

When running your application in the AppletViewer, requests to show a URL (for
example, web.showDocument and RUN_PRODUCT) will be ignored by the
AppletViewer. If this is the case, you will need to follow the process to trust the
Forms applet, as described later in this chapter in Section B.5.2.1, "Trusting the
Forms Applet by Registering Its Signature".

B.5.1.1 Preparing to Run Your Application with the AppletViewer
In order to prepare to run your application within the AppletViewer, make the
AppletViewer available for download and inform your users that they will have to
install the AppletViewer on their client machines. Complete the following:

1. Customize JDK_DOWNLOAD.HTM.

JDK_DOWNLOAD.HTM is the template HTML file that allows your users to
download the AppletViewer.

2. Copy JDK.EXE to your Web server.

You must copy JDK.EXE to the location specified within JDK_
DOWNLOAD.HTM.

3. Copy JDK_DOWNLOAD.HTM to your Web server.

You must copy JDK_DOWNLOAD.HTM to the location specified within JDK_
DOWNLOAD.HTM.

B.5.1.2 Adding the clientBrowser Parameter to your Base HTML File
To use the clientBrowser parameter, you must have security permissions to issue a
system call that executes the named application. In general, when loading Java class
files, the Forms applet is not trusted and, as such, cannot issue such system calls.
However, when the Forms applet is trusted, it is able to issue these calls. The Forms
applet is considered trusted when one of the following is true:

AppletViewer

B-22 Deploying Forms Applications to the Web

■ The Forms applet signature is "registered" on the client machine as described in
Section B.5.2.1, "Trusting the Forms Applet by Registering Its Signature".

■ The Forms Java class files are installed locally on the client system and the
CLASSPATH environment variable is set as described in Section B.5.2.2,
"Trusting the Forms Applet by Installing the Forms Java Class Files Locally".

These HTML file examples assume that you trusted the Forms applet by registering
its signature on your machine. If you trusted the Forms applet by locally installing
the Forms Java class files instead, you should not download the F60ALL.JAR file.
Therefore, remove the ARCHIVE="/.../f60all.jar" applet tag from your HTML file.

B.5.1.3 Setting the clientBrowser Parameter
To set the clientBrowser parameter, do one of the following:

■ Add the clientBrowser parameter to your HTML file.

■ Add the clientBrowser parameter to your HTML file, and have each client
modify their JDK_SETUP.BAT file.

Add the clientBrowser Parameter to Your HTML File.

This option assumes that every client has its browser executable installed into the
same physical directory because the physical path of the browser is hard-coded in
the HTML file. For example:

<APPLET CODEBASE="/forms60code/"
 CODE="oracle.forms.engine.Main"
 ARCHIVE="/forms60code/f60all.jar"
 HEIGHT=480
 WIDTH=640>
 <PARAM NAME="serverArgs" VALUE="module=start.fmx userid=scott/tiger">
 <PARAM NAME="clientBrowser"
 VALUE="c:\programfiles\netscape\communicator\program\netscape.exe">
</APPLET>

Add the clientBrowser Parameter to Your HTML File and Have Each Client
Modify Their JDK_SETUP.BAT File.

This option is best if there is a possibility that clients have installed their browser
executables into different physical directories. It does assume, however, that all
clients are using the same browser. For example, the HTML file might look like this:

<APPLET CODEBASE="/forms60code/"
 CODE="oracle.forms.engine.Main"
 ARCHIVE="/forms60code/f60all.jar"
 HEIGHT=480
 WIDTH=640>

AppletViewer

 Client Browser Support B-23

 <PARAM NAME="serverArgs" VALUE="module=start.fmx userid=scott/tiger">
 <PARAM NAME="clientBrowser" VALUE="netscape">
</APPLET>

And JDK_SETUP.BAT would look like this:

 SET CLASSPATH=C:\ORANT\JDK1.1\JDK\LIB\CLASSES.ZIP
 PATH C:\PROGRAM FILES\NETSCAPE\COMMUNICATOR\PROGRAM;
 C:\ORANT\JDK1.1\JDK\BIN;%PATH%

B.5.2 Registering the Forms Applet Signature
A signature allows client machines to verify that a file has been downloaded from a
valid and trusted entity (a signer). This allows client machines to protect themselves
from malicious or malfunctioning Java archive (JAR) files. In order for a JAR file to
be validated by a client, the signature of that file must be registered on the client
machine. Javakey is a Sun Microsystems command-line tool that generates digital
signatures for JAR files.

The Forms applet is itself a signed JAR file. You have two options for registering the
Forms applet signature. Choose one of the following:

■ Register the signature on your client machine(s) using the Forms applet
signature we provide.

■ Re-sign the Forms applet with your own signature and register that signature
on your client machine(s). If you choose this method, please refer to
http://java.sun.com/security/usingJavakey.html for instructions on creating
and signing JAR files.

B.5.2.1 Trusting the Forms Applet by Registering Its Signature
To trust the Forms applet by registering its signature:

1. Copy the Forms Developer certificate to \<ORACLE_
HOME>\6iserver\FORMS60\JAVA on the client machine.

The certificate is a file named Dev.x509. It is located in \<ORACLE_
HOME>\6iserver\FORMS60\JAVA on the server.

2. Open a DOS Command Prompt, and navigate to \<ORACLE_
HOME>\6iserver\FORMS60\JAVA.

3. Type: javakey -c Developer true

AppletViewer

B-24 Deploying Forms Applications to the Web

This command creates a trusted identity for the AppletViewer on the client's
identity database using the exact name of the certificate provider.

4. Press Enter.

5. Type javakey -ic Developer Dev.x509

This command imports the Dev.x509 certificate into the client's JDK identity
database and associates the certificate with the trusted identity created in step 3.

6. Press Enter.

B.5.2.2 Trusting the Forms Applet by Installing the Forms Java Class Files
Locally
To trust the Forms applet by installing the Java class files locally:

1. Copy the \<ORACLE_HOME>\6iserver\FORMS60\JAVA directory to a new
directory on the client machine.

Copy this directory exactly; do not change the directory structure in any way.

2. Modify JDK_SETUP.BAT in your <ORACLE_HOME> directory:

a. Open JDK_SETUP.BAT in a text editor.

b. Modify the CLASSPATH environment variable to reference the new
directory.

c. Save your changes to JDK_SETUP.BAT.

B.5.3 Instructions for the User
To run an application from within the AppletViewer, complete the following steps:

■ Install the AppletViewer.

■ Run the AppletViewer.

■ Invoke a Web browser from within the AppletViewer.

B.5.3.1 Installing the AppletViewer
To install the AppletViewer, use the Oracle Installer to install the JDK
AppletViewer:

AppletViewer

 Client Browser Support B-25

1. Shut down any active Windows applications.

2. From the taskbar, choose Start Run.

3. In the Run dialog, type the following (where D: is your CD-ROM drive letter):
D:\setup.exe and click OK.

4. In the Oracle Installation Settings dialog, check the default values for your
company name and your <ORACLE_HOME> directory.

5. Click Oracle Form Services.

6. Click Custom.

7. From the list of Available Products, select JDK AppletViewer.

8. Click Install.

B.5.3.2 Running the AppletViewer
To run the AppletViewer:

1. From a DOS command, navigate to the AppletViewer executable
(appletviewer.exe).

2. Run the AppletViewer executable, specifying the host name, HTML file virtual
directory, and HTML file.

For example, type: appletviewer http://myhost.com/web_html/start.html

3. Press Enter.

B.5.3.3 Invoking a Web Browser From Within the AppletViewer
To invoke a Web browser from within the AppletViewer:

1. Trust the Forms using one of two methods:

■ Register the Forms applet signature.

■ Install the Forms Java class files locally.

2. Add the clientBrowser parameter to your base HTML file.

AppletViewer

B-26 Deploying Forms Applications to the Web

 Java Importer C-1

C
Java Importer

Oracle Forms Developer 6i includes the Java Importer. This appendix includes the
following sections covering the description and use of the Java Importer and the
resulting files.

■ Overview

■ Components

■ Installation Requirements

■ Importing Java

■ Building Applications with Imported Java

■ Limitations

■ ORA_JAVA Built-ins Reference

C.1 Overview

C.1.1 Importing Java and Building Applications
The Java Importer allows Forms developers to generate PL/SQL packages to access
Java classes and then program with the generated PL/SQL in their Forms
applications. The PL/SQL generated by the Java Importer is robust, offering
support for the original Java class’ constructors, methods, and fields.

Beyond simply mapping static methods to PL/SQL functions and procedures, the
Java Importer provides support for persistent Java objects, with support for type
mapping and array objects.

Forms developers can conveniently access the imported Java through the generated
PL/SQL using the new ORA_JAVA package and its built-ins. Internally, the

Components

C-2 Deploying Forms Applications to the Web

generated PL/SQL packages use the Java Native Interface (JNI) standard and an
internal JNI package to act as the bridge between PL/SQL and Java.

C.1.2 Running Applications with Imported Java
Imported Java runs in the middle tier. The corresponding generated PL/SQL
package calls into the Java class and the Java methods execute in a dedicated Java
Virtual Machine (JVM) on the Form Services. A dedicated JVM is created for each
Form Services application instance that uses the generated PL/SQL package to call
the imported Java.

C.2 Components
The Java Importer feature includes the following pieces:

■ the Java Importer tool

The importer tool runs in Form Builder, imports Java classes, and generates
PL/SQL packages that provide PL/SQL access to the imported Java. The
importer provides a variety of user options for generating the PL/SQL
packages.

■ the runform API, including the ORA_JAVA package

The ORA_JAVA package is a helper package that provides error handling, array,
and persistency support. (There is also an internal JNI package used to call Java
methods, but you do not need to know the contents of this package or call it
directly.)

C.3 Installation Requirements
The Java Importer is installed with Forms 6i Release 2. When installed, the JAR file
containing the Java Importer, importer.java, must be in CLASSPATH. By default, the
filesystem location for importer.java is ORACLE_
HOME/TOOLS/COMMON60/JAVA/importer.jar.

To enable importer operation, however, JDK or JRE 1.2 or higher must be installed
on both the builder and server machines.

C.3.1 Imported Java Requirements
To import any Java class with the Java Importer tool, the Java class must be located
in the system's CLASSPATH.

Importing Java

 Java Importer C-3

C.4 Importing Java

C.4.1 Using the Java Importer Tool
The Java Importer tool provides a convenient Java class browser to easily access and
import multiple Java classes. For each Java class selected and imported, the tool
generates a PL/SQL package in the current, open module in the object navigator.

C.4.2 Invoke the Import Java Classes dialog box
To display the Import Java Classes dialog box, choose Program->Import Java
Classes... from the main menu.

Importing Java

C-4 Deploying Forms Applications to the Web

The components and buttons in this dialog box are:

C.4.3 Specify options for importing
To display the Import Java Class Options dialog box, click Options... in the Import
Java Classes dialog box.

Select Java Classes
(browser)

The Class browser provides a hierarchical display of all the Java
class files in the order that are defined in the current
CLASSPATH environment variable.

The class files (represented by leaf nodes) are organized and
displayed in their packages (represented by folder nodes).

Expand/collapse a folder to show/hide the contents.

You can select one or more Java classes (SHIFT-Click in
Windows for multiple selection).

Import Classes This text box displays the fully qualified class names of the class
files you have selected. Multiple class names are separated by
semi-colons (;).

You can also type the fully qualified class name in this field,
which is case-sensitive, e.g., java.lang.String.

Messages This display-only panel shows the status during the importing
process.

Import This button starts the importing process.

Button is enabled when you have selected one or more class files
in the Class browser, or entered a fully qualified class name in
the text box.

Options... Displays the Import Java Class Options dialog box. See
Section C.4.3, "Specify options for importing".

Close Closes this dialog box.

Importing Java

 Java Importer C-5

The options are:

■ Include inherited methods/fields. Default is not checked. Check this box if you
want to map all the inherited methods and fields to procedures and functions.
This option generates functions and procedures for all methods contained in the
specific class and its predecessors.

■ Include get/set for public fields. Default is not checked. Check this box if you
want to map each public non-constant or non-static field to a function that gets
the value and to a procedure that sets the value.

■ Generate persistent names. Default is not checked. If unchecked, for
overloaded Java methods where the generated PL/SQL function and procedure
names cannot be resolved to unique PL/SQL signatures, an incremental
identifier is appended to the function or procedure name.

Check this box if the Java class you are importing will change and you want to
use the same persistent PL/SQL function, procedure, variable, and type names
throughout all the changes to the Java class. (Note: You must regenerate the
PL/SQL package to access the Java class changes in PL/SQL.) If checked,
generated PL/SQL function and procedure names for all Java methods include
persistent and unique 4-digit identifiers appended to the names.

The persistent identifier numbers are generated based on the method signature.
With "Generate Persistent names" selected, each time the same Java class is
imported with the Java Importer, the PL/SQL functions and procedures
generated for the same Java methods will have the same 4-digit identifiers
appended.

For more information and examples of the standard and persistent naming,
refer to Section C.5.1.4.1, "What is different between persistent and default
naming?"

■ Ask before overwriting existing packages. Default is checked. Uncheck this
box if you do not want to be prompted before existing PL/SQL packages are
overwritten by newly generated packages.

C.4.4 Import a Java class into PL/SQL
Take these steps to import one or more Java class files:

1. In Forms Builder, open the module (Form module, PL/SQL library, or Menu
module) where you want to place the generated PL/SQL packages.

2. Choose Program->Import Java Classes... from the menu to display the Import
Java Classes dialog box.

Building Applications with Imported Java

C-6 Deploying Forms Applications to the Web

3. In the Class browser, select one or more Java class files. You cannot select a
directory (folder).

If you do not see the Java class file you want to import, make sure the class file
is located in the current classpath.

Note: If you edit the CLASSPATH during a Form Builder session, you must
restart the builder so the Java Importer can pick up the CLASSPATH changes.

4. Click Options... to specify importing options, if required. For additional
information, see Section C.4.3, "Specify options for importing".

5. Click Import to start the importing process.

6. When done, click OK.

C.5 Building Applications with Imported Java

C.5.1 Description of the Generated PL/SQL

C.5.1.1 What Gets Generated?
The Java Importer generates one PL/SQL package for each class imported. Within
each generated PL/SQL package, the Java Importer generates PL/SQL functions
and procedures that correspond to Java public fields, methods, and constructors.
Private and protected methods do not generate corresponding PL/SQL.

C.5.1.2 How is the Java Mapped to PL/SQL?
The PL/SQL package generated maps Java to PL/SQL as follows:

Building Applications with Imported Java

 Java Importer C-7

Java PL/SQL Description

public constructor function (called "new") Generates a different "new"
function for each public
constructor. The "new" function
returns an instance of the object.

public method
(with return type)

example:
public int getAge()

function If an instance method, the instance of
the class is passed as first argument
to the function to identify the object.
If a static method, the instance
argument is not necessary.

public method
(with return type void)

public void setAge(int age)

procedure If an instance method, the instance of
the class is passed as first argument
to the procedure to identify the
object. If a static method, the instance
argument is not necessary.

public static constant field

example:
public static final int
RETIRE_AGE=60;

package variable
(of appropriate type)

When PL/SQL package is first
referenced, initialization code sets
value of package variable.

public field
(non-static or non-constant)

example:
public String gender;

Options:
If "Include get/set for
public fields" checkbox is
selected:

function, procedure Public field is mapped to a function,
which will get the value and
procedure, which will set the value.
If an instance field, the instance of
the class is passed as first argument
to the function and procedure. If a
static field, the instance argument is
not necessary.

If "Include get/set for
public fields" checkbox is
not selected:

No PL/SQL is generated.

Building Applications with Imported Java

C-8 Deploying Forms Applications to the Web

C.5.1.3 What are the importer mapping options?
The following Java Importer options in the Import Java Class Options dialog box
affect the mapping of Java to PL/SQL in the generated PL/SQL package:

■ If the "Include inherited methods/fields" checkbox is selected, the importer
maps inherited methods and fields to the appropriate functions and procedures
as described above.

■ If the "Include get/set for public fields" checkbox is selected, the importer maps
each public non-constant or non-static field to a function that gets the value and
to a procedure that sets the value. This option is described in the table above.

C.5.1.4 How does PL/SQL naming vary?
The naming convention for the generated PL/SQL is to name the corresponding
PL/SQL function or procedure with the same name as the corresponding Java
program element. In the following cases, however, the PL/SQL naming will not be
identical to the Java program element name:

■ where the Java name is too long (PL/SQL has a 30-character limit), the importer
truncates names longer than 30 characters.

■ where the Java names are not unique within the first 30-characters, the importer
creates unique names within the 30-character PL/SQL maximum.

■ where Java methods are overloaded and the generated PL/SQL function and
procedure names cannot be resolved to unique PL/SQL signatures, the
importer appends an incremental identifier to the function or procedure name.
(Note: This does not apply when "Generate persistent names" is selected as an
import option.)

For example, 2 different Java methods called methodA--methodA(int) and
methodA(java.long.Float)--would continue to have the same names in the
PL/SQL package because the PL/SQL signatures are unique:
methodA(NUMBER) and methodA(ORA_JAVA.JOBJECT).

In another example, however, for 2 different Java methods called
methodB--methodB(char) and methodB(byte)--different names are required in
the PL/SQL package because the PL/SQL signatures would be identical:
methodB(PLS_INTEGER). So the first methodB in the Java class remains
methodB in the PL/SQL package, but the second methodB becomes methodB_
0.

■ where the Java names are reserved words in PL/SQL, the importer creates
unique names by adding an underscore to the generated PL/SQL name.

Building Applications with Imported Java

 Java Importer C-9

For example, a Java method named value would generate the name value_ in
the PL/SQL package.

C.5.1.4.1 What is different between persistent and default naming?

Regardless of whether the "Generate persistent names" option is selected in the
Import Java Class Options dialog box, the importer creates unique names for all
functions and procedures in the PL/SQL package. But the default names (if the
"Generate persistent names" option is not selected) and persistent names differ.

What is standard naming?

With standard naming, functions and procedures are generated to the same name as
the corresponding Java method, provided the function and procedure names can be
unique. In the case of overloaded Java methods where the generated PL/SQL
function and procedure names cannot be resolved to unique PL/SQL signatures,
the importer appends an incremental identifier to the function or procedure name.

Example 1

Start with the following Java class:

Class myclass
{

public void p1(int x);
public void p1(long x);
public void p1(char x);

}

Import the class with the Java Importer. Without persistent naming ("Generate
persistent names" is not selected), the resulting PL/SQL for the above methods is
the following:

-- Method: p1 (C)V
PROCEDURE p1 (

obj ORA_JAVA.JOBJECT,
a0 PLS_INTEGER);

-- Method: p1 (I)V
PROCEDURE p1_1 (

obj ORA_JAVA.JOBJECT,
a0 NUMBER);

-- Method: p1 (J)V
PROCEDURE p1_2 (

obj ORA_JAVA.JOBJECT,

Building Applications with Imported Java

C-10 Deploying Forms Applications to the Web

a0 NUMBER);

Note that the procedures were not generated in the order the Java methods appear
in the Java class file. The order for the above PL/SQL procedures correspond to the
Java methods in this sequence:

public void p1(char x);
public void p1(int x);
public void p1(long x);

Example 2

The following example uses the previous Java class, but with one method--p1(long
x)--removed. Start with the following Java class:

Class myclass
{

public void p1(int x);
public void p1(char x);

}

Import the class with the Java Importer. Without persistent naming ("Generate
persistent names" is not selected), the resulting PL/SQL for the above methods is
the following:

-- Method: p1 (C)V
PROCEDURE p1 (

obj ORA_JAVA.JOBJECT,
a0 PLS_INTEGER);

-- Method: p1 (I)V
PROCEDURE p1 (

obj ORA_JAVA.JOBJECT,
a0 NUMBER);

Note that both procedures are called p1. Because each has a unique signature, the
importer resolved each method to a unique procedure signature and did not
append an identifier. Note that the removal of a method from the Java class affected
the names of the generated procedure names.

What is persistent naming?

Persistent naming forces a persistent and unique 4-digit identifier appended to the
end of all function or procedure names. As long as "Generate persistent names"
remains selected each time you generate PL/SQL from a Java class--even if the Java

Building Applications with Imported Java

 Java Importer C-11

class has changed--the functions and procedure names (including appended
identifiers) remain the same.

The persistent identifier numbers are generated based on the method signature.
With "Generate Persistent names" selected, each time the same Java class is
imported with the Java Importer, the PL/SQL functions and procedures generated
for the same Java methods will have the same 4-digit identifiers.

Persistent naming is recommended if the Java class you are importing will change
and you want to use the same persistent PL/SQL function, procedure, variable, and
type names throughout all the changes to the Java class. (Note: You must regenerate
the PL/SQL package to access the Java class changes in PL/SQL.)

Example 3

Start with the following Java class:

Class myclass
{

public void p1(int x);
public void p1(long x);
public void p1(char x);

}

Import the class with the Java Importer. With persistent naming ("Generate
persistent names" is selected), the resulting PL/SQL for the above methods is the
following:

-- Method: p1 (C)V
PROCEDURE p1_7384 (

obj ORA_JAVA.JOBJECT,
a0 PLS_INTEGER);

-- Method: p1 (I)V
PROCEDURE p1_3150 (

obj ORA_JAVA.JOBJECT,
a0 NUMBER);

-- Method: p1 (J)V
PROCEDURE p1_4111 (

obj ORA_JAVA.JOBJECT,
a0 NUMBER);

Note that all of the procedure names include a unique 4-digit identifier appended to
the name.

Building Applications with Imported Java

C-12 Deploying Forms Applications to the Web

Example 4

The following example uses the previous Java class, but with one method--p1(long
x)--removed. Start with the following Java class:

Class myclass
{

public void p1(int x);
public void p1(char x);

}

Import the class with the Java Importer. With persistent naming ("Generate
persistent names" is selected), the resulting PL/SQL for the above methods is the
following:

-- Method: p1 (C)V
PROCEDURE p1_7384 (

obj ORA_JAVA.JOBJECT,
a0 PLS_INTEGER);

-- Method: p1 (I)V
PROCEDURE p1_3150 (

obj ORA_JAVA.JOBJECT,
a0 NUMBER);

Note that all of the procedure names include a unique 4-digit identifier appended to
the name. Note that these identifiers are the same numbers generated in the
previous example (Example 3) and that the removal of a method from the Java class
did not effect the numbering, and therefore, the names of the procedures.

C.5.1.5 What happens if I regenerate the PL/SQL?
There are options when regenerating a PL/SQL package from the same Java class.
Two options in the Import Java Class Options dialog box can effect how you
regenerate the PL/SQL package:

■ Checking the "Ask before overwriting existing packages" checkbox causes the
importer to ask if you want to overwrite the existing package(s). Choose to
overwrite the package(s) (and all included functions and procedures) if
appropriate.

■ Refer to Section C.5.1.4.1, "What is different between persistent and default
naming?" for information on the difference in the PL/SQL generated when
"Generate persistent names" is checked and not checked. Note: Changing the
setting for the "Generate persistent names" option from when you last

Building Applications with Imported Java

 Java Importer C-13

generated a PL/SQL package from the same Java class will change the
procedure and function names, because the identifiers appended (or not
appended) to the function and procedure names will change.

C.5.2 Java Types
The following lists Java types and the PL/SQL types to which the Java Importer
maps them:

Note that Java arrays and Java objects map to special ORA_JAVA types, ORA_
JAVA.JARRAY and ORA_JAVA.JOBJECT. Also note that because the Java int and
PL/SQL int type support is different, the Java int maps to a PL/SQL number type.

C.5.2.1 Java Type Information in the PL/SQL Package
The generated PL/SQL package spec includes comments that provide Java type and
signature information for the imported Java. The type and signature information in
the comments is JNI-based. These comments immediately proceed the PL/SQL
signature for the generated item.

Java Type Converted to... Notes

Any Java array ORA_JAVA.JARRAY ORA_JAVA.JARRAY is subtype
of ORA_JAVA.JOBJECT

boolean BOOLEAN

byte PLS_INTEGER

char PLS_INTEGER

double NUMBER

float NUMBER

int NUMBER

long NUMBER

Any Java object ORA_JAVA.JOBJECT

short PLS_INTEGER

java.lang.String VARCHAR2

Any Java exception ORA_JAVA.JEXCEPTION ORA_JAVA.JEXCEPTION is
subtype of ORA_JAVA.JOBJECT

Building Applications with Imported Java

C-14 Deploying Forms Applications to the Web

In this example, the following Java methods:

public void p1(char x);
public void p1(int x);
public void p1(long x);

are mapped to the following in the generated PL/SQL package:

-- Method: p1 (C)V
PROCEDURE p1 (

obj ORA_JAVA.JOBJECT,
a0 PLS_INTEGER);

-- Method: p1 (I)V
PROCEDURE p1_1 (

obj ORA_JAVA.JOBJECT,
a0 NUMBER);

-- Method: p1 (J)V
PROCEDURE p1_2 (

obj ORA_JAVA.JOBJECT,
a0 NUMBER);

Note the comments above each generated procedure.

C.5.2.2 Arrays
The ORA_JAVA package includes built-ins that provide routines to create an array,
get, and set the value of an array element.

For usage information, refer to the documentation for the following ORA_JAVA
built-ins:

ORA_JAVA.NEW_<java_type>_ARRAY
ORA_JAVA.GET_<java_type>_ARRAY_ELEMENT

-- Method: p1 (C)V indicates that the original Java was a method named p1
that takes a char as an argument.

-- Method: p1 (I)V indicates that the original Java was a method named p1
that takes an int as an argument.

-- Method: p1 (J)V indicates that the original Java was a method named p1
that takes a long as an argument.

Building Applications with Imported Java

 Java Importer C-15

ORA_JAVA.SET_<java_type>_ARRAY_ELEMENT
ORA_JAVA.GET_ARRAY_LENGTH

Note that <java_type> refers to any object type or any Java scalar.

C.5.3 Persistence
By default, when a user creates a Java object in PL/SQL (by calling a constructor or
using an ORA_JAVA built-in to create an object), the persistence of the object is the
duration of the PL/SQL trigger from which the object was created.

ORA_JAVA package built-ins, however, allow the user to manage persistent objects
using global references.

C.5.3.1 Global References
Use the ORA_JAVA.NEW_GLOBAL_REFERENCE to make an object persistent
beyond the duration of the PL/SQL trigger in which it was created. Use the ORA_
JAVA.DELETE_GLOBAL_REFERENCE to destroy the object.

For usage information, refer to the documentation for the following ORA_JAVA
built-ins:

ORA_JAVA.NEW_GLOBAL_REFERENCE
ORA_JAVA.DELETE_GLOBAL_REFERENCE

For each ORA_JAVA.NEW_GLOBAL_REFERENCE created, call an ORA_
JAVA.DELETE_GLOBAL_REFERENCE when you are done with the reference.
Global references are not removed by garbage collection; they must be explicitly
deleted.

Note: The variable used to store the global reference must be defined as a package
variable.

C.5.4 Error Handling
The ORA_JAVA package includes built-ins that provide routines to check if any
exceptions or errors occur while PL/SQL is calling Java.

When an error occurs as PL/SQL calls Java, one of the following PL/SQL
exceptions is raised:

ORA_JAVA.JAVA_ERROR
ORA_JAVA.JAVA_EXCEPTION

Building Applications with Imported Java

C-16 Deploying Forms Applications to the Web

C.5.4.1 Errors
Errors can occur when PL/SQL attempts to call a Java method. This is not an
exception thrown by the Java method, but an error condition resulting from the
attempt to call the method. The following are possible errors that can occur:

■ Unable to initialize JVM.

■ Argument n cannot be null.

■ Specified array index is out of range.

■ Specified array size is illegal.

■ Our of range conversion error occurred for argument n.

■ Invalid integer conversion error occurred for argument n.

■ Invalid object type for argument n.

When the ORA_JAVA.JAVA_ERROR exception is raised, use the ORA_JAVA.LAST_
ERROR built-in to get the text of the error. In this context, errors are Form Services
events.

For usage information, refer to the documentation for the following ORA_JAVA
built-ins:

ORA_JAVA.LAST_ERROR
ORA_JAVA.CLEAR_ERROR

C.5.4.2 Exceptions
Exceptions are standard Java exceptions. When an ORA_JAVA.EXCEPTION_
THROWN exception is raised, that indicates that a Java exception was thrown from
the method called.

When the ORA_JAVA.EXCEPTION_THROWN exception is raised, use the ORA_
JAVA.LAST_EXCEPTION built-in to get the exception. In this context, exceptions
are Java events that the Form Services can detect and communicate to the
application.

For usage information, refer to the documentation for the following ORA_JAVA
built-ins:

ORA_JAVA.LAST_EXCEPTION
ORA_JAVA.CLEAR_EXCEPTION

Limitations

 Java Importer C-17

C.6 Limitations

C.6.1 Java/PL/SQL Issues/Requirements
■ java.lang.String objects are mapped to varchar2, which has a size limitation of

32KB.

■ A Forms application must not reference an invalid Java object through the
generated PL/SQL package.

C.6.2 Java in the Form Services
■ Java imported with the Java Importer and referenced in Forms applications

must exist in the middle-tier of the application.

■ When PL/SQL calls imported Java on the Form Services, a separate Java virtual
machine (JVM) starts for each runtime process started. The amount of memory
used by each JVM includes the overhead of the JVM process plus the memory
used for Java application execution and Java object storage.

C.6.3 Builder CLASSPATH Updates
■ Once a Java class has been loaded into a Form Builder session, changes to the

class are not reflected in the running of the class. To run the class with the
changes reflected, you must restart the builder.

■ If you have imported a Java class during a Form Builder session and then make
changes to the class, you must restart the builder and then import the changed
Java class. The Java Importer does not pick up changes made to a Java class
during the same Form Builder session in which that class was previously
imported.

■ If you edit the CLASSPATH during a Form builder session, you must restart the
builder so the Java Importer can see the CLASSPATH changes.

Note: You can still import classes added to the CLASSPATH during a builder
session, even though they are not listed in the Import Java Classes dialog box.
To import a class that is now in the CLASSPATH but not listed in the Import
Java Classes dialog box, enter the fully qualified class name in the Import
Classes text field.

ORA_JAVA Built-ins Reference

C-18 Deploying Forms Applications to the Web

C.6.4 Builder Restrictions
■ You cannot use the Java Importer and its features in conjunction with web

preview mode in Form Builder.

C.7 ORA_JAVA Built-ins Reference

NEW_GLOBAL_REF built-in

DELETE_GLOBAL_REF built-in

LAST_EXCEPTION built-in

CLEAR_EXCEPTION built-in

LAST_ERROR built-in

CLEAR_ERROR built-in

See NEW_<java_type>_ARRAY built-in for the following:

NEW_OBJECT_ARRAY built-in

NEW_BYTE_ARRAY built-in

NEW_CHAR_ARRAY built-in

NEW_SHORT_ARRAY built-in

NEW_INT_ARRAY built-in

NEW_LONG_ARRAY built-in

NEW_FLOAT_ARRAY built-in

NEW_DOUBLE_ARRAY built-in

NEW_STRING_ARRAY built-in

NEW_BOOLEAN_ARRAY built-in

IS_NULL built-in

GET_ARRAY_LENGTH built-in

See GET_<java_type>_ARRAY_ELEMENT built-in for the following:

GET_OBJECT_ARRAY_ELEMENT built-in

GET_BYTE_ARRAY_ELEMENT

ORA_JAVA Built-ins Reference

 Java Importer C-19

GET_CHAR_ARRAY_ELEMENT

GET_SHORT_ARRAY_ELEMENT

GET_INT_ARRAY_ELEMENT

GET_LONG_ARRAY_ELEMENT

GET_FLOAT_ARRAY_ELEMENT

GET_DOUBLE_ARRAY_ELEMENT

GET_STRING_ARRAY_ELEMENT

GET_BOOLEAN_ARRAY_ELEMENT

See SET_<java_type>_ARRAY_ELEMENT built-in for the following:

SET_OBJECT_ARRAY_ELEMENT

SET_BYTE_ARRAY_ELEMENT

SET_CHAR_ARRAY_ELEMENT

SET_SHORT_ARRAY_ELEMENT

SET_INT_ARRAY_ELEMENT

SET_LONG_ARRAY_ELEMENT

SET_FLOAT_ARRAY_ELEMENT

SET_DOUBLE_ARRAY_ELEMENT

SET_STRING_ARRAY_ELEMENT

SET_BOOLEAN_ARRAY_ELEMENT

ORA_JAVA Built-ins Reference

C-20 Deploying Forms Applications to the Web

C.7.1 NEW_GLOBAL_REF built-in

Description
Returns a reference handle that can be used as a global variable to reference an
object of type ORA_JAVA.JOBJECT.

Syntax
FUNCTION NEW_GLOBAL_REF

(obj IN ORA_JAVA.JOBJECT)
RETURN ORA_JAVA.JOBJECT;

Parameters

Returns
An object of the PL/SQL type ORA_JAVA.JOBJECT.

Usage Notes
Use this built-in when you want an object to persist beyond the duration of the
PL/SQL trigger in which it was created. This is the only mechanism that will create
a persistent Java object. It must be used for objects whose scope is larger than the
PL/SQL trigger.

The object that you want to create a global reference to must be valid.

The reference handle created remains active until it is explicitly deleted by ORA_
JAVA.DELETE_GLOBAL_REF. This means the same object can be used in many
trigger points.

Example
PROCEDURE foo IS

obj ORA_JAVA.JOBJECT;
...

BEGIN
obj := myclass.new;
mypkg.instobj := ORA_JAVA.NEW_GLOBAL_REF(obj);
...

END;

obj Is a valid instance of the Java class you want to create a global
reference to. The actual parameter can be any object of type
ORA_JAVA.JOBJECT.

ORA_JAVA Built-ins Reference

 Java Importer C-21

C.7.2 DELETE_GLOBAL_REF built-in

Description
Deletes the global reference object that was created by ORA_JAVA.NEW_GLOBAL_
REF.

Syntax
PROCEDURE DELETE_GLOBAL_REF (obj IN ORA_JAVA.JOBJECT);

Parameters

Usage Notes
You must use this built-in to delete unwanted global reference objects to release the
memory allocated for the objects.

Example
PROCEDURE foo IS

obj ORA_JAVA.JOBJECT;
...

BEGIN
obj := myclass.new;
mypkg.instobj := ORA_JAVA.NEW_GLOBAL_REF(obj);
...

END;
...
ORA_JAVA.DELETE_GLOBAL_REF (mypkg.instobj);

C.7.3 LAST_EXCEPTION built-in

Description
Returns the last Java exception that occurred when calling Java from PL/SQL. Use
when the PL/SQL exception raised is ORA_JAVA.EXCEPTION_THROWN.

Syntax
FUNCTION LAST_EXCEPTION RETURN ORA_JAVA.JEXCEPTION;

obj Is a valid global reference object that you want to delete.

ORA_JAVA Built-ins Reference

C-22 Deploying Forms Applications to the Web

Parameters
None

Returns
An object of type ORA_JAVA.JEXCEPTION, which is a subtype of ORA_
JAVA.JOBJECT.

Usage Notes
Whenever you issue a call to a Java method in a PL/SQL block, it is good practice to
use this built-in in the exception-handling part of the calling block to handle the
ORA_JAVA.EXCEPTION_THROWN type of PL/SQL exception that can occur, e.g.,
NULL pointer. Note that when ORA_JAVA.EXCEPTION_THROWN is thrown, this
indicates that an exception was thrown from within the Java method that was being
called.

See Also ORA_JAVA.LAST_ERROR.

Example
/* This example assumes you have imported the
** java.lang.Exception class.
*/
PROCEDURE foo IS

obj ORA_JAVA.JOBJECT;
excp ORA_JAVA.JEXCEPTION;

BEGIN
obj := jfoo.new;
jfoo.addElement(obj);

EXCEPTION
WHEN ORA_JAVA.EXCEPTION_THROWN THEN

excp := ORA_JAVA.LAST_EXCEPTION;
message(' Java Exception: ' || exception_.toString(excp));

...
END;

C.7.4 CLEAR_EXCEPTION built-in

Description
Removes the last exception retrieved by ORA_JAVA.LAST_EXCEPTION.

ORA_JAVA Built-ins Reference

 Java Importer C-23

Syntax
PROCEDURE CLEAR_EXCEPTION;

Parameters
None

Example
/* This example assumes you have imported the
** java.lang.Exception class.
*/
PROCEDURE foo IS

obj ORA_JAVA.JOBJECT;
excp ORA_JAVA.JOBJECT;

BEGIN
obj := jfoo.new;
jfoo.addElement(obj);
...

EXCEPTION
WHEN ORA_JAVA.EXCEPTION_THROWN THEN

excp := ORA_JAVA.LAST_EXCEPTION;
message(' Java Exception: ' || exception_.toString(excp));
ORA_JAVA.CLEAR_EXCEPTION;

END;

C.7.5 LAST_ERROR built-in

Description
Returns the error text of the last PL/SQL exception that occurred when calling Java
from PL/SQL. Use when the PL/SQL exception raised is ORA_JAVA.JAVA_ERROR.

Syntax
FUNCTION LAST_ERROR RETURN VARCHAR2;

Parameters
None

Returns
VARCHAR2

ORA_JAVA Built-ins Reference

C-24 Deploying Forms Applications to the Web

Usage Notes
Whenever you issue a call to a Java method in a PL/SQL block, it is good practice to
use this built-in in the exception-handling part of the calling block to handle the
ORA_JAVA.JAVA_ERROR type of PL/SQL exception. Note that when ORA_
JAVA.JAVA_ERROR is thrown, this doesn’t indicate that an exception was thrown
from within the Java method that was being called.

See Section C.5.4, "Error Handling" for additional information.

See also ORA_JAVA.LAST_EXCEPTION.

Example
/*
** Example of an invalid array element error.
*/
PROCEDURE foo IS

arr ORA_JAVA.JARRAY;
n PLS_INTEGER;

BEGIN
...
arr := ORA_JAVA.NEW_BYTE_ARRAY(5);
n := ORA_JAVA.GET_BYTE_ARRAY_ELEMENT(arr, 5);
...

EXCEPTION
WHEN ORA_JAVA.JAVA_ERROR THEN

message(' Alert: ' || ORA_JAVA.last_error);
END;

C.7.6 CLEAR_ERROR built-in

Description
Removes the last error text retrieved by ORA_JAVA.LAST_ERROR.

Syntax
PROCEDURE CLEAR_ERROR;

Parameters
None

Example
/*

ORA_JAVA Built-ins Reference

 Java Importer C-25

** Example of retrieving the value of an invalid array element.
*/
PROCEDURE foo IS

arr ORA_JAVA.JARRAY;
n PLS_INTEGER;

BEGIN
...
arr := ORA_JAVA.NEW_BYTE_ARRAY(5);
n := ORA_JAVA.GET_BYTE_ARRAY_ELEMENT(arr, -1);
...

EXCEPTION
WHEN ORA_JAVA.JAVA_ERROR THEN

message(' Alert: ' || ORA_JAVA.last_error);
ORA_JAVA.CLEAR_ERROR;

END;

C.7.7 NEW_<java_type>_ARRAY built-in

Description
Creates a new array of the specified Java type.

Syntax
FUNCTION NEW_OBJECT_ARRAY (

length IN PLS_INTEGER,
clsname IN VARCHAR2) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_BYTE_ARRAY (
length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_CHAR_ARRAY (
length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_SHORT_ARRAY (
length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_INT_ARRAY (
length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_LONG_ARRAY (

ORA_JAVA Built-ins Reference

C-26 Deploying Forms Applications to the Web

length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_FLOAT_ARRAY (
length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_DOUBLE_ARRAY (
length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_STRING_ARRAY (
length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

FUNCTION NEW_BOOLEAN_ARRAY (
length IN PLS_INTEGER) RETURN ORA_JAVA.JARRAY;

Parameters

Returns
An object of the PL/SQL type ORA_JAVA.JARRAY, which is a subtype of ORA_
JAVA.JOBJECT.

Usage Notes
The new array is valid only in the PL/SQL trigger it was created. Use the ORA_
JAVA.NEW_GLOBAL_REF built-in to increase the persistency of the array beyond
the duration of the trigger.

Example
/*
** Example of creating an array of data type object.
*/
PROCEDURE create_object_array IS

arr ORA_JAVA.JOBJECT;
BEGIN

arr := ORA_JAVA.NEW_OBJECT_ARRAY(3, 'java.lang.String');

length Is the size of the array to be created (i.e., the number of array
elements).

clsname Is the fully qualified name of the class file. Use '.' (period) as
separators in the name, e.g., java.lang.String.

Required only when creating an array of the Object data type.

ORA_JAVA Built-ins Reference

 Java Importer C-27

...
END;

/*
** Example of creating an array of data type char with one element.
*/
PROCEDURE create_char_array IS

arr ORA_JAVA.JOBJECT;
BEGIN

arr := ORA_JAVA.NEW_CHAR_ARRAY(1);
...

END;

C.7.8 GET_<java_type>_ARRAY_ELEMENT built-in

Description
Returns the current value for a given element in a given array of the specified Java
type. The value is returned in its corresponding PL/SQL type.

Syntax
FUNCTION GET_OBJECT_ARRAY_ELEMENT (

arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN ORA_JAVA.JOBJECT;

FUNCTION GET_BYTE_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN PLS_INTEGER;

FUNCTION GET_CHAR_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN PLS_INTEGER;

FUNCTION GET_SHORT_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN PLS_INTEGER;

FUNCTION GET_INT_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN NUMBER;

ORA_JAVA Built-ins Reference

C-28 Deploying Forms Applications to the Web

FUNCTION GET_LONG_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN NUMBER;

FUNCTION GET_FLOAT_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN NUMBER;

FUNCTION GET_DOUBLE_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN NUMBER;

FUNCTION GET_STRING_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN VARCHAR2;

FUNCTION GET_BOOLEAN_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER) RETURN BOOLEAN;

Parameters

Returns
A value of the corresponding PL/SQL type (PLS_INTEGER, NUMBER, VARCHAR2,
BOOLEAN, or ORA_JAVA.JOBJECT).

Usage Notes
The array of the specified type must be valid.

If the length of the array is unknown, use ORA_JAVA.GET_ARRAY_LENGTH to
determine the size of the array first.

Can only get one value at a time.

arr Is a valid array of the specified type. The actual parameter is
the array of type ORA_JAVA.JARRAY.

pos Is the position of the element in the array. Note that the
position of the first element is 0. For example, in an array of
size 3, the positions of the elements are 0, 1,and 2.

ORA_JAVA Built-ins Reference

 Java Importer C-29

Example
/*
** Example of getting 3 values of an array of data type object.
*/
PROCEDURE get_object_array IS

arr ORA_JAVA.JARRAY;
obj1 ORA_JAVA.JOBJECT;
obj2 ORA_JAVA.JOBJECT;
obj3 ORA_JAVA.JOBJECT;

BEGIN
arr := myclass.getMyArray;
obj1 := ORA_JAVA.GET_OBJECT_ARRAY_ELEMENT(arr, 0);
obj2 := ORA_JAVA.GET_OBJECT_ARRAY_ELEMENT(arr, 1);
obj3 := ORA_JAVA.GET_OBJECT_ARRAY_ELEMENT(arr, 2);
...

END;

C.7.9 SET_<java_type>_ARRAY_ELEMENT built-in

Description
Changes the value of a given element in a given array of the specified Java type to a
given value.

Syntax
PROCEDURE SET_OBJECT_ARRAY_ELEMENT (

arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN ORA_JAVA.JOBJECT);

PROCEDURE SET_BYTE_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN PLS_INTEGER);

PROCEDURE SET_CHAR_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN PLS_INTEGER);

PROCEDURE SET_SHORT_ARRAY_ELEMENT (

ORA_JAVA Built-ins Reference

C-30 Deploying Forms Applications to the Web

arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN PLS_INTEGER);

PROCEDURE SET_INT_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN NUMBER);

PROCEDURE SET_LONG_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN NUMBER);

PROCEDURE SET_FLOAT_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN NUMBER);

PROCEDURE SET_DOUBLE_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN NUMBER);

PROCEDURE SET_STRING_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN VARCHAR2);

PROCEDURE SET_BOOLEAN_ARRAY_ELEMENT (
arr IN ORA_JAVA.JARRAY,
pos IN PLS_INTEGER,
value IN BOOLEAN);

ORA_JAVA Built-ins Reference

 Java Importer C-31

Parameters

Usage Notes
The array of the specified type and array element to be replaced must be valid.

If the length of the array is unknown, use ORA_JAVA.GET_ARRAY_LENGTH to
determine the size of the array first.

You can only set one value at a time.

Example
/*
** Example of changing 3 values of an array of data type object.
*/
PROCEDURE set_object_array IS

arr ORA_JAVA.JOBJECT;
obj ORA_JAVA.JOBJECT;

BEGIN
arr := ORA_JAVA.NEW_OBJECT_ARRAY(3, 'myapp.foo');
ORA_JAVA.SET_OBJECT_ARRAY_ELEMENT(arr, 0, foo.new('obj1'));
ORA_JAVA.SET_OBJECT_ARRAY_ELEMENT(arr, 1, foo.new('obj2'));
ORA_JAVA.SET_OBJECT_ARRAY_ELEMENT(arr, 2, foo.new('obj3'));
...

END;

/*
** Example of changing the value of an array of data type char.
*/
PROCEDURE set_char_array IS

arr ORA_JAVA.JOBJECT;
BEGIN

arr := ORA_JAVA.NEW_CHAR_ARRAY(1);
ORA_JAVA.SET_CHAR_ARRAY_ELEMENT(arr, 0, 2);

arr Is a valid array of the specified type. The actual parameter is
the array of type ORA_JAVA.JARRAY.

pos Is the position of the element in the array to be replaced. Note
that the position of the first element is always 0. For example,
in an array of size 3, the positions of the elements are 0, 1, and
2.

value The new value of the specified type to replace the array
element.

ORA_JAVA Built-ins Reference

C-32 Deploying Forms Applications to the Web

...
END;

C.7.10 IS_NULL built-in

Description
Returns a BOOLEAN value that indicates whether or not an object is null.

Syntax
FUNCTION IS_NULL (obj IN ORA_JAVA.JOBJECT) RETURN BOOLEAN;

Parameters

Example
PROCEDURE foo IS

obj ORA_JAVA.JOBJECT;
...

BEGIN
obj := myclass.new;
IF NOT ORA_JAVA.IS_NULL(obj) THEN

pck.obj := ORA_JAVA.NEW_GLOBAL_REF(obj);
...

END IF;
...

END;

C.7.11 GET_ARRAY_LENGTH built-in

Description
Returns the size (length) of an array.

Syntax
FUNCTION GET_ARRAY_LENGTH (

arr IN ORA_JAVA.JARRAY) RETURN PLS_INTEGER;

obj Is a valid instance of the Java class. The actual parameter can
be any object of type ORA_JAVA.JOBJECT.

ORA_JAVA Built-ins Reference

 Java Importer C-33

Parameters

Returns
PLS_INTEGER.

Usage Notes
Use this built-in to determine the length of an array. You must supply a valid array.

Example
PROCEDURE get_size IS

n PLS_INTEGER;
arr ORA_JAVA.JARRAY;

BEGIN
arr := myclass.getMyArray;
IF NOT ORA_JAVA.IS_NULL(arr) THEN

n := ORA_JAVA.GET_ARRAY_LENGTH(arr);
...

END IF;
...

END;

arr Is a valid array.

ORA_JAVA Built-ins Reference

C-34 Deploying Forms Applications to the Web

Part III
 Index

 Index-1

Index
A
ActiveX

support, 8-13
align parameter, 5-9
alt parameter, 5-9
applet

parameters, 5-8
AppletViewer

description, 3-6
installing, B-24
running applications, B-20

application
server, 2-2
start-up time, 11-6

architecture
client/server, 8-2
Form Services, 2-2
Web, 8-3

archive parameter, 5-9
archive_ie parameter, 5-9
archive_jinit parameter, 5-9
authentication, 10-2
authorization, 10-3

B
background parameter, 5-10
base HTML file

creating, 5-14
variable values, 5-16

base.htm
description, 5-14
example, 5-16

baseHTML parameter, 5-6, 5-7
baseHTMLIE parameter, 5-7
baseHTMLie parameter, 5-6
baseHTMLJInitiator parameter, 5-7
baseHTMLJinitiator parameter, 5-6
baseie.htm

description, 5-14
example, 5-19

basejini.htm
description, 5-14
example, 5-17

benchmarks
capacity planning, 14-1
test results, 14-8

border parameter, 5-9
browser, 2-2
BROWSERnn, A-2

C
cabbase parameter, 5-15
caching JAR files, 11-8
certificate

not trusted by default, 3-4
trusted, 3-4

certificates
trusted by JInitiator, 5-21

CGI (Common Gateway Interface)
load balancing, 12-5

cgi configuration
description, 3-6

client browser
options, 3-5

client browsers

Index-2

https configuration, 5-21
client tier, 2-2
clientBrowser parameter, B-21
clientDPI parameter, 5-10
client/server applications, migrating, 8-1
code parameter, 5-8
codebase parameter, 5-8
codetype parameter, 5-9
colorScheme parameter, 5-10
components

Form Services, 2-3
connectMode parameter, 5-9
customizeable parameters, A-3

D
Data Host parameter, 12-7
Data Port parameter, 12-6, 12-8
database tier, 2-2
DBLINK_ENCRYPT_LOGIN, 10-4
demilitarized zone (DMZ), 10-5
DEnn, A-2
Deploying Icons and Images Used by Form

Services, 7-4
deployment

Forms to the Web, 6-1
disable MENU_BUFFERING, 11-10
documentation

how this guide can help, 1-8
related manuals, xx

DSA, 10-4

E
encryption, 10-3
environment variables, 5-2

https configuration, 5-22
errors

servlet, 5-20, 6-2
Events Management window, OEM, 13-7
extranet, 9-3

F
f60all_jinit.jar

description, 3-5, 11-7
f60all.cab

description, 3-5
f60all.jar

description, 3-5, 11-7
f60common.jar

description, 11-7
Feature Restrictions for Forms Applications on the

Web, 7-10
firewall

description, 10-5
HTTP, 9-4

font alias list, 8-13
Form Services

architecture, 2-2
components, 2-3
https configuration, 5-21
OEM, 13-6

Forms applet, 2-4
Forms applications

Internet, 9-4
LAN, 9-5
remote dial-up, 9-5
VPN, 9-6, 9-7
WAN, 9-5

Forms Listener, 2-3, 2-4
Forms OEM, 13-2
Forms Runtime Engine, 2-3, 2-4
Forms Services

OEM, 13-6
FORMS60_HTTPS_NEGOTIATE_DOWN, 5-3,

5-22
FORMS60_MAPPING, 5-3
FORMS60_MESSAGE_ENCRYPTION, 5-3
FORMS60_OUTPUT, 5-3
FORMS60_PATH, 5-3
FORMS60_WALLET, 5-3, 5-22
FORMS65_PATH, A-3
FORMS65_REPFORMAT, A-3
FORMS65_TIMEOUT, A-4
FORMS65_USEREXITS, A-4
FORMSnn, A-2
FormsServlet.initArgs, 5-5
formsweb.cfg

description, 5-6

 Index-3

example, 5-11
parameters, 5-7

FORMSxx_HTTPS_NEGOTIATE DOWN, 10-4
FORMSxx_MESSAGE_ENCRYPTION, 10-4

G
General Guidelines, 7-1
GRAPHICS65_PATH, A-4
GRAPHICSnn, A-2
Guidelines for Designing Forms Applications, 7-2

H
heartBeat parameter, 5-11
height parameter, 5-9
hspace parameter, 5-9
HTML delimiter parameter, 5-8
HTTP

communications, 12-6
connection, 10-5
description, 3-1
firewalls, 9-4, 10-5
Forms over the Internet, 9-4

HTTPS
benefits, 3-3
connection, 10-5
description, 3-1, 3-3

HTTPS mode
configuration, 5-21

I
ie50 parameter, 5-8
image types supported, 8-13
imageBase parameter, 5-11
Installation, 4-1
installation

requirements for OEM, 13-2
integrating applications, 7-9
Internet, 9-2
Internet Explorer

certificates, 3-4
INTERRUPT, A-4
Intranet, 9-2

J
JAR files

descriptions, 11-7
migration, 8-13

Java
applet, 2-4
fonts, 8-13
Runtime Environment (JRE), B-5
Virtual Machine (JVM), B-4

JavaBeans in UI, 8-13
JInitiator

benefits, B-5
certificates, 3-4
description, 3-5
FAQ, B-11
introduction, B-4
markup tags for a base HTML file, B-10
using, B-5

jserv.log, 5-20, 6-2

L
LAN, Forms applications, 9-5
leastloadedhost parameter, 5-8, 5-15
listeners

controlling with OEM, 13-5
Load Balancer Client

controlling with OEM, 13-7
definition, 12-1

Load Balancer Server
controlling with OEM, 13-6
definition, 12-1
parameters for load balancing, 12-6
trace messages, 11-23

load balancing, 12-1
cgi, 12-5
description, 3-6
Load Balancer Client parameters, 12-7
Load Balancer Server parameters, 12-6
steps, 12-3
terms, 12-1
trace log, 11-23

LOCAL, A-4
log parameter, 5-5

Index-4

lookAndFeel parameter, 5-10

M
message diff-ing, 11-4
MetricsServerErrorURL parameter, 5-8
MetricsServerHost parameter, 5-8
MetricsServerPort parameter, 5-8
MetricsTimeout parameter, 5-8
middle tier, 2-2
migration

client/server applications, 8-1
guidelines, 8-13

MMnn, A-2
mode parameter, 5-4
MODULE parameter, 5-11
monitoring, OEM, 13-7
mouse triggers, tuning, 11-11
MouseMove triggers, 8-13

N
name parameter, 5-9
native JVM

description, 3-5
network

descriptions, 9-1
reducing bandwidth, 11-9

NLS_LANG, A-4
NT RAS, 9-6

O
OCLnn, A-2
OCX, 8-13
OLE, 8-13
optimizations, built into Form Services, 11-1
ORA_ENCRYPT_LOGIN, 10-4
Oracle Enterprise Manager (OEM)

description, 13-1
ORACLE_HOME, A-5

P
PARAM tags, 5-9

parameters
BROWSERnn, A-2
DEnn, A-2
Form Services startup, 5-4
FORMS65_PATH, A-3
FORMS65_REPFORMAT, A-3
FORMS65_TIMEOUT, A-4
FORMS65_USEREXITS, A-4
FORMSnn, A-2
GRAPHICS65_PATH, A-4
GRAPHICSnn, A-2
INTERRUPT, A-4
LOCAL, A-4
MMnn, A-2
NLS_LANG, A-4
OCLnn, A-2
ORACLE_HOME, A-5
PROnn, A-2
RDBMSnn, A-2
required, A-2
RWnn, A-2
TKnn, A-3
VGSnn, A-3

performance tuning, 11-1
physical directories, 5-2
pool parameter, 5-5
port parameter, 5-4
Primary Node, definition, 12-2
PROnn, A-2
Protocol parameter, 12-6

R
RDBMSnn, A-2
registry

editing and viewing, A-1
Windows, A-1

Registry.dat file, 8-13
registryPath parameter, 5-11
remote dial-up, Forms applications, 9-5
Request Port parameter, 12-7
required parameters, A-2
resources, minimizing

boilerplate objects, 11-2
data segments, 11-2

 Index-5

encoded program units, 11-2
network usage, 11-3
rendering displays, 11-4
sending packets, 11-3

Runform parameters, 5-11
RWnn, A-2

S
sample file

base.htm, 5-16, 5-19
basejinit.htm, 5-17

scalability
definition, 14-2
number of users, 14-1
thresholds, 14-7

Secondary Node, definition, 12-2
security

issues, 10-1
reducing risks, 10-6

separateFrame parameter, 5-10
server

authentication, 10-2
serverApp parameter, 5-10
serverArgs parameters, 5-10, 5-11
serverHost parameter, 5-9
serverPort parameter, 5-10
servlet, 12-1
servlet configuration

description, 3-6
servlet errors, 5-20, 6-2
SNS/ANO, 10-4
sockets mode

description, 3-1
special configurations

formsweb.cfg, 5-7
splashScreen parameter, 5-10
standby parameter, 5-9
Sun Solaris, benchmarks, 14-1
system capacity criteria

application complexity, 14-5
memory, 14-4
network, 14-4
processor, 14-3
shared resources, 14-4

user load, 14-5

T
terminology, load balancing, 12-1
three-tier architecture, 2-2
timers, tuning, 11-11
title parameter, 5-9
TKnn, A-3
trace

log, Load Balancer Server, 11-23
transmission of data, security, 10-3
tuning

application size, 11-12
application start-up time, 11-6
caching JAR files, 11-8
considerations, 11-1
deferring load, 11-8
disable MENU_BUFFERING, 11-10
message order, 11-9
mouse triggers, 11-11
promote similarities, 11-9
reduce boilerplate objects, 11-10
reduce navigation, 11-10
reducing network bandwidth, 11-9
screen draws, 11-10
timers, 11-11
using JAR files, 11-7

type parameter, 5-9

U
user-defined parameters, 5-11
USERID parameter, 5-11

V
variable

base HTML file parameter, 5-16
description, 5-16

VBX, 8-13
VGSnn, A-3
virtual paths, 5-2
virtual private network (VPN), description, 10-5
VPN, Forms applications, 9-6, 9-7

Index-6

vspace parameter, 5-9

W
WAN, Forms applications, 9-5
web

server, generic, 5-2
web server

https configuration, 5-21
webformsTitle parameter, 5-11
width parameter, 5-9
Windows NT, benchmarks, 14-1

	Send Us Your Comments
	Preface
	1 Introduction
	1.1� The Internet Has Changed Everything
	1.2� The Oracle Internet Platform
	1.2.1� Simple
	1.2.2� Complete
	1.2.3� Integrated

	1.3� Deploying Applications with the Oracle Internet Platform
	1.4� Oracle9i Application Server
	1.4.1� Scalability
	1.4.2� Availability
	1.4.3� Load Balancing
	1.4.4� Oracle9i Application Server Services
	1.4.4.1� Communication Services
	1.4.4.2� Presentation Services
	1.4.4.3� Data Management Services
	1.4.4.4� System Services
	1.4.4.5� Business Logic Services

	1.5� Deploying Forms with Oracle9i Application Server
	1.6� How This Guide Can Help

	2 Overview of Form Services
	2.1� Introduction
	2.2� Form Services Architecture
	2.3� Form Services Components
	2.3.1� Forms Applet
	2.3.2� Forms Listener
	2.3.3� Forms Runtime Engine

	2.4� Form Services in Action

	3 Preview of Configuration Choices
	3.1� Introduction
	3.2� Sockets, HTTP, or HTTPS
	3.2.1� Sockets
	3.2.2� HTTP
	3.2.3� HTTPS

	3.3� Client Browser using Native JVM, Oracle JInitiator, or AppletViewer
	3.3.1� Native JVM Using Internet Explorer 5
	3.3.2� Oracle JInitiator
	3.3.3� AppletViewer

	3.4� Load Balancing or standalone configuration
	3.5� Forms Servlet or CGI implementation
	3.6� What’s Next

	4 Installing Form Services
	4.1� Introduction
	4.2� About the Oracle Universal Installer
	4.3� Starting Form Services
	4.4� What’s Next

	5 Configuring Form Services
	5.1� Introduction
	5.2� Configuring Your Web Server
	5.3� Customizing Environment Variables
	5.4� Description of Form Services Startup Parameters
	5.4.1� Port Parameter
	5.4.2� Mode Parameter
	5.4.3� Pool Parameter
	5.4.4� Log Parameter

	5.5� Customizing Configuration Files
	5.5.1� FormsServlet.initArgs
	5.5.2� formsweb.cfg
	5.5.2.1� Creating special configurations in formsweb.cfg
	5.5.2.2� Parameters in the formsweb.cfg File
	5.5.2.3� Default formsweb.cfg File

	5.5.3� base.htm, basejini.htm, and baseie.htm
	5.5.3.1� Parameters and variables in the base HTML file
	5.5.3.2� Usage Notes
	5.5.3.3� Default base.htm File
	5.5.3.4� Default basejini.htm File
	5.5.3.5� Default baseie.htm File

	5.6� Reading the Servlet Error Log
	5.7� Setting Up the HTTPS Connection Mode
	5.7.1� Customize HTTPS Environment Variables
	5.7.2� Create Wallets and Request Certificates
	5.7.2.1� Create a Wallet
	5.7.2.2� Create a Certificate Request
	5.7.2.3� Send the Certificate Request
	5.7.2.4� Import the Certificate
	5.7.2.5� Set Auto Login to ON

	5.7.3� Create Wallets and Request Certificates That Are Not Trusted by JInitiator by Default
	5.7.3.1� Create a Wallet
	5.7.3.2� Create a Certificate Request
	5.7.3.3� Send the Certificate Request
	5.7.3.4� Install the VeriSign Trial CA Root Certificate on Client Machines
	5.7.3.5� Import the Certificate
	5.7.3.6� Set Auto Login to ON

	5.8� What’s Next

	6 Deploying Forms to the Web
	6.1� Introduction
	6.2� Deploying a Forms Application
	6.2.1� Creating your Runtime Executable Files
	6.2.2� Deploying the Executable Files on Your Server
	6.2.3� Broadcasting the Application's URL
	6.2.4� Servlet Error Log

	6.3� What’s Next

	7 Application Design Considerations
	7.1� Introduction
	7.2� General Guidelines
	7.3� Guidelines for Designing Forms Applications
	7.3.1� Create Your Own Template HTML Files
	7.3.2� Create an HTML Application Menu
	7.3.3� Use Oracle Designer with Form Services
	7.3.4� Reduce Network Traffic
	7.3.5� Avoid Unnecessary Graphics and Images
	7.3.6� Select Standard Fonts

	7.4� Deploying Icons and Images Used by Form Services
	7.4.1� Icons
	7.4.2� SplashScreen and Background Images
	7.4.3� Using a Custom JAR File Containing Icons and Images
	7.4.3.1� Creating a JAR File
	7.4.3.2� Using Files Within the JAR File

	7.4.4� Search Path for Icons and Images
	7.4.4.1� DocumentBase
	7.4.4.2� CodeBase

	7.5� Integrating Reports
	7.6� Feature Restrictions for Forms Applications on the Web

	8 Migrating Legacy Applications to the Web
	8.1� Introduction
	8.1.1� Client/Server-Based Architecture
	8.1.2� Web-Based Architecture
	8.1.3� Who Should Read this Chapter?

	8.2� Comparing Cartridge and servlet Implementations
	8.3� Reconfiguration Strategies
	8.3.1� Strategy for Users with Complex Base HTML Files
	8.3.2� Strategy for Users with Simple Base HTML Files

	8.4� Reconfiguring Forms Web Cartridge to Servlets
	8.4.1� Stopping Oracle Application Server Web Listener Instances
	8.4.1.1� Stopping Oracle Application Server Completely
	8.4.1.2� Stopping Specific Instance of Oracle Application Server

	8.4.2� Configuring the formsweb.cfg File
	8.4.2.1� System Parameters
	8.4.2.2� User Parameters
	8.4.2.3� Specific Configurations

	8.4.3� Configuring the base.htm or basejini.htm File
	8.4.4� Broadcasting the Applications’s URL

	8.5� Guidelines for Migration

	9 Network Considerations
	9.1� Introduction
	9.2� Network Topologies
	9.2.1� Internet
	9.2.2� Intranet
	9.2.3� Extranet

	9.3� Deploying Form Services in your Network Environment
	9.3.1� Deploying Over the Internet
	9.3.1.1� Risks
	9.3.1.2� Other Internet Deployment Options

	9.3.2� Deploying On a Local Area Network (LAN)
	9.3.3� Deploying On a Network with Remote Dial-Up Access
	9.3.4� Deploying On a Network via Telecom-Provided VPN Access over Public Lines
	9.3.5� Deploying On a Network via VPN Access over the Internet

	9.4� Guidelines for Maintaining Network Security

	10 Security Considerations
	10.1� Introduction
	10.2� Common System Security Issues
	10.2.1� User Authentication
	10.2.2� Server Authentication
	10.2.3� Authorization
	10.2.4� Secure Transmission (Encryption)
	10.2.5� Firewall
	10.2.6� Virtual Private Network (VPN)
	10.2.7� Demilitarized Zone (DMZ)

	10.3� Simple Steps to Improve Security

	11 Performance Tuning Considerations
	11.1� Introduction
	11.2� Built-in Optimization Features of Form Services
	11.2.1� Minimizing Client Resource Requirements
	11.2.2� Minimizing Form Services Resource Requirements
	11.2.3� Minimizing Network Usage
	11.2.4� Maximizing the Efficiency of Packets Sent Over the Network
	11.2.5� Rendering Application Displays Efficiently on the Client

	11.3� Tuning Form Services Applications
	11.3.1� Location of the Form Services with Respect to the Data Server
	11.3.2� Minimizing the Application Startup Time
	11.3.2.1� Using JAR Files
	11.3.2.2� Using Caching
	11.3.2.3� Deferred Load on Demand

	11.3.3� Reducing the Required Network Bandwidth
	11.3.4� Other Techniques to Improve Performance

	11.4� Performance Collection Services
	11.4.1� How to Use Performance Collection Services
	11.4.2� Events Collected by Performance Services
	11.4.3� Analyzing the Performance Data

	11.5� Trace Collection
	11.5.1� Types of Forms Events Traced Using Oracle Trace
	11.5.1.1� Forms Duration Events and Items
	11.5.1.2� Forms Point Events and Items

	11.5.2� Using Forms and Oracle Trace without the Diagnostics Pack
	11.5.2.1� Starting the Collection
	11.5.2.2� Formatting the Output
	11.5.2.3� Using Optional Report Parameters

	11.5.3� Using Forms and Oracle Trace with the Diagnostics Pack
	11.5.3.1� Starting the Collection
	11.5.3.2� Formatting the Output
	11.5.3.3� Using the Trace Data Viewer

	11.5.4� Setting Up the Load Balancer Server Trace Log
	11.5.4.1� Trace level 1
	11.5.4.2� Trace level 2
	11.5.4.3� Sample Trace File

	12 Load Balancing Considerations
	12.1� Introduction
	12.2� Load Balancing Terminology
	12.3� Load Balancing in Action
	12.4� Configuring for Form Services Load Balancing
	12.4.1� Form Services Listener Parameters
	12.4.2� Load Balancer Server Parameters
	12.4.3� Load Balancer Client Parameters

	13 Oracle Enterprise Manager Forms Support
	13.1� Introduction
	13.2� Why Should I Use OEM?
	13.3� OEM Components
	13.4� Installing and Configuring OEM Components for Use with Forms
	13.4.1� Configuring Forms Support for OEM
	13.4.2� Starting the OMS Service

	13.5� Managing Form Services from the OEM Console
	13.5.1� Locating Nodes
	13.5.2� Entering the Administrative User’s Credentials in the OEM Console
	13.5.3� Viewing Forms Runtime Instances from the OEM Console

	13.6� OEM Menu Options
	13.6.1� Controlling Forms Listeners Group
	13.6.2� Controlling Forms Listeners Instance
	13.6.3� Runtime Processes List Window
	13.6.4� Controlling Forms Runtime Processes
	13.6.5� Controlling Load Balancer Server Group
	13.6.6� Controlling Load Balancer Server Instance
	13.6.7� Controlling Load Balancer Client Group
	13.6.8� Controlling Load Balancer Client Instance
	13.6.9� Monitoring Functions

	14 Capacity Planning Considerations
	14.1� Introduction
	14.2� What Is Scalability?
	14.3� Criteria for Evaluating System Capacity
	14.3.1� Processor
	14.3.2� Memory
	14.3.3� Network
	14.3.4� Shared Resources
	14.3.5� User Load
	14.3.6� Application Complexity

	14.4� Determining Scalability Thresholds
	14.5� Sample Benchmark Results
	14.5.1� Medium-Complex Application on a Low-Cost Intel Pentium-Based System
	14.5.2� Medium-Complex Application on an Intel Pentium II Xeon-Based System
	14.5.3� Medium-Complex Application on an Entry-Level Sun UltraSparc Server
	14.5.4� Simple Application on an Intel Pentium II Xeon-Based System
	14.5.5� Simple Application on an Entry-Level Sun UltraSparc Server

	15 Troubleshooting Solutions
	15.1� Introduction
	15.2� Checking the Status of the Form Services
	15.3� Starting the Form Services
	15.4� Stopping the Form Services Process
	15.5� Starting the Form Services Log
	15.6� Troubleshooting FAQ

	A Form Services Parameters
	A.1� Introduction
	A.2� Windows 95 and Windows NT Registry
	A.2.1� Viewing and Modifying the Registry

	A.3� Configuration Parameters
	A.3.1� Required Parameters
	A.3.2� Customizable Parameters

	B B Client Browser Support
	B.1� Introduction
	B.2� How Configuration Parameters and Base HTML Files are Tied to Client Browsers
	B.3� Internet Explorer 5 with Native JVM
	B.3.1� Software Installation
	B.3.2� Testing Microsoft Internet Explorer
	B.3.2.1� Checking Microsoft JVM
	B.3.2.2� Java 1.1 Applet Testing

	B.3.3� Launching Oracle Forms Applications
	B.3.4� Troubleshooting
	B.3.5� Modification of the baseie.htm file

	B.4� Oracle JInitiator
	B.4.1� Why Use Oracle JInitiator?
	B.4.2� Benefits of Oracle JInitiator
	B.4.3� Using Oracle JInitiator
	B.4.4� Supported Configurations
	B.4.5� System Requirements
	B.4.6� Using Oracle JInitiator with Netscape Navigator
	B.4.7� Using Oracle JInitiator with Microsoft Internet Explorer
	B.4.8� Setting up the Oracle JInitator Plug-in
	B.4.8.1� Adding Oracle JInitiator Markup to Your Base HTML File
	B.4.8.2� Customizing the Oracle JInitiator Download File
	B.4.8.3� Making Oracle JInitiator available for download

	B.4.9� Modifying the Oracle JInitiator plug-in
	B.4.9.1� Modifying the cache size for Oracle JInitiator
	B.4.9.2� Modifying the heap size for Oracle JInitiator
	B.4.9.3� Check and modify the proxy server setting for Oracle JInitiator
	B.4.9.4� Viewing Oracle JInitiator output

	B.4.10� Oracle JInitiator tags for a base HTML file
	B.4.11� Oracle JInitiator FAQ
	B.4.11.1� Certification and Availability
	B.4.11.2� Support
	B.4.11.3� Installation
	B.4.11.4� Operation of Oracle JInitiator
	B.4.11.5� Caching

	B.5� AppletViewer
	B.5.1� Running Applications in the AppletViewer
	B.5.1.1� Preparing to Run Your Application with the AppletViewer
	B.5.1.2� Adding the clientBrowser Parameter to your Base HTML File
	B.5.1.3� Setting the clientBrowser Parameter

	B.5.2� Registering the Forms Applet Signature
	B.5.2.1� Trusting the Forms Applet by Registering Its Signature
	B.5.2.2� Trusting the Forms Applet by Installing the Forms Java Class Files Locally

	B.5.3� Instructions for the User
	B.5.3.1� Installing the AppletViewer
	B.5.3.2� Running the AppletViewer
	B.5.3.3� Invoking a Web Browser From Within the AppletViewer

	C C Java Importer
	C.1� Overview
	C.1.1� Importing Java and Building Applications
	C.1.2� Running Applications with Imported Java

	C.2� Components
	C.3� Installation Requirements
	C.3.1� Imported Java Requirements

	C.4� Importing Java
	C.4.1� Using the Java Importer Tool
	C.4.2� Invoke the Import Java Classes dialog box
	C.4.3� Specify options for importing
	C.4.4� Import a Java class into PL/SQL

	C.5� Building Applications with Imported Java
	C.5.1� Description of the Generated PL/SQL
	C.5.1.1� What Gets Generated?
	C.5.1.2� How is the Java Mapped to PL/SQL?
	C.5.1.3� What are the importer mapping options?
	C.5.1.4� How does PL/SQL naming vary?
	C.5.1.4.1� What is different between persistent and default naming?

	C.5.1.5� What happens if I regenerate the PL/SQL?

	C.5.2� Java Types
	C.5.2.1� Java Type Information in the PL/SQL Package
	C.5.2.2� Arrays

	C.5.3� Persistence
	C.5.3.1� Global References

	C.5.4� Error Handling
	C.5.4.1� Errors
	C.5.4.2� Exceptions

	C.6� Limitations
	C.6.1� Java/PL/SQL Issues/Requirements
	C.6.2� Java in the Form Services
	C.6.3� Builder CLASSPATH Updates
	C.6.4� Builder Restrictions

	C.7� ORA_JAVA Built-ins Reference
	C.7.1� NEW_GLOBAL_REF built-in
	C.7.2� DELETE_GLOBAL_REF built-in
	C.7.3� LAST_EXCEPTION built-in
	C.7.4� CLEAR_EXCEPTION built-in
	C.7.5� LAST_ERROR built-in
	C.7.6� CLEAR_ERROR built-in
	C.7.7� NEW_<java_type>_ARRAY built-in
	C.7.8� GET_<java_type>_ARRAY_ELEMENT built-in
	C.7.9� SET_<java_type>_ARRAY_ELEMENT built-in
	C.7.10� IS_NULL built-in
	C.7.11� GET_ARRAY_LENGTH built-in

	Index

