
D2kCOMN Specification 1

Title: D2KCOMN Library
Version: 2.0.3
Date: 26-JUN-1997
Author: DRMILLS
Purpose: This document defines the prototypes and usage of the D2KCOMN PL/SQL

library. Information on each program unit or package within the library is
provided, along with dependencies

1. D2KCOMN {Function}__ 2

2. D2K_BuildParamList {Function} _____________________________________ 3

3. D2K_Delimited_String{Package}______________________________________ 4

4. D2K_Filler {Package}___ 7

5. D2K_Finder {Package}__ 9

6. D2K_OSFiles {Package}__ 10

7. D2K_Res {Package} ___ 11

8. D2K_Show_Window_Centered {Procedure} ____________________________ 14

9. ToBoolean {Function} ___ 15

10. The D2KCOMN.OLB Object Library ________________________________ 16

D2kCOMN Specification 2

1. D2KCOMN {Function}

1.1. Prototype
D2kComn Return VARCHAR2
Returns a version string for the D2Kcomn library

1.2. Dependencies
None

D2kCOMN Specification 3

2. D2K_BuildParamList {Function}
BuildParamlist provides a quick and simple way to create a parameter list to pass to another
Form, or to Graphics & Reports. The actual creation of the list is internal to the function as
is cleaning up old copies of the list.

2.1. Prototype
BuildParamlist (ParamString in varchar2,

ParamListName in varchar2
) return PARAMLIST

The ParamString (varchar2) is just a sequence of ParameterName=ParameterValue
statements separated by a pipe symbol. Thus, the argument
‘ENAME=SCOTT|EMPNO=1234’ would create a parameter list with two entries, ENAME
and EMPNO, with their respective values.
To indicate a DATA parameter rather than a TEXT parameter prefix the name of the
parameter with the keyword ‘DATA:’ e.g.
‘ENAME=SCOTT|DATA:EMPQUERY=RECORDGROUPNAME’ this will then create a
parameter list with a text parameter ENAME and a data parameter EMPQUERY.
You are responsible for escaping any quotes or spaces in TEXT data strings into a format
acceptable by the target product..

ParamlistName can be left null for a default name, or if you need to create several co-
existing parameter lists you can supply your own name. If you re-use a list name, the old list
will be replaced by the new one.

2.2. Dependencies
D2K_Delimited_String

2.3. Error Handling
If a error is raised from the function the exception NO_DATA_FOUND will be raised this
will only occur if the function is unable to create the new parameter list for some reason.

D2kCOMN Specification 4

3. D2K_Delimited_String{Package}
D2K_Delimited_String is a package for handling delimited strings. The strings can be
delimited by any character or set of characters (default is comma), and can be terminated or
un-terminated by the delimiter. The various functions within the package provide random
access to the delimited string, much as if it were an array.
The package can handle values of up to 2000 chars in length, although this could be
increased to 32k if required by changing the buffer sizes. The package is not capable of
handling multi-byte strings.
All the values saved to the string are of course saved as string values, but can be extracted to
their native datatypes using the correct Get functions. GetString will extract any data type
into a string variable.
Numeric data types are stored in the supplied precision, and Dates with full precision.
All of the Functions and Procedures within the Package take three common arguments:

• SourceString in varchar2 È The delimited string being accessed

• Unterminated in boolean È TRUE if there is no trailing delimiter or FALSE (default) if
there is. e.g. in a string that had a comma for the delimiter “ a,b,c” would be classed as
Unterminated=TRUE, whereas “a,b,c,” would be FALSE.

• Delimiter in varchar2 È The actual delimiting char (or chars). This defaults to a
comma.

3.1. Prototype

3.1.1. Constants
None

3.1.2. Variables
none

3.1.3. Procedures

3.1.3.1. PutString(Source_string in out varchar2,
String_to_add in varchar2,
Field_position in number,
UnTerminated in Boolean default FALSE,
Delimiter in varchar2 default ’,’);

PutString adds the string specified in String_to_Add to the specified Field_Position. The
procedure will handle adding any required delimiters if the position is bejond the current
scope of the Source_string. Source_String itself is implicitly updated with the new value.

3.1.3.2. PutNumber(Source_string in out varchar2,
Number_to_add in varchar2,
Field_position in number,
UnTerminated in Boolean default FALSE,
Delimiter in varchar2 default ’,’);

As PutString for adding a number.

D2kCOMN Specification 5

3.1.3.3. PutDate(Source_string in out varchar2,
Date_to_add in varchar2,
Field_position in number,
UnTerminated in Boolean default FALSE,
Delimiter in varchar2 default ’,’);

As PutString for adding a date.

3.1.3.4. Put È An overloaded version that can put any of the above datatypes.

3.1.4. Functions

3.1.4.1. Counter (Source_string in varchar2,
UnTerminated in boolean default FALSE,
Delimiter in varchar2 default ’,’

) return number;
Returns the number of members in the string e.g. delimstr.counter(‘a,b,c,d,’) would return
“4”.

3.1.4.2. GetString(Source_string in varchar2,
Field_position in number,
UnTerminated in boolean default FALSE,
Delimiter in varchar2 default ’,’

) return varchar2;
Returns the value at Field_Position as a string

3.1.4.3. GetNumber(Source_string in varchar2,
Field_position in number,
UnTerminated in boolean default FALSE,
Delimiter in varchar2 default ’,’

) return number;
Returns the value at Field_Position as a number. If the field in question does not contain a
valid number a value error will be raised.

3.1.4.4. GetDate(Source_string in varchar2,
Field_position in number,
UnTerminated in boolean default FALSE,
Delimiter in varchar2 default ’,

’) return date;
Returns the value at Field_Position as a date. If the field in question does not contain a valid
date a value error will be raised.

3.1.4.5. Locate(Source_string in varchar2,
Search_<> in <overloaded>,
UnTerminated in boolean default FALSE,
Delimiter in varchar2 default ’,’) return number;

An overloaded function which returns the field number of the first field that exactly matches
the supplied string, date or number. Returns Zero if no match is found.

3.2. Dependencies
None

D2kCOMN Specification 6

3.3. Error Handling
None

D2kCOMN Specification 7

4. D2K_Filler {Package}
D2K_Filler raises a modal dialog window containing a progress bar. Each time the
increment procedure within the package is called, the progress bar is increased in size.
The programmer has to call the Setup procedure to define the scope of the Fill (e.g. the
number of steps required must be calculated in advance. After this, calls to the increment
procedure will increase the size of the filler bar, and update text in the display with progress
information if required.

4.1. Prototype

4.1.1. Constants
None

4.1.2. Variables

4.1.2.1. Interrupted [Exception]
You can raise this exception to stop the control in a clean manner.

4.1.3. Procedures

4.1.3.1. Setup (WindowTitle in varchar2,
MessageText in varchar2,
ReturnTo in varchar2,
MinValue in number default 0,
MaxValue in number default 100,
FillerBlock in varchar2 default ’FILLER$’)

WindowTitle sets the title for the dialog and MessageText defines the message displayed in
the window. ReturnTo defines where the cursor should go when the OK button on the dialog
is pressed. MinValue and MaxValue define the range for the fill in conjunction with the
IncrementBy argument of the Increment procedure. Generally the range will start at Zero
(when the bar will be at 0%) and increase in steps up to the MaxValue at 100%. The
number of Increments to fill the control is (MaxValue-MinValue) / IncrementSize.
You supply a different value for the FillerBlock when you’ve subclassed and renamed the
filler block from the D2COMN object library. If you have not renamed the block, then you
can leave the value at the default block name of “FILLER$”.

4.1.3.2. Increment (Activity in varchar2,
IncrementBy in number default 1)

Each call to Increment will advance the filler bar and the text in the Activity variable is put
into a progress field.

4.1.3.3. OK_Button;
Returns focus back to the item specified in the Setup call.

4.1.3.4. Aborted
Resets the internal state of the control when an error occurs. If you implement your own
interrupt mechanism, e.g. by using functions within D2KWUTIL.PLL, then be sure to call
the Aborted procedure after the interrupt, in order to ensure that subsequent calls to the
component work.

D2kCOMN Specification 8

4.2. Dependencies
D2KCOMN.OLB È Object Group D2K_FILLER_COMPONENT
D2K_SHOW_WINDOW_CENTERED

4.3. Error Handling
If a VALUE_ERROR is raised by the calculations that resize the bar, or if the programmer
causes the d2k_filler.interrupted exception to be raised, then the Aborted procedure will be
called to reset the control. Any other exceptions will be passed through.

D2kCOMN Specification 9

5. D2K_Finder {Package}
Finder is a package concerned with locating files, it provides a way of listing each of the
available directory locations that are contained in ORACLE_PATH, FORMS45_PATH,
FORMS50_PATH, TK23_ICON, TK25_ICON and the source directory containing the
current form. Additionally it has a procedure for checking that a named file actually exists.
You can add additional path variables to search by altering the package body initialisation
section. Any path variables that you add must be created at the same scope as
ORACLE_PATH, e.g. in the HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE branch of
the Registry, or in the current UNIX shell.

5.1. Prototype

5.1.1. Constants
None.

5.1.2. Variables

5.1.2.1. PossiblePaths [pls_integer]
PossiblePaths is initialised when this package is first accessed. It contains the number of
paths that have been extracted from the various information sources.

5.1.3. Procedures
None.

5.1.4. Functions

5.1.4.1. GetDirString (PathIndex in pls_integer
) return varchar2

GetDirString pulls out the requested path from the list held internally by the package. The
path is returned with a trailing separator.
The normal usage would be to Loop from 1 to PossiblePaths, using GetDirString to pull out
each path in turn, then test each path for a particular file. The directory string is returned
with a terminating directory separator already included. E.g. C:\TEMP would be returned as
C:\TEMP\.

5.1.4.2. GetLocation (FileName in varchar2
) return varchar2

Unlike GetDirString which gives you a list of possible discreet directories for you to
examine, GetLocation does the hard work for you and returns the full path and name of the
requested file if it’s anywhere in the directory list that D2K_Finder holds.

5.1.4.3. FileExists (FileName in varchar2
) return boolean

If the named file exists in the specified location TRUE will be returned, else FALSE.

5.2. Dependencies
D2K_OSFILES

5.3. Error Handling
None

D2kCOMN Specification 10

6. D2K_OSFiles {Package}
OSFiles is a utility for parsing out the various components of a file name (e.g. path to file,
the name itself, file extension etc.) in a platform independent way.

6.1. Prototype

6.1.1. Constants
None

6.1.2. Variables
None

6.1.3. Procedures
None

6.1.4. Functions

6.1.4.1. SepChar return varchar2
Just returns the separator character for the Operating System the form is running on.

6.1.4.2. Name (FileString in varchar2) return varchar2
Extracts the File name only, without Path or extension from the FileString.

6.1.4.3. FullName (FileString in varchar2) return varchar2
Extracts the full path to, and the filename itself, but no file extension.

6.1.4.4. QualifiedName (FileString in varchar2) return varchar2
Extracts the File name and extension, but no path.

6.1.4.5. Path (FileString in varchar2) return varchar2
Extracts just the file component of FileString. The vcalue returned is not terminated with
the separator for that platform.

6.1.4.6. Extension (FileString in varchar2) return varchar2
Extracts just the file extension from FileString.

6.1.4.7. MakeName (Path in varchar2, FileName in varchar2, Extension in varchar2)
return varchar2
Reverses the whole process and allows you to build a correctly formatted file string for your
platform.

6.2. Dependencies
None

6.3. Error Handling
None

D2kCOMN Specification 11

7. D2K_Res {Package}
The D2K_Res package is concerned with reading text strings from resource files. These can
be retrieved as normal strings, or as messages, or into alerts. D2K_Res can handle multiple
open resource files at once, and maintains it’s state across multiple forms, providing that the
library is shared.

7.1. Prototype

7.1.1. Constants
None

7.1.2. Variables
None

7.1.3. Procedures

7.1.3.1. InitialiseRes (ResourceList in varchar2,
UseNLS in boolean)

InitialiseRes should just need to be called once in a Forms session. It is concerned with
checking the existence of and opening the requested resource files. The ResourceList
argument needs to be a comma separated list of all the required resource files (if more than
one). You may supply the full path to the resource file. If you do not D2k_Res will use the
D2k_Finder package to search for the resource file. In each case it will look in each of the
possible directories, then in a sub-directory called “resource” off each directory.
Do not include the .RES extension in the filenames, the procedure will add these for you.
If the UseNLS boolean is set to TRUE, then the package will check the NLS settings for the
current system and append the correct NLS territory abbreviation onto the filename, so
allowing auto-selection of language specific versions of resource files. E.g. with an NLS
setting of america_american.we8iso59p, UseNLS set to TRUE, and a supplied resource file
name of “DEMO” then the package will locate a resource file called “DEMOUS.RES”
You can attempt to load the same resource file many times, the package will only actually
load it the first time it encounters it in the runform session.

7.1.3.2. CloseRes
Closes any resource files opened by InitialiseRes in this instance of the library. All the open
resource files should be closed when Forms Exits and so you’ll probably never use this
procedure in any case.

7.1.3.3. Debug (String in boolean,
Msg in boolean,
Response in boolean,
Files in boolean);

The debug procedure acts as an aid to system builders and administrators. The boolean
arguments will cause the strings returned in each case to have the message identifier prefixed
to them. So if you need to alter the text of, say a message, you can set the Msg argument to
TRUE, then all messages, (or the alert title in the case of alerts) will be prefixed with the
resource identifier in angle brackets e.g. �5HVRXUFHB,G!0HVVDJH�7H[W

You must set each of the boolean arguments at the same time, they are all initialised to
FALSE. If you set one of the arguments to NULL, it’s state will remain unchanged.
Setting Files to TRUE will report the name and location that is tested for each resource file.

D2kCOMN Specification 12

7.1.3.4. GetMsg (Target in varchar2,
 Arg1..Arg10 in varchar2)

GetMsg returns the specified resource in the form of a message. This can either be directed
to an alert, or to the message line. In both cases the length of the string resource will be
limited to 200 chars.
The resource string should be formatted into the following “fields” as follows with each
value delimited by a Pipe symbol “|”.
1. Text (max length implicitly 200 chars)
2. Alert Style (as varchar2) choose from ‘NONE’ (default), ‘STOP’, ‘CAUTION’ or

‘NOTE’.
3. Audible Signal: choose from ‘BEEP’ or ‘NOBEEP’ (note that messages displayed in

alerts may beep as a result of O/S setup independently of this setting)
4. Alert Title (default ‘Error’)
If and Alert style, the alert for a message will always be defined with a single button with the
text ‘OK’
So to define an message with a Stop Icon, the title of ‘Fatal Error’ the text of ‘An Error Has
Occurred’, and a beep to alert the user, you would enter the following string into the resource
file.

$Q�(UURU�+DV�2FFXUUHG_6723_%((3_)DWDO�(UURU

No terminating pipe symbol is required.
If an alert style of NONE (or blank) is selected, the message will just be echoed to the
console line rather than being popped up in an alert.
A style of STOP, CAUTION or NOTE will cause a conventional windows alert to pop up,
from which the user must press OK to exit.
If the resource string contains %s placeholders, these will be replaced with the contents of
the arguments Arg1 to Arg10.
Any tab placeholders “%t” will be replaced with a tab character

7.1.3.5. ClearMsg
Cleans off the message line.

7.1.4. Functions

7.1.4.1. GetString (Target in varchar2,
MaxLength in pls_integer default 2000,
Arg1..Arg10 in varchar2

) return varchar2
GetString just returns the specified string. It will search through each open resource file
until it is found. You can ensure that the returned string does not exceed a specified length
by including the MaxLength parameter.
Resource files have a maximum length of 1984 chars per resource.
If the resource string contains %s placeholders, these will be replaced with the contents of
the arguments Arg1 to Arg10.
Any tab placeholders “%t” will be replaced with a tab character

7.1.4.2. GetResponse (Target in varchar2,
Arg1..Arg10 in varchar2

) return pls_integer
GetResponse takes the specified resource string from any open resource file, and displays it
in an alert. The format of the alert is described by information within the string itself. The
string in the resource file can be delimited into extra fields which will hint as to which type
of alert to display.

D2kCOMN Specification 13

The resource string should be formatted into the following “fields” as follows with each
value delimited by a Pipe symbol “|”.
1. Text (max length implicitly 200 chars)
2. Alert Style (as varchar2) choose from ‘STOP’, ‘CAUTION’ (default) or ‘NOTE’.
3. Alert Title (default ‘Caution’)
4. Button 1 Text (default ‘OK’)
5. Button 2 Text (default ‘Cancel’)
6. Button 3 Text (default NULL - No Third button)
So to define an alert with a Stop Icon, the title of ‘Fatal Error’ the text of ‘An Error Has
Occurred’ and three buttons containing ‘Yes’, ‘No’ and ‘Cancel’ you would enter the
following string into the resource file.

$Q�(UURU�+DV�2FFXUUHG_6723_)DWDO�(UURU_<HV_1R_&DQFHO

No terminating pipe symbol is required.
The function returns the number of the button that the user pressed in response to the alert.
Use the defined forms alert button constants to compare against (ALERT_BUTTON1 etc.).
If the resource string contains %s placeholders, these will be replaced with the contents of
the arguments Arg1 to Arg10.
Any tab placeholders “%t” will be replaced with a tab character

7.2. Dependencies
D2K_Delimited_String, D2K_Finder, D2k_OSFiles, ToBoolean
D2KCOMN.OLB È Object Group D2K_RES _COMPONENT

7.3. Error Handling
If a string resource is requested and cannot be found the value “<Target> No resource found”
for will be returned.

D2kCOMN Specification 14

8. D2K_Show_Window_Centered {Procedure}
A handy function for positioning a named window in the centre of the screen (relative either
to the MDI frame or the physical screen).

8.1. Prototype
PROCEDURE SHOW_WINDOW_CENTERED (WindowName in VARCHAR2,

WindowStyle in VARCHAR2 := ‘DOCUMENT’,
Console in BOOLEAN := TRUE,
Xoffset in number,
Yoffset in number)

WindowStyle indicates if this is a Document or Dialog window. Documents are positioned
relative to the MDI and Dialogs to the physical Screen.
The code checks for the USESDI parameter and positions relative to the display is this is set.
Console indicates that the console line should be taken into account.
The additional arguments Xoffset and Yoffset allow you to “tweek” the position of the
centered window.

8.2. Dependencies
ToBoolean

8.3. Error Handling
None

D2kCOMN Specification 15

9. ToBoolean {Function}
A simple function primarily for converting the value of checkboxes to a boolean value, e.g. Y
become TRUE, N becomes FALSE.

9.1. Prototype
ToBoolean(Sample in varchar2,

TrueValue in varchar2 default ’Y’
) return boolean

Simply takes the sample value and compares it with the TrueValue. If they match it will
return TRUE, else FALSE. If one of the values is NULL then NULL will be returned.
The function is case insensitive.

9.2. Dependencies
None

9.3. Error Handling
None

D2kCOMN Specification 16

10. The D2KCOMN.OLB Object Library
Note: Objects in the D2KCOMN object library are all based on Points as a co-ordinate
system.

10.1. D2K_FILLER Tab
This section of the library contains the object group d2k_filler_component. This object
group contains the block, canvas and window that d2k_filler uses. Just drag the component
in to your application intact

10.2. D2K_RES Tab
This section of the library contains the object group d2k_res_component. This component
contains the Alerts used by the d2k_res package.

