18

TRANSAKCIJE | ORACLE - BAZA, FORMS, ADF hroug

Zlatko Siroti¢, univ.spec.inf.
ISTRA TECH d.o.o0. (ex. Istra informaticki inZenjering d.o.0.)
Pula, listopad 2013.

SAZETAK

Cesto se transakcije u Oracle bazi, te u alatima Forms i ADF, koriste na "standardan", tj. uobi¢ajeni
nacin. Uglavnom je tako i najbolje. No ima trenutaka kada je bolje posegnuti za nekim rjeSenjem koje nije
"u glavnom toku". U radu ce biti prikazani standardni i neki nestandardni nacini upravljanja transakcijama
u Oracle bazi, Forms-ima i ADF-u.

Transactions in Oracle Database, Forms and ADF, are often used in a "standard", common way. In
general, that is the best way to use them. But, there are cases when it is better to find a solution that is
not "in the book". Throughout the paper | will be demonstrating some standard and non-standard ways of
handling transactions in the Oracle database, Forms and ADF.

UvoD

Ispravno rukovanje transakcijama u bazama podataka vrlo je bitno za poslovne aplikacije.

No, treba napomenuti da razumijevanje transakcija postaje sve vaznije, jer su se one "izvukle" iz
okvira (samo) baza podataka i "uSle" u programske jezike (bilo direktno, bilo indirektno, kroz
odgovarajuce library-e), pa i u hardver, u vidu softverskih, hardverskih i hibridnih transakcijskih memorija
(STM, HTM i hibridni TM) - vidjeti npr. [5] i [6]. Npr. nova generacija Intelovih procesora (Haswell) ima
hardversku transakcijsku memoriju.

Transakcije su tako postale povezane sa (vjerojatno) najve¢im danasnjim problemom softverskog
inZenjerstva (iako se o njemu u javnosti puno manje pri¢a nego npr. o Cloud Computingu, Big Data, SOA
arhitekturi i dr.) — kako pisati pouzdane konkurentne i paralelne programe.

U radu su prikazane razliCite teme vezane za upravljanje transakcijama, kroz tri poglavlja.

U prvom poglavlju prikazane su teme vezane za transakcije i Oracle bazu.

Prikazane su "standardne" teme: Osnove arhitekture Oracle DBMS-a (vezano za transakcije);
Transakcije opéenito; Transakcije i zaklju¢avanje; Nove moguénosti u bazi 12c (vezano za transakcije).

Nesto teZe teme su: Distribuirane transakcije; RjeSavanje mutiranja okidaca baze.

Prikazane su i specijalne teme (naSa rjeSenja): Simulacija COMMIT okidada pomoc¢u odgodenih
deklarativnih integritetnih ogranicenja; Simulacija INSERT WAIT naredbe; Simulacija ROLLBACK TO
SAVEPOINT naredbe u okidaCu baze; Kako generirati dokumente bez rupa u brojevima.

U drugom poglavlju prikazane su teme vezane za transakcije i Oracle Forms.

Prikazane su "standardne" teme: Forms - razvoj, varijante, arhitektura; Neka svojstva Forms modula i
Forms bloka (vezano za transakcije); Svojstva tipi¢nih vrsta tekstualnih polja (text item); Transakcijski i
validacijski status Forms objekata; Master-detalj relacije.

Nesto teze teme su: COMMIT i POST Forms procesi; Razli€iti nacini poziva Forms modula.

Prikazane su i specijalne teme (nasa rjeSenja): Template i library za POST-iranje kod relacije
master—detalj; Forms i odgodena deklarativna integritetna ograni¢enja na bazi.

U tre¢em poglavlju prikazane su teme vezane za transakcije i Oracle ADF (ADF BC i Task Flow).

Prikazane su "standardne" teme: ADF - razvoj i arhitektura; Entity Object; View Object; Application
Module; Kako pomiriti HTTP stateless protokol i stateful zahtjeve.

Nesto teZe teme su: Application Module Pooling; Task Flow i transakcije.

Buduci da je tema o transakcijama povezana i s drugim temama, ponekad ¢e ukratko biti prikazane i
neke stvari koje nisu direktno vezane uz transakcije.

1. TRANSAKCIJE | ORACLE BAZA

1.1. Osnove arhitekture Oracle DBMS-a (vezano za transakcije)

Oracle sustav €ine dva glavna dijela:

baza podataka (BP), koju Cine razliCite vrste datoteka; najvaznije su datoteke podataka, no
postoji i desetak drugih vrsta datoteka, od kojih su posebno vazne Redo Log datoteke, koje se
dijele na Online i Archive; Online Redo Log datoteke sluze (izmedu ostalog) za oporavak baze u
slucaju pada sustava (npr. programske greske ili nestanaka struje), dok Archive Redo Log

datoteke sluze za uspostavu prijasnjeg stanja, zajedno sa backup datotekama (na trakama ili
diskovima) u slu€aju kvara medija (u pravilu — diska);

- instanca (jedna ili viSe) baze podataka, koju ¢ine memorijske strukture i procesi u memoriji; od
memorijskih struktura, naroc€ito su zanimljivi Block Buffer Cache i Redo Bufer.

Na koji nacin radi Citanje (SELECT) i izmjena podataka (INSERT / UPDATE / DELETE) u Oracle
sustavu? Kilijentski procesi (klijentski proces moze biti proces na drugom racunalu, proces na istom
racunalu na kojem se nalazi i Oracle DBMS, ali moze biti i neki proces unutar Oracle DBMS-a) nikad ne
dobivaju podatke direktno sa diska. Svi podaci koji se Citaju sa diska smjestaju se u Block Buffer Cache.

Takoder, kada klijentski proces mijenja podatke, ne mijenja ih direktno na disku, ve¢ se promjene prvo
spremaiju u Block Buffer Cache, kako to prikazuje slika 1.1.

AN
v
Block)
Oracle R ——— Buffer Klijent
tablice Cache proces
podataka
v

Slika 1.1. Klijentski procesi uvijek Citaju / mijenjaju podatke preko Block Buffer Cache-a

Zapravo, mijenjanje podataka ne ide tako da se podaci direktno iz Block Buffer Cache-a upisuju na
disk, ve¢ se upis radi preko Redo Buffer-a, kako prikazuje slika 1.2.

N

v
Block
Oracle Redo Buffer Buffer Klijent
tablice : <—— Cache proces
podataka
v

Slika 1.2. Izmjena podataka radi se kroz Redo Buffer

Osim toga, mijenjanje podataka ne ide tako da se podaci odmah upisuju u tablice podataka, ve¢ se iz
Redo Buffer-a prvo upisuju u Online Redo Log datoteku, kako prikazuje slika 1.3.

AN AN
v v
Oracle Online Redo Buffer
. S —
tablice Redo <——
podataka Log

N~

Slika 1.3. Podaci se na disk prvo zapisuju u Online Redo Log

Online Redo Log &ine minimalno dvije datoteke (a preporucljivo je da postoje barem tri) koje se
koriste u krug — kada se prva napuni, Oracle pocinje pisati u drugu, a kada se druga napuni Oracle se
vraca na prvu. Kada su podaci zapisani u Online Redo Log moZe do¢i do pada sustava (to nije kvar
medija) prije nego Oracle te podatke upiSe u prave tablice podataka. No nakon Sto se Oracle sustav
ponovno podigne, procitat ¢e Online Redo Log i upisati podatke u prave tablice. Naravno, pitanje je da li ti
podaci zaista trebaju biti trajno zapisani u tablicu podataka — to ovisi o tome da li su oni COMMIT-irani.

Moglo bi se pomisliti da Oracle sve podatke koji nisu COMMIT-irani drzi u memoriji, u Block Buffer
Cache-u, a da se tek kod COMMIT-a svi podaci prepisuju na disk. No to je nemoguce, jer Block Buffer
Cache, koliko god bio velik, ne moze uvijek biti dovoljno velik da svi mijenjani podaci stanu u njega. Stoga
se podaci iz Block Buffer Cache-a ¢esto upisuju u tablice podataka (posredstvom Redo Buffer-a i Online
Redo Log-a) prije nego je transakcija COMMIT-irana. Stoga se nakon pada sustava, i nakon $to Oracle
procita Online Redo Log i upiSe podatke (koji jo$ nisu upisani) u prave tablice, tj. nakon faze koju bismo
mogli nazvati REDO fazom, zbiva UNDO faza, u kojoj se oni podaci koji nisu COMMIT-irani bridu iz
Oracle tablica podataka (slika 1.4.). Takav postupak, da se prvo radi REDO, a onda UNDO faza, naziva
se ARIES (Algorithms for Recovery and Isolation Exploiting Semantics) [3].

MoZe se postaviti pitanje — otkuda Oracle uzima stare podatke, koji su mu potrebni da napravi UNDO
fazu? Moglo bi se pomisliti da se ti podaci nalaze u Online Redo Log datoteci, tj. da ona &uva sliku redaka
kakvi su bili prije promjene (pa bi se ta slika koristila za UNDO) i sliku redaka nakon promjene (pa bi se ta
slika koristila za REDQO). U stvarnosti Online Redo Log, kako mu i samo ime kaze, sadrzi samo sliku za
REDO. Podaci potrebni za UNDO nalaze se u jednom posebnom prostoru na disku, koji se naziva UNDO
tablespace (naravno, postoje i tablespaceovi za standardne tablice podataka). Oracle zapisuje staro
stanje redaka u UNDO tablespace uvijek kada radi izmjenu podataka (INSERT / UPDATE / DELETE).

N] N N
Online
Redo Oracle UNDO
Log ————> tablica {<_———— tablespace
datoteka podataka

N~

N~

N~

Slika 1.4. Nakon pada sustava, u Oracle tablice podataka
prvo se dodaju nedostajuéi podaci iz Online Redo Log-a,
a onda se za ne-COMMIT-irane transakcije vraéaju podaci iz UNDO tablespacea

UNDO tablespace, osim $to sluzi za eliminiranje (iz tablica podataka) promjena koje nisu COMMIT-
irane (kod oporavka sustava nakon pada i nakon ROLLBACK-a), sluZi i za omoguéavanje visekorisni¢kog
rada. Naime, jedan od vaznijih zahtjeva na RDBMS sustav je da jedna sesija (baze podataka) ne vidi
promjene koje je napravila druga sesija, sve dok ta druga sesija ne napravi COMMIT. No buduci da se
Cesto ne-COMMIT-irani podaci moraju spremati na disk, pitanje je otkuda prva sesija moze Citati stare
podatke (prije promjene). Oni nisu u tablici podataka (tamo su promijenjeni podaci), nisu niti u Online
Redo Log datoteci — oni se nalaze u UNDO tablespaceu. Oracle ih iz UNDO tablespacea ¢ita u Block
Buffer Cache, jer klijentski proces sve podatke (pa i stare) Cita iz Block Buffer Cache-a, a ne direktno sa
diska.

Postojanje UNDO tablespacea (ili neke slicne strukture u nekom drugom RDBMS sustavu)
omogucéava da mijenjanje podataka ne utje€e na Citanje podataka, tj. mijenjanje podataka ne spreava da
se ti podaci istovremeno i €itaju (zapravo, Citaju se stara stanja tih podataka). U RDBMS sustavima koji
nemaju nesto sli¢no kao Sto je UNDO tablespace, mijenjanje podataka utjeCe na Citanje, tj. sesija koja
mijenja podatke postavlja lokot nad tim mijenjanim redovima, a taj lokot spre€ava druge sesije ¢ak i da
Citaju podatke, &ime dolazi do znatnog usporavanja korisni¢kog rada.

Osim UNDO tablespacea i Online Redo Log datoteka, postoje i Archive Redo Log datoteke. One, za
razliku od UNDO tablespacea i Online Redo Log datoteka nisu obavezne, tj. Oracle sustav moze raditi i
bez njih. No Archive Redo Log datoteke su, uz backup datoteke, prakti¢ni nuzne za oporavak u slu€aju
kvara medija (diska). Archive Redo Log datoteke dobivaju se kopiranjem napunjenih Online Redo Log
datoteka. Naravno, Archive Redo Log datoteke se ne koriste u krug, tako da za njihovo spremanje treba
rezervirati dovoljno mjesta na nekom mediju. To moze biti traka, ali danas je najpogodnije (zbog relativno
niskih cijena diskova) da to budu diskovi - naravno, ne oni isti na koje se spremaju tablice podataka (jer
ako se pokvare ti diskovi, izgubili smo oboje).

Napominjemo da je prikaz arhitekture baze podataka vrlo opéenit, bez puno detalja. Preporu¢amo
Citanje izvrsne knjige Toma Kytea [7].

1.2. Transakcije opéenito

Kod baza podataka, vazni su pojmovi konekcija, sesija i transakcija baze podataka. Moramo
napomenuti da se ti pojmovi ponekad brkaju, vjerojatno zbog toga Sto se na aplikacijskoj strani (npr. kod
aplikacijskih servera) Cesto koriste isti pojmovi, ali ne znace uvijek isto to i kod DBMS-a. Npr. u web
programiranju, korisni¢ka (user) sesija (neki kazu i aplikacijska sesija) nije isto Sto i sesija baze. Na bazi,
jednu sesiju ¢ini jedna ili viSe slijednih transakcija, a transakcija uvijek pripada jednoj sesiji (izuzetak su
distribuirane transakcije, gdje jednu transakciju realizira viSe sesije, koje pripadaju razli¢itim bazama
podataka). Konekcija na bazu je (pojednostavljeno re¢eno) veza izmedu klijentskog programa (to moze
biti i program na aplikacijskom serveru) i baze, a kroz jednu konekciju moze u odredenom trenutku icéi
nula, jedna ili viSe sesija (baze). NajceSée kroz jednu konekciju ide jedna sesija (baze), pa se Cesto
pojmovi konekcija (na bazu) i sesija (baze) poistovjeéuju. No npr. Oracle Forms koristi moguénost da viSe
sesija (baze) ide kroz samo jednu konekciju.

MoZemo reci da su ovo neke najvaznije osobine Oracle transakcije (u ne-distribuiranom sluéaju):

1. Sesija (baze) ne vidi promjene koje je napravila druga sesija, dok druga sesija ne napravi
COMMIIT (ili ROLLBACK). Medutim, sesije nisu nezavisne, jer zaklju¢avanje redaka u jednoj sesiji utjece
na drugu sesiju koja pokusava azurirati redak koji je zaklju¢ala prva sesija.

2. Kada sesija izvrSava DML naredbu (INSERT / UPDATE / DELETE), automatski se zaklju¢a redak.
Redak se moze otklju¢ati tek na kraju transakcije (COMMIT ili ROLLBACK), ili pomoéu ROLLBACK TO
SAVEPOINT. Zaklju¢avanje ce biti detaljnije prikazano u sljedeéem potpoglavlju.

3. Transakcija moZze ili u cijelosti uspjeti (COMMIT), ili se u cijelosti ponistiti (ROLLBACK). Naravno,
ne znali da sve DML radnje unutar transakcije moraju uspjeti, jer one DML radnje koje su uzrokovale
gresku, ali je greSka obradena, neée uspjeti.

4. DML naredba moze ili u cijelosti uspjeti ili se njen efekt u cijelosti poniStava. Pritom se mogu desiti
tri tipa gresSaka:

- naruseno ograni¢enje na tip stupca, npr. ako u NUMBER (2) poku$samo upisati broj 1000;

- naruseno deklarativno integritetno ograni¢enje (PK, UK, FK, CK, NOT NULL); zapravo provjera
deklarativnih ograni¢enja moze se i odgoditi (najkasnije do COMMIT) - tada naredba moze uspjeti i ako
deklarativha ograni¢enja nisu zadovoljena;

- naruSena proceduralna ograni¢enja (okidaci baze); to je najkompliciraniji slu€aj, jer npr. jedna
UPDATE naredba moZze okinuti razli¢ite UPDATE okidace, koji mogu pozivati procedure koje dalje rade
DML, &ime se okidaju drugi okidadi.

5. Ako se desila greSka na bazi koja nije obradena, a poCetak je DML naredba, svi efekti se
ponistavaju (prethodna tocka). Ako se desila greSka na bazi koja nije obradena, a pocetak je poziv
procedure (ili funkcije) sa strane klijenta (npr. Forms ili Java), ili poziv sa strane druge baze (udaljena
procedura), svi efekti procedure se ponistavaju.

Cesto se kaze (npr. [2]) da transakcija treba zadovoljavati ACID svojstva (ACID property):

- A oznacava atomarnost (Atomicity);

- C oznacava konzistentnost (Consistency);

-l oznadava izoliranost (Isolation);

- D oznacava trajnost (Durability).

Napomenimo da je konzistentnost transakcije usko povezana sa atomarnoSc¢u, ali je za
konzistentnost odgovoran programer, a ne baza. Za transakciju se Cesto kaZe da je ona jedinica
integriteta (a unit of integrity). Zanimljivo je naglasiti da Date (npr. u [3]) tvrdi kako bi zapravo i svaka
naredba (statement) trebala biti jedinica integriteta (Sto danasnji DBMS-i ne omogucéavaju).

Izoliranost se Cesto zove i serijabilnost (serializability). Misli se na to da bi transakcije trebale uvijek
ostaviti efekt kao da se izvr§avaju serijski (jedna za drugom), iako se izvrSavaju konkurentno (paralelno ili
kvazi-paralelno). Da bi se postigla serijabilnost, DBMS sustavi primjenjuju dvofazno zaklju¢avanje (two-
phase locking), koje ne treba mijeSati sa dvofaznim commit protokolom (koji se koristi kod commit-iranja
distribuirane transakcije). U fazi Sirenja (growing phase), transakcija zaklju¢ava retke, a poslije ih samo
otklju€ava, u fazi stezanja (shrinking phase).

Skoro svi DBMS sustavi koriste specificnu varijantu dvofaznog zaklju€avanja, striktno dvofazno
zakljuCavanje (strict two-phase locking), kod kojeg se faza stezanja radi neposredno prije kraja
transakcije, prije commit-iranja (ili rollback-iranja). Ta varijanta eliminira problem kaskadnog abortiranja
(cascading abort).

1.3. Transakcije i zakljuéavanje

Kako je re€eno u prethodnom potpoglavlju, kada sesija izvrSava DML naredbu (INSERT / UPDATE /
DELETE), automatski se zaklju€a redak. Redak se moZe otklju€ati tek na kraju transakcije (COMMIT ili
ROLLBACK), ili pomo¢u ROLLBACK TO SAVEPOINT. No treba naglasiti da sesiji koja pokusa pristupiti
zaklju€¢anim redovima prije nego druga sesija napravi ROLLBACK TO SAVEPOINT, ti redovi i daje ostaju
zaklju€ani (do COMMIT ili ROLLBACK).

lako se zaklju¢avanje Cesto radi implicitno, pomo¢u DML naredbi (INSERT, UPDATE, DELETE),
ponekad je potrebno koristiti eksplicitno zaklju¢avanje pomo¢u SELECT ... FOR UPDATE (rijetko se
koristi LOCK TABLE) kako bi se sacuvao integritet podataka.

Sesija koja ¢eka na zaklju€ane retke u pravilu ¢eka neogranieno, tj. dok joj druga sesija ne otkljuCa
retke. Postoje dva izuzetka:

1. Sesija moze pokusSati zaklju€ati retke sa
SELECT ... FOR UPDATE;

i navesti da ne zeli ¢ekati
SELECT ... FOR UPDATE NOWAIT;

ili Zeli Cekati odredeni broj sekundi
SELECT ... FOR UPDATE WAIT timeout;

Ako je druga sesija zaklju€ala redak, onda se prvoj sesiji javlja greSka
ORA-00054: resource busy and acquire with NOWAIT specified;

2. Ako sesija ¢eka na otklju€avanje redaka sa udaljene baze, onda je ¢ekanje definirano parametrom
DISTRIBUTED_LOCK_TIMEOUT, koji ima standardnu vrijednost 60 sekundi. Ako druga sesija drzi
zaklju¢an redak, nakon isteka tog vremena prvoj sesiji javit ¢e se greska

ORA-02049: timeout: distributed transaction waiting for lock;

Ovu smo Cinjenicu koristili za trik (koji smo prikazali na HrOUG 2003, a kratko ¢emo ga prikazati i u
potpoglavlju 1.7.) — kako izbje¢i neograni¢eno ¢ekanje otklju¢avanja retka kod INSERT naredbe,
gdje prethodno koristenje naredbe SELECT .. FOR UPDATE NOWAIT nema efekta (jer uneseni
redak za druge sesije nije jos vidljiv).

Osim zaklju€avanja redaka (jednog ili vise), ponekad Zelimo zaklju€ati cijelu tablicu. Zanimljivo je da
zaklju€avanje tablice moZemo izvesti u djeljivom ili ekskluzivnom nacinu (modu).

Vise sesija moze zaklju€ati tablicu u djeljivom nacinu:

LOCK TABLE tablica IN SHARE MODE NOWAIT;

Samo jedna sesija moze zaklju€ati tablicu u ekskluzivnom nacinu (ako ju neka druga sesija nije ve¢
zaklju€ala u djeljivom ili ekskluzivnom nacinu):
LOCK TABLE tablica IN EXCLUSIVE MODE NOWAIT;

ZakljuCavanje tablice u djeljivom i ekskluzivnhom nac¢inu moze se iskoristiti npr. za omoguc¢avanje da
viSe sesija mijenja neku tablicu dokumenata (npr. tablicu narudzbi), a da samo jedna sesija moze raditi
obradu narudzbi. Pritom se moZe zakljuCavati izvorna tablica dokumenata (npr. narudzbi), ili neka
pomocna tablica, koja mozZe imati malo redaka (moze i jedan, pa i nijedan).

Kod zaklju€avanja (implicitnog ili eksplicitnog) moZe se desiti deadlock - ako dvije transakcije
poku$aju zaklju€ati dva retka, ali u suprothom redoslijedu. Npr. u sljedeéem primjeru transakcija T1
uspjeSno zaklju€a racun broj 1, transakcija T2 uspjeSno zaklju€a raun 2, a obje Zele zaklju€ati i suprotni
racun, pa ¢e se desiti deadlock:

T1: SELECT iznos ... FROM racuni WHERE broj = 1 FOR UPDATE; -- uspjesno
T2: SELECT iznos ... FROM racuni WHERE broj = 2 FOR UPDATE; -- uspjesno
T1: SELECT iznos ... FROM racuni WHERE broj = 2 FOR UPDATE; -- ¢eka
T2: SELECT iznos ... FROM racuni WHERE broj = 1 FOR UPDATE; -- ¢eka

Sre¢om, Oracle baza otkrit ¢e da je doSlo do deadlocka, te ¢e jedna od dvije transakcije dobiti greSku
ORA-00060: deadlock detected while waiting for resource.

Nakon §to ta transakcija (koja je dobila greSku) napravi ROLLBACK, druga transakcija ¢e nastaviti sa
radom.

1.4. Distribuirane transakcije

Sustav distribuiranih baza podataka (ili jednostavnije - distribuirana baza podataka) je sustav od dvije
ili viSe baza podataka koje bi aplikacijama (korisniCkim programima) trebale izgledati kao jedna
jedinstvena baza podataka. Date je u svojoj knjizi [3] postavio "temeljni princip za distribuirane baze
podataka", a to je: "Za korisnika, distribuirani sustav (baza podataka) treba izgledati potpuno isto kao ne-
distribuirani sustav". Na temelju tog principa, Date u knjizi daje 12 zahtjeva koje distribuirana baza mora
zadovoljiti. Cinjenica je da je 100%-tno zadovoljenje svih tih zahtjeva gotovo nemogude, ali ti zahtjevi
sluze kao ideal prema kojemu bi trebale tezZiti konkretne implementacije distribuiranih baza podataka.

Ne ulazeci detaljnije u definiranje svakog od ovih zahtjeva, moze se reci da ih Oracle baza podataka
zadovoljava u velikoj mjeri. U zadovoljavanju tih zahtjeva veliku ulogu igra nepostojanje "pravog"
globalnog rje€¢nika podataka u Oracle bazi, jer svaka Oracle baza ima svoj lokalni rje€nik podataka. S
druge strane, lokalna baza ipak mora sadrZavati neke informacije o bazama sa kojima komunicira. Oracle
baza (ali i druge baze) to radi tako da lokalni rje€nik sadrzi podatke o udaljenim objektima baze.

Za Cuvanje informacija o udaljenim objektima, Oracle baza podataka koristi tzv. "database link".
MoZe se reéi da je database link objekt baze podataka koji definira jednosmjernu vezu baze podataka na
drugu bazu podataka. Postoji viSe vrsta database linkova. Jedna je podjela na globalne (koji pripadaju
bazi) i privatne database linkove (koji pripadaju odredenoj shemi baze), a druga podjela dijeli database
link-ove prema nacinu na koji se korisnik prijavljuje na udaljenu bazu (connected user, fixed user ili
current user link). Slijedi primjer definiranja privatnog database linka koji je po drugoj podjeli "fixed user
link" (pretpostavimo da smo database link kreirali kao objekt sheme "shemaX" unutar baze "bazaA"):

CREATE DATABASE LINK neki_link
CONNECT TO shemaY IDENTIFIED BY zaporka USING "bazaB";

Ponekad nuzno moramo raditi sa distribuiranom bazom podataka i distribuiranim transakcijama.
Distribuirana transakcija koristi tzv. dvofazni commit protokol, koji ima faze Prepare i Commit (u Oracle
realizaciji on se, zapravo, sastoji od tri faze — tre¢a faza je Forget).

Ovako mozemo ukratko prikazati zbivanja kod uspjeSne distribuirane transakcije, koja zavrSava sa
COMMIT i kod koje nije bilo nikakvih problema:

1. Kilijentska aplikacija Salje DML naredbe (ili/i pozive udaljenih procedura) po distribuiranoj bazi i na

kraju zavrSava sa COMMIT.

2. Ovdje pocinje prva faza. Globalni koordinator (baza na koju je direktno vezana klijentska
aplikacija) odreduje koja ¢e baza biti tzv. commit point site (u tome pomazu i ostale baze, lokalni
koordinatori).

Globalni koordinator svim bazama, osim commit point site bazi, Salje naredbu da se pripreme.

Sve baze javljaju potvrdan odgovor (Prepared).

Ovdje pocinje druga faza. Globalni koordinator javlja commit point site bazi da izvrSi lokalni

COMMIT.

Commit point site baza izvrSava lokalni COMMIT i obavjestava globalnog koordinatora.

Globalni i lokalni koordinatori javljaju svim ostalim bazama da naprave lokalni COMMIT.

Sve baze rade lokalni COMMIT i obavjestavaju koordinatore.

Ovdje pocinje tre¢a faza. Globalni koordinator obavjeStava commit point site bazu da zaboravi

distribuiranu transakciju.

10. Commit point site baza briSe svoje podatke o distribuiranoj transakciji i obavjeStava globalnog
koordinatora.

11. Globalni koordinator bride svoje podatke o distribuiranoj transakciji.

akrow

© N

NaZalost, kod dvofaznog commit protokola postoji period u kojem je transakcija osjetljiva na pad
(nekog) servera baze ili veze izmedu baza. Gredke koje se mogu desiti jesu:

- palo je ratunalo na kojem radi Oracle baza;

- prekinula se veza izmedu dvije ili viSe baza koje sudjeluju u distribuiranoj transakciji;

- desio se neki softverski problem.

U tom slucaju (tj. ako se desi greska u osjetljivoj fazi) transakcija postaje in-doubt. U fazi pripreme,
baze stavljaju distribuirani lokot na sve modificirane tablice. Taj lokot spre¢ava ¢ak i ¢itanje podataka! Ako
to traje kratko, nije problem. No ako transakcija postane in-doubt, moze se desiti da duze vrijeme drzi
zaklju€ane podatke (Cak i za Citanje). Najbolje je ostaviti da baza sama razrijesi in-doubt transakciju. No
ako je zadovoljen jedan od ova dva uvjeta, trebali bismo ru€no razrijeSiti in-doubt transakciju:

1. in-doubt transakcija je zaklju€ala kriti€¢ne podatke ili undo segmente;

2. pad racunala, prekid veze, ili softverski problem ne mogu se rijeSiti u kratkom vremenu.

1.5. RjeSavanje mutiranja okidaca baze

Pretpostavimo da Zelimo u Oracle bazi realizirati sliede¢e poslovno pravilo (koje nije ba$ realno, ali
sluZi za prikaz problema):

"Niti jedan radnik ne smije imati ve¢u plaéu od radnika koji se zove KING".

Pretpostavimo da smo na neki nacin (to je drugo poslovno pravilo) osigurali da u tablici RADNIK
postoji radnik imena KING i to samo jedan. Kreirajmo jednostavnu tablicu radnik za ovu potrebu:

CREATE TABLE radnik (
sifra NUMBER (10),
ime VARCHAR2 (30) NOT NULL,
placa NUMBER (10,2) NOT NULL,
CONSTRAINT sifra pk PRIMARY KEY (sifra),
CONSTRAINT ime_uk UNIQUE (ime)
)
/
Dakle, definirali smo PK ograni¢enje nad Sifrom i UK nad imenom (prezimena u ovom slu¢aju nema),
te neprazan (NOT NULL) stupac PLACA. Sada unesemo redak za radnika KING (kako je receno,
pretpostavljamo da smo na neki nacin osigurali da ¢e on uvijek postojati).

INSERT INTO radnik VALUES (1, 'KING', 100000);

Sada pokuSavamo zadovoljiti gornje poslovno pravilo pomoéu okidaca baze (jer deklarativho ne
mozemo). MoZemo birati da li ¢emo to napraviti u BEFORE ili AFTER okidadu za INSERT i UPDATE
(kod naredbe DELETE ne moramo provjeravati to pravilo). Uzimimo da smo odabrali AFTER okida¢, koji
se deSava nakon fiziCkog unosa / izmjene retka u bazi, pa su vec provjerena deklarativna integritetna
ogranienja (ako nisu odgodena), pa je provjereno i da je plaéa NOT NULL. PokaZimo kako bi mogao
izgledati pokusaj realizacije okidaca za INSERT naredbu (za UPDATE bi bilo sli¢no):

CREATE OR REPLACE TRIGGER air_ radnik
AFTER INSERT ON radnik
FOR EACH ROW
DECLARE
placa_za_king NUMBER (10, 2);
BEGIN
SELECT placa INTO placa_za_king
FROM radnik
WHERE ime = 'KING';

IF :NEW.placa > placa_za_king THEN
RAISE_APPLICATION ERROR
(-20000, 'Nitko ne smije imati vecéu plaéu nego KING') ;
END IF;
END;
/
Sada pokuSavamo unijeti radnika koji nema veéu plaéu od KING, pa bi unos trebao pro¢i, ali deSava
se sljedece:

INSERT INTO radnik VALUES (2, 'Ana', 8000)
*
ERROR at line 1:
ORA-04091: table I3RAZVOJ.RADNIK is mutating,
trigger/function may not see it
ORA-06512: at "I3RAZVOJ.AIR RADNIK", line 4
ORA-04088: error during execution of trigger 'I3RAZVOJ.AIR RADNIK'

Kako se vidi, Oracle baza kaze: table I3RAZVOJ.RADNIK is mutating trigger/function may not see it.
Rije¢ je o tome da se za vrijeme izvr8enja ret€anih (row) okidaca, tablica nad kojom je okida¢ definiran,
nalazi u stanju promjene — mutiranja. U Oracle bazi row okida¢i ne smiju €itati, niti mijenjati tablicu koja
mutira. Ovo djeluje kao ograni¢enje Oracle sustava (neki sustavi to nemaju), ali je ovo ograni¢enje vrlo
vazno kod spre€avanja vrlo udnih greSaka koji bi se ina¢e mogli desiti.

Moramo napomenuti da se ovo mutiranje ne bi javilo u slu€aju da imamo BEFORE ROW (a ne
AFTER ROW) okida¢ i da unosimo (ili mijenjamo) samo jedan redak. No u opéenitom slu€aju mozemo
jednom naredbom unijeti ili mijenjati viSe redaka, tako da se opcenito ne smijemo osloniti na to da se
mutiranje ne javlja u BEFORE ROW okidacu ako aZzuriramo samo jedan redak.

Sada ¢emo rijesiti problem mutiranja na sljedec¢i na€in — umjesto u ROW okida¢&, provjeru ¢emo
staviti u STATEMENT okidag, i to u AFTER STATEMENT, jer se tamo mutiranje viSe ne javlja (kada dode
do tamo, svi redovi su ve¢ azurirani). No postoji jedan problem — kako da AFTER STATEMENT okida¢
zna koji redak (ili koji redovi, jer moze ih biti viSe) je azuriran. Za to ée nam posluziti tzv. PL/SQL
(memorijska) tablica, koju ¢emo inicijalno prazniti u BEFORE STATEMENT okidacu, puniti svaki put u
ROW (npr. AFTER ROW) okidacu i Citati, tj. primijeniti poslovno pravilo, u AFTER STATEMENT okidacu.
Umijesto da programski kod piSemo direktno u okidacu, sada ¢emo ga pisati u posebnom paketu, tako da
¢emo taj paket moci pozvati sa vise mjesta (npr. iz AFTER INSERT i AFTER UPDATE okidaca).

Prvo ¢emo napraviti samo tzv. specifikaciju paketa (bez tijela paketa, tj. bez realizacije) i okidace:

CREATE OR REPLACE PACKAGE pravilo_king IS
PROCEDURE brisi_plsql_tablicu;
PROCEDURE zapamti_u_plsql_tablicu (p_placa NUMBER) ;
PROCEDURE provjeri pravilo;
END;
/
-- Poziva proceduru koja prazniti PL/SQL tablicu
CREATE OR REPLACE TRIGGER bis_radnik
BEFORE INSERT ON radnik
BEGIN
pravilo king.brisi plsql tablicu;
END;
/
-- Poziva proceduru koja u PL/SQL tablicu pamti
-- plaéu radnika koji se trenutacéno unosi
CREATE OR REPLACE TRIGGER air_ radnik
AFTER INSERT on radnik
FOR EACH ROW
BEGIN
pravilo king.zapamti u plsql tablicu (:NEW.placa);
END;
/
-- Poziva proceduru koja provjerava poslovno pravilo
CREATE OR REPLACE TRIGGER ais_radnik
AFTER INSERT on radnik
BEGIN
pravilo_king.provjeri_ pravilo;
END;
/

Tijelo paketa izgledat ¢e ovako:

CREATE OR REPLACE PACKAGE BODY pravilo_king AS
-- Prvo se definira tip, ¢iji su elementi tipa NUMBER,
-- za paméenje plac¢a radnika koji se unose ili mijenjaju
TYPE tip plsql tablica IS TABLE OF NUMBER INDEX BY BINARY INTEGER;
-- Definira se varijabla prethodnog tipa,
-- tj. niz koji ée pamtiti placde radnika
plsql_tablica tip plsql_ tablica;

-- Broja¢ koji ée pamtiti redni broj tekuéeg elementa niza
broj_retka BINARY INTEGER;

PROCEDURE brisi_plsql_tablicu IS

BEGIN
-- Ne brisSe se tablica, veé¢ se broja¢ postavlja na nulu
broj retka := 0;

END;

PROCEDURE zapamti_u plsql_tablicu (p_placa NUMBER) IS

BEGIN
-- Broj redaka poveéava se za 1 i na odgovarajuce
-- mjesto u nizu stavlja se plaéa tekuéeg radnika
broj_ retka := broj_retka + 1;

plsql_tablica (broj_retka) := p_placa;

END;

PROCEDURE provjeri pravilo IS
placa_za king NUMBER (10, 2);
BEGIN
-- Cita se PL/SQL tablica, te se provjerava pravilo
-- za svaku zapaméenu pladu
FOR i IN 1..broj retka LOOP
-- Pretpostavljamo da postoji (toc¢no jedan) KING
-- inacde bi sljedeé¢i SELECT javio gresku
SELECT placa INTO placa_za_king
FROM radnik
WHERE ime = 'KING';

IF plsql_tablica (broj_retka) > placa_za_king THEN
RAISE APPLICATION_ERROR (-20000,
'Nitko ne smije imati veéu plaéu nego KING') ;
END IF;
END LOOP;
END;
END;
/

Ako sada pokuSamo unijeti radnika koji nema vecu placu od KING, unos ¢e proci, viSe se ne deSava
mutiranje:

INSERT INTO radnik VALUES (2, 'Ana', 8000);

Ako pokusamo unijeti radnika koji ima veéu placu od KING, javit ¢e gresku, tj. pravilo neée biti
naruseno:

INSERT INTO radnik VALUES (3, 'Pero',6K 110000)
*
ERROR at line 1:
ORA-20000: Nitko ne smije imati veéu placéu nego KING
ORA-06512: at "I3RAZVOJ.PRAVILO KING", line 32
ORA-06512: at "I3RAZVOJ.AIS RADNIK", line 2
ORA-04088: error during execution of trigger 'I3RAZVOJ.AIS RADNIK'

Primijetimo da smo mogli napisati jo$ bolji kod, u kojem bi poruka javila ne samo da placa ne moze
biti ve¢a od one koju ima radnik KING, veé i Sifru (i/ili ime) radnika kod kojeg smo pokusali narusiti to
pravilo (u ovom sluaju smo unosili samo jednog radnika, ali mogli smo ih viSe). U tom slu€aju bismo u
PL/SQL tablicu trebali pamtiti ne samo plaéu, ve¢ i Sifru ili/i ime, ili pamtiti samo Sifru, pa ditati tablicu
radnika za ostale podatke.

Ovaj paket mogao bi se koristiti i za UPDATE okidaCe, koji bi bili vrlo sli¢éni ovima za INSERT. No
naglasimo da mozemo imati i okidace koji istovremeno rade i za INSERT i za UPDATE, npr.:

CREATE OR REPLACE TRIGGER bis_radnik
BEFORE INSERT OR UPDATE -- !!!
ON radnik

BEGIN
pravilo_king.brisi_plsql_tablicu;

END;

/

1.6. Simulacija COMMIT okida¢a pomoc¢u odgodenih deklarativnih integritetnih ograni€enja

Postoje poslovna pravila koja prije verzije 8.0 Oracle baze nije bilo moguée u potpunosti podrzati
samo na strani baze, ve¢ je trebala "suradnja" klijent strane i baze. Vjerojatno najjednostavniji primjer
takvog pravila je: "Instanca master-a mora imati barem jednu pripadajucéu instancu detalja" (npr. "DEPT
mora imati barem jedan EMP").

Takva pravila mogu se nazvati "COMMIT pravila", jer se njihovo (ne)zadovoljavanje moze provijeriti
tek prije COMMIT-a transakcije, a ne u trenutku kada se radi neka DML naredba. Naravno, poznato je da
na Oracle bazi ne postoji (mozda nec¢e ni ubuduce) nekakav BEFORE COMMIT okida¢ (koji bi posluzio
za rjeSavanje "COMMIT pravila"). Zato se “COMMIT pravila” mora pokus$ati rijeSiti kroz vlastito rjeSenje, i
to na (barem) dva razliita nacina. Prvi nacin trazi “suradnju” klijenta sa bazom i jedini je moguc¢i na
Oracle bazi prije verzije 8.0. Drugi nacin (indirektno) je omogucen Oracle verzijom 8.0 (ili veéom).

Na Oracle bazi 7 problem se moglo rjeSavati npr. na taj na¢in da se master tablici doda stupac npr.
BR_VALID (BR kao Business Rule) i da se pomocu okidaga baze osigura da redak koji ima BR_VALID =
"T' (True) zadovoljava "COMMIT pravilo". Npr. tablici DEPT doda se stupac BR_VALID i napuni ga se za
pocetak ispravnom vrijednoS¢u:

ALTER TABLE dept
ADD (br_valid CHAR (1) DEFAULT 'F' NOT NULL,
CONSTRAINT dept br valid ck
CHECK (br_valid IN ('T', 'F')))
/
UPDATE dept
SET br valid = 'T'
WHERE EXISTS (SELECT 1
FROM emp
WHERE emp.deptno = dept.deptno) ;

Zatim se dodaju okida¢i nad DEPT i EMP tablicama:

CREATE OR REPLACE TRIGGER bir dept
BEFORE INSERT ON dept FOR EACH ROW
BEGIN
:NEW.br valid := 'F';
END ;
/
CREATE OR REPLACE TRIGGER bur_ dept
BEFORE UPDATE ON dept
FOR EACH ROW
BEGIN
IF :0OLD.deptno <> :NEW.deptno THEN
RAISE APPLICATION_ ERROR
(-20001, 'Ne mozZe se mijenjati deptno u DEPT!');

END IF;
IF :OLD.br valid = 'F' AND :NEW.br valid = 'T' THEN
DECLARE

nebitno_l NUMBER (1, 0);
CURSOR c_emp IS
SELECT 1 FROM emp WHERE deptno = :0LD.deptno;
BEGIN
OPEN c_emp;
FETCH c_emp INTO nebitno_1;
IF c_emp3NOTFOUND THEN
CLOSE c_emp;
RATISE APPLICATION_ERROR
(-20002, 'DEPT mora imati barem jedan EMP!') ;
END IF;
CLOSE c_emp; -- u praksi bismo CLOSE radili i u EXCEPTION-u
END;
END IF;
END ;

10

CREATE OR REPLACE TRIGGER aur_emp
AFTER UPDATE ON emp
FOR EACH ROW
BEGIN
IF NVL (:OLD.deptno, 0) <> NVL (:NEW.deptno, 0) THEN
UPDATE dept
SET br valid = 'F'
WHERE deptno = :0LD.deptno
AND br valid = 'T';
END IF;
END;
/
CREATE OR REPLACE TRIGGER adr_gmp
AFTER DELETE ON emp
FOR EACH ROW
BEGIN
UPDATE dept
SET br_valid = 'F'
WHERE deptno = :0LD.deptno
AND br valid = 'T';
END;
/

Ako se radi npr. sa Oracle Forms razvojnim alatom, tada se u Forms okidadu Post-Forms-Commit
(okida se neposredno prije COMMIT naredbe na bazi) moze napisati:

UPDATE dept
SET br_valid = 'T'

WHERE deptno := :dept.deptno
AND br valid = 'F';

Ako Forms program (ili neki drugi klijentski program) nije dao tu naredbu prije COMMIT-a transakcije,
na bazi su mogli ostati redovi tablice DEPT sa BR_VALID = 'F'. Dakle, u ovoj varijanti klijent mora
"suradivati" sa bazom.

Metoda koja omogucéava rjeSavanje "COMMIT pravila" u potpunosti na razini baze zasniva se na
mogucnosti odgadanja provjere deklarativnih integritetnih ograni¢enja (NOT NULL, PK, UK, FK, CK) sve
do COMMIT-a. Ta je mogucnost prvi put uvedena u bazi 8.0. Napomena: izvrSavanje okidaca baze ne
moze se odgoditi.

Npr. tablici DEPT doda se stupac NUM_EMPS ¢ija ¢e vrijednost uvijek biti jednaka broju pripadajuéih
EMP redaka i doda se odgodeni (deferred) CK koji koristi vrijednost iz tog stupca:

ALTER TABLE dept ADD num_emps NUMBER DEFAULT 0 NOT NULL
/
UPDATE dept
SET num_emps = (SELECT COUNT (¥*)
FROM emp
WHERE emp.deptno = dept.deptno) ;

DELETE dept WHERE num emps = 0; -- zbog sljedeceg CK

ALTER TABLE dept
ADD CONSTRAINT dept num emps ck
CHECK (num_emps > 0) INITIALLY DEFERRED
/

Okidaci koji osiguravaju rjeSavanje "COMMIT pravila" na strani baze su relativho jednostavni. No
potrebna je pakirana varijabla koja se setira i resetira u EMP okidaCima i Cija se vrijednost Cita u
BUR_DEPT (naravno, moglo se varijablu staviti u specifikaciju paketa i mijenjati / ¢itati ju direktno, pa ne

bi trebalo tijelo paketa, ali ovako je "Cisée"):

11

CREATE OR REPLACE PACKAGE pack IS
PROCEDURE set_flag;
PROCEDURE reset_ flag;
FUNCTION dml_ from emp RETURN BOOLEAN;

END;

/

CREATE OR REPLACE PACKAGE BODY pack IS
dml_ from emp m BOOLEAN := FALSE;

PROCEDURE set_flag IS
BEGIN dml_ from emp m := TRUE; END;
PROCEDURE reset_flag IS
BEGIN dml_ from emp m := FALSE; END;
FUNCTION dml_ from emp RETURN BOOLEAN IS
BEGIN RETURN dml from emp m; END;
END;
/

Okida¢ BIR_DEPT (before insert row - okida se jedanput za svaki uneseni redak) postavlja vrijednost
NUM_EMPS na O:

CREATE OR REPLACE TRIGGER bir dept
BEFORE INSERT ON dept
FOR EACH ROW

BEGIN
:NEW.num_emps := 0;

END;

/

Okida¢ BUR_DEPT (before update row - okida se jedanput za svaki mijenjani redak) zabranjuje
promjenu DEPTNO i, ako PACK.DML_FROM_EMP ne oznatava da se promjena radi kontrolirano, vra¢a
mijenjanu vrijednost NUM_EMPS na prethodnu:

CREATE OR REPLACE TRIGGER bur_ dept
BEFORE UPDATE ON dept
FOR EACH ROW
BEGIN
IF :0OLD.deptno <> :NEW.deptno THEN
RAISE APPLICATION_ ERROR
(-20001, 'Ne mozZe se mijenjati deptno u DEPT!');
END IF;
-- Samo EMP okidaé¢i smiju mijenjati "num emps" stupac
IF NOT pack.dml_ from emp THEN
:NEW.num emps := :OLD.num_emps;
END IF;
END ;
/

Okida¢ AIR_EMP (after insert row - okida se jedanput za svaki uneseni redak, nakon unosa retka)
povecava vrijednost NUM_EMPS u retku tablice DEPT za jedan:

CREATE OR REPLACE TRIGGER air_emp
AFTER INSERT ON emp
FOR EACH ROW
BEGIN
pack.set_flag;
UPDATE dept
SET num _emps = num_emps + 1
WHERE deptno = :NEW.deptno;
pack.reset flag;
END ;
/

12

Okida¢ AUR_EMP (after update row - okida se jedanput za svaki mijenjani redak, nakon izmjene
retka), ako je doSlo do promjene DEPTNO, smanjuje (za jedan) vrijednost NUM_EMPS u tablici DEPT u
retku za koji je EMP prije bio vezan, a povec¢ava (za jedan) vrijednost u retku za koji je EMP sada vezan:

CREATE OR REPLACE TRIGGER aur_emp
AFTER UPDATE ON emp
FOR EACH ROW
BEGIN
IF NVL (:OLD.deptno, 0) <> NVL (:NEW.deptno, 0) THEN
pack.set flag;
UPDATE dept
SET num_emps = num _emps - 1
WHERE deptno = :0LD.deptno;
UPDATE dept
SET num_emps = num emps + 1
WHERE deptno = :NEW.deptno;
pack.reset_flag;
END IF;
END;
/

Okida¢ ADR_EMP (after delete row - okida se jedanput za svaki brisani redak, nakon brisanja retka)
smanjuje vrijednost NUM_EMPS u retku tablice DEPT za jedan:

CREATE OR REPLACE TRIGGER adr_emp
AFTER DELETE ON emp FOR EACH ROW
BEGIN
pack.set_flag;
UPDATE dept
SET num_emps = num _emps - 1
WHERE deptno = :0LD.deptno;
pack.reset flag;
END;
/

Ako se unese novi DEPT bez pripadaju¢ih EMP ili se briSu svi EMP odredenog DEPT, ili se presele
svi EMP odredenog DEPT, nakon COMMIT dobije se greska:

ORA-02091: transaction rolled back
ORA-02290: check constraint (SCOTT.DEPT_NUM_EMPS_CK) violated

MoZe se primijetiti da su oba rjeSenja trazila "pomoéne" stupce u DEPT tablici (BR_VALID u prvom
rieSenju, NUM_EMPS u drugom). Pritom u drugom rjeSenju, za razliku od prvog, treba (naj¢esce) po
jedan "pomoc¢ni" stupac za svako "COMMIT pravilo". Ako bi se DEPT tablici htjelo dodati jo§ jedno
"COMMIT pravilo", npr.:

"SUM (sal) FROM emp WHERE deptno = p_deptno must be <= p_max_dept_sal"

tada bi se kod prvog rjeSenja moglo koristiti isti stupac BR_VALID za oba pravila, a kod drugog
rieSenja morao bi se uvesti novi stupac, npr. DEPT_SAL.

Mora se naglasiti da se u stvarnom radu PL/SQL programski kod ne bi pisao direktno u okidacima
baze, ve¢ u paketima, niti bi se naredba RAISE_APPLICATION_ERROR Kkoristila direktno. Ovdje je tako
pisano zbog jednostavnijeg praéenja sustine koda.

MoZe se primijetiti da, na prvi pogled, postoji puno jednostavnije rieSenje pomoc¢u odgodene provjere
deklarativnih integritetnih ograni¢enja. Naime, umjesto da se uvodi "pomoéno" polje NUM_EMPS i CK
koji ga provjerava, moglo bi se odgoditi validaciju FK sa EMP na DEPT i prvo unijeti EMP retke, a onda
DEPT redak, te u BIR_DEPT okidadu provjeravati da li ima pripadaju¢ih EMP redaka. Medutim, takvo
"rieSenje" je nepotpuno, {j. nije rjeSenje, jer bi se moglo npr. naknadnim brisanjem EMP narusSiti pravilo.

Napomenimo da Date (npr. u [3]) nije pristalica odgadanja deklarativnih integritetnih rieSenja, jer tvrdi
kako bi svaka naredba, a ne tek transakcija, trebala biti jedinica integriteta.

Ovo je programsko rjesenje bilo prikazano na web stranicama online Oracle magazina (stranica vise
nije dostupna), kao PL/SQL tip u 3.mjesecu 2002., te ukratko (bez detalja) na HROUG-u 2002.

13

1.7. Simulacija INSERT WAIT naredbe

Poznato je da SELECT naredba ima FOR UPDATE klauzulu, kojom se zaklju¢avaju redovi koji se
Citaju. FOR UPDATE klauzula ima opcionalnu rije€ NOWAIT, kojom oznafavamo da ne Zelimo &ekati da
druga sesija otklju¢a redak. Od baze 9i, postoji i opcija WAIT integer.

INSERT, UPDATE i DELETE naredbe nemaju (a mozda nikad nece ni imati) NOWAIT ili WAIT
opciju. To nije veci problem kod UPDATE i DELETE naredbe, zato jer prije njih mozemo pozvati SELECT
... FOR UPDATE NOWAIT (ili WAIT n od Oracle 9i):

-— l.sesija: mijenja redak i automatski ga zakljucava
BEGIN

UPDATE dept SET dname = dname WHERE deptno = 10;
END;

-- 2.sesija: SELECT nalazi da je redak zakljuc¢an i (zbog NOWAIT) ne ceka
DECLARE
1 rowid ROWID;
BEGIN
SELECT ROWID INTO 1_rowid
FROM dept
WHERE deptno = 10 FOR UPDATE NOWAIT;
UPDATE dept SET dname = dname WHERE ROWID = 1 rowid;
EXCEPTION
WHEN OTHERS THEN
-- ORA-00054: resource busy and acquire with NOWAIT specified
IF SQLCODE = -54 THEN
DBMS_OUTPUT.PUT_ LINE
('DEPT je zakljucdan - ne mozZete mijenjati!');
ELSE
RAISE;
END IF;
END;

Medutim, pozivanje SELECT ... FOR UPDATE NOWAIT prije INSERT naredbe nema efekta, zato
Sto SELECT naredba u drugoj sesiji ne vidi redak koiji je prva sesija unijela (a nije jo§ COMMIT-irala):

-- l.sesija: unosi redak i automatski ga zakljucava
BEGIN

INSERT INTO dept (deptno, dname) VALUES (99, 'DEPT 99');
END ;

-- 2.sesija: SELECT ne nalazi nista, INSERT ceka nedefinirano vrijeme
DECLARE

1 dummy NUMBER;
BEGIN

SELECT 1 INTO 1_dummy

FROM dept

WHERE deptno = 99 FOR UPDATE NOWAIT;

DBMS OUTPUT.PUT_LINE ('DEPT postoji!');

ROLLBACK; -- otkljucava redak
EXCEPTION

WHEN NO_DATA FOUND THEN

INSERT INTO dept (deptno, dname) VALUES (99, 'DEPT 99');
WHEN OTHERS THEN

IF SQLCODE = -54 THEN

DBMS_OUTPUT.PUT_LINE ('DEPT je zakljudan - ne moZete unijeti!');
ELSE

RAISE;
END IF;

END;

14

No Oracle baza ima parametar baze (koji se moZe mijenjati u parametarskoj datoteci INIT.ORA)
DISTRIBUTED_LOCK_TIMEOUT. Njime se moZe specificirati koliko vremena (sekundi) distribuirana
transakcija ¢eka na zaklju€ani redak (default je 60 sekundi).

Mi stvarno nemamo distribuiranu transakciju, ali ¢emo napraviti kvazi-distribuiranu transakciju, kako
bismo mogli iskoristiti navedeni parametar. Kvazi-distribuiranu transakciju dobit ¢emo tako da u DML
naredbi koristimo database link koji ima alias (service name) na lokalnu (a ne na udaljenu) bazu:

CREATE DATABASE LINK local_db_ link
CONNECT TO scott IDENTIFIED BY tiger

USING 'local alias' -- alias na lokalnu bazu
/
-- l.sesija: unosi redak i automatski ga zakljucava
BEGIN
INSERT INTO dept (deptno, dname) VALUES (99, 'DEPT 99');
END;

-- 2.sesija: unosi redak koji je veé unijela prethodna sesija,
-- a buduéi da INSERT radi preko database link-a, nakon isteka vremena
-- odredenog sa DISTRIBUTED LOCK TIMEOUT, deSava se EXCEPTION (ORA-02049)
BEGIN
INSERT INTO dept@local_db link -- KVAZI-UDALJENA NAREDBA
(deptno, dname) VALUES (99, 'DEPT 99');
EXCEPTION
WHEN DUP_VAL ON_INDEX THEN
DBMS_OUTPUT.PUT LINE ('DEPT postoji!');
WHEN OTHERS THEN
-— ORA-02049: timeout: distributed transaction waiting for lock
IF SQLCODE = -2049 THEN
DBMS OUTPUT.PUT LINE ('DEPT je zakljucan - ne moZete unijeti!');
ELSE
RAISE;
END IF;
END;

Ovo je programsko rjedenje bilo prikazano na web stranicama firme Quest u 1.mjesecu 2003.
(stranica viSe nije dostupna), te na HROUG-u 2003.

1.8. Simulacija ROLLBACK TO SAVEPOINT naredbe u okidacu baze

Ponekad Zelimo da transakcija uspije, bez obzira $to neki njen dio nije uspio. U takvim slu¢ajevima
obic¢no koristimo naredbe SAVEPOINT / ROLLBACK TO SAVEPOINT.

Medutim, naredbe SAVEPOINT / ROLLBACK TO SAVEPOINT ne mozemo koristiti u okidacu baze,
jer se javljaju greske:

ORA-04092: cannot SET SAVEPOINT in a trigger

ORA-04092: cannot ROLLBACK in a trigger

Moguce je simulirati SAVEPOINT / ROLLBACK TO SAVEPOINT naredbe u okidadu baze. Pokazimo
to na jednom jednostavnom, izmisljenom primjeru.

Pretpostavimo da Zelimo imati transakciju koja se sastoji od 3. dijela:

1. unos jednog DEPT

2. unos dva EMP koji imaju job = MANAGER (i koji pripadaju prethodno unesenom DEPT)
3. unos dva EMP koiji imaju job = PROGRAMER (i koji pripadaju prethodno unesenom DEPT)

Pretpostavimo dalje da Zelimo da transakcija uspije i ako 3.dio ne uspije, ali samo tako da se ponisti
ono $to je 3.dio napravio (tj. unos samo jednog EMP). Dakle, transakcija je ispravna samo onda kada na
kraju transakcije imamo:

a) 1 redak DEPT, 2 retka EMP = MANAGER, 2 retka EMP = PROGRAMER

ili

b) 1 redak DEPT, 2 retka EMP = MANAGER

15

Napravimo prvo paket koji ne radi dobro:

CREATE OR REPLACE PACKAGE example pkg IS
PROCEDURE insert_emps_for_ dept (p_deptno dept.deptno3TYPE) ;
END ;
/
CREATE OR REPLACE PACKAGE BODY example pkg IS
PROCEDURE insert managers (p_deptno dept.deptno%TYPE) IS
BEGIN
INSERT INTO emp (empno, ename, job, mgr, sal, deptno)
VALUES (1, 'EMP 1', 'MANAGER', NULL, 5000, p_deptno);

INSERT INTO emp (empno, ename, job, mgr, sal, deptno)
VALUES (2, 'EMP 2', 'MANAGER', 1, 4000, p_deptno);
END;

PROCEDURE insert programmers (p_deptno dept.deptno%TYPE) IS
BEGIN
INSERT INTO emp (empno, ename, job, mgr, sal, deptno)
VALUES (3, 'EMP 3', 'PROGRAMER', 1, 1000, p_deptno);
RAISE APPLICATION_ERROR
(-20001, 'SIMULATED ERROR IN MIDLE OF 3.PART OF A TRANSACTION') ;
INSERT INTO emp (empno, ename, job, mgr, sal, deptno)
VALUES (4, 'EMP 4', 'PROGRAMER', 1, 1000, p_deptno);
END;

PROCEDURE insert emps for dept (p_deptno dept.deptno%TYPE) IS
BEGIN
-- 2. part of a transaction
insert_managers (p_deptno) ;
-- 3. part of a transaction
BEGIN
insert programmers (p_deptno);
EXCEPTION
WHEN OTHERS THEN NULL;
END;
END;
END;
/

Pozovimo sada proceduru iz neimenovanog PL/SQL bloka (bez okida¢a baze), sa:

BEGIN
INSERT INTO dept (deptno, dname) VALUES (1, 'DEPT 1');
example pkg.insert_emps for dept (1)

END;

Pogledajmo Sta smo dobili, sa SELECT upitom:

SELECT emp.empno, emp.ename, dept.deptno, dept.dname
FROM emp, dept

WHERE empno BETWEEN 1 AND 4
AND emp.deptno = dept.deptno

ORDER BY empno;

EMPNO ENAME DEPTNO DNAME
1 EMP 1 1 DEPT 1
2 EMP 2 1 DEPT 1
3 EMP 3 1 DEPT 1

Naravno, transakcija nije dobra, jer je ostao upisan EMP 3.

16

Napravimo ROLLBACK i mijenjajmo proceduru insert_emps_for_dept tako da dodamo

SAVEPOINT / ROLLBACK TO SAVEPOINT:

PROCEDURE insert emps for dept (p_deptno dept.deptno%TYPE) IS

BEGIN
-—- 2. part of a transaction
insert_managers (p_deptno) ;
-- 3. part of a transaction
BEGIN
SAVEPOINT before insert programmers;
insert programmers (p_deptno);
EXCEPTION

WHEN OTHERS THEN ROLLBACK TO before insert programmers;

END;
END;

Ako sada napravimo prethodni postupak, dobit éemo ispravno:

EMPNO ENAME DEPTNO DNAME
1 EMP 1 1 DEPT 1
2 EMP 2 1 DEPT 1

Napravimo opet ROLLBACK i kreirajmo okidac:

CREATE OR REPLACE TRIGGER air_ dept
AFTER INSERT ON dept
FOR EACH ROW
BEGIN
example pkg.insert emps for dept (:NEW.deptno);
END ;
/

te pokusajmo izvesti naredbu:
INSERT INTO dept (deptno, dname) VALUES (1, 'DEPT 1');

Naravno, deSava se greska:

ERROR at line 1:

ORA-04092: cannot ROLLBACK in a trigger

ORA-06512: at "SCOTT.EXAMPLE_PKG", line 33

ORA-04092: cannot SET SAVEPOINT in a trigger

ORA-06512: at "SCOTT.AIR_DEPT", line 2

ORA-04088: error during execution of trigger 'SCOTT.AIR_DEPT'

naredbe

Napravimo opet ROLLBACK. Sada ¢emo (kona&no) primijeniti trik. On se temelji na €injenici da ako
pozivamo udaljenu proceduru (preko database linka) i ako se u njoj desi neobradena greSka, njeni se
efekti u cijelosti poniStavaju (za razliku od lokalne procedure). Nama ne treba udaljena procedura, ali

napravit éemo kvazi-udaljenu proceduru, koristeci lokalni database link:

CREATE DATABASE LINK local_db 1link
CONNECT TO scott IDENTIFIED BY tiger using 'local_alias'
/

Mijenjajmo opet proceduru insert_emps_for_dept, tako da poziva proceduru insert_programmers

preko database linka. Medutim, zbog toga moramo mijenjati i specifikaciju paketa:

CREATE OR REPLACE PACKAGE example pkg IS

PROCEDURE insert emps for dept (p_deptno dept.deptno%TYPE) ;
-- procedura mora biti u specifikaciji (zbog database linka)

PROCEDURE insert_ programmers (p_deptno dept.deptno%TYPE) ;
END ;
/

17

CREATE OR REPLACE PACKAGE BODY example_ pkg IS

PROCEDURE insert_emps_for_ dept (p_deptno dept.deptno3TYPE) IS
BEGIN

-- 2. part of a transaction

insert_managers (p_deptno) ;

-- 3. part of a transaction

BEGIN
example pkg.insert programmers@local db link (p_deptno);
EXCEPTION
WHEN OTHERS THEN NULL;
END;
END;
END;
/

Ako sada ponovno izvedemo naredbu:
INSERT INTO dept (deptno, dname) VALUES (1, 'DEPT 1');

dobit éemo sa SELECT upitom sljedece:

EMPNO ENAME DEPTNO DNAME
1 EMP 1 1 DEPT 1
2 EMP 2 1 DEPT 1

Dakle, dobili smo dobar rezultat, kao i sa SAVEPOINT / ROLLBACK TO SAVEPOINT.
Naravno, mogli smo raditi i na (barem) dva druga nacina:

a) Jedan nacin je da proceduru insert_programmers radimo kao AUTONOMOUS_ TRANSACTION.
Mana je da se (istina, vrlo rijetko) moze desiti da autonomna transakcija uspije, a glavna ne, pa bismo
imali 2 retka EMP = PROGRAMER bez 1 retka DEPT i 2 retka EMP = MANAGER (naravno, tako nesto
ne bi uspjelo ako postoji FK sa EMPO na DEPT)

b) Drugi naCin je da se u proceduri insert_programmers doda EXCEPTION u kojem se pokuSava
ponistiti djelomi¢ni rezultat:

PROCEDURE insert programmers (p_deptno dept.deptno%TYPE) IS
BEGIN
INSERT INTO emp (empno, ename, job, mgr, sal, deptno)
VALUES (3, 'EMP 3', 'PROGRAMER', 1, 1000, p_deptno);

RAISE APPLICATION_ERROR
(-20001, 'SIMULATED ERROR IN MIDLE OF 3.PART OF A TRANSACTION') ;

INSERT INTO emp (empno, ename, job, mgr, sal, deptno)
VALUES (4, 'EMP 4', 'PROGRAMER', 1, 1000, p_deptno);
EXCEPTION
WHEN OTHERS THEN
DELETE emp WHERE empno = 3;
END;

Medutim, moguce je (istina, vrlo rijetko) da i to poniStavanje ne uspije. Osim toga, ovakvo
ponistavanje moglo bi u realnoj situaciji biti vrlo komplicirano.

Ovo je programsko rjeSenje bilo prikazano na web stranicama firme Quest u 6.mjesecu 2002.
(stranica viSe nije dostupna), te ukratko (bez detalja) na HROUG-u 2002.

18

1.9. Kako generirati dokumente bez rupa u brojevima

Sto napraviti ako zakonski propisi odreduju da brojevi (npr.) raduna budu bez rupa, tj. da ne
nedostaje niti jedan broj. Nazalost, Oracle sekvence to ne osiguravaju. No mozZzemo napraviti na$ vlastiti
generator brojeva, tj. tablicu i pripadajuéu funkciju:

CREATE TABLE sequence_generator (
table name VARCHAR2 (30) PRIMARY KEY,

id NUMBER (32) NOT NULL)
/
CREATE OR REPLACE FUNCTION generated_id (p_table VARCHAR2) RETURN NUMBER
IS
1 generated_id NUMBER;
1 _table name VARCHAR2 (30) := UPPER (p_table);
BEGIN
BEGIN

SELECT id INTO 1 _generated id
FROM sequence_generator
WHERE table_name = 1_table name
FOR UPDATE; -- zakljucava tekué¢i redak

1 generated id := 1 _generated id + 1;

UPDATE sequence_generator
SET id = 1_generated_id
WHERE table name = 1 table name;
EXCEPTION
WHEN NO_DATA_ FOUND THEN
1 _generated_id := 1;
INSERT INTO sequence_generator (table name, id)
VALUES (1_table name, 1 generated id);
END;
RETURN 1 generated id;
END;
/

Funkciju mozemo koristiti npr. u PRE-INSERT Forms okidacu, ali bolje je koristiti okida¢ baze:

CREATE OR REPLACE TRIGGER bir_dept
BEFORE INSERT ON dept
FOR EACH ROW
BEGIN
:NEW.deptno := generated_id ('DEPT');
END;
/

Koristit ¢emo i POST-INSERT Forms okida¢ (alternativa je da se svojstvo bloka DML Returning
Value postavi na Yes, kako je navedeno u potpoglavlju 2.2.) za osvjeZzavanje polja na ekranu, u skladu sa
bazom (polje :dept.deptno mora imati svojstva Query Only = Yes i Insert / Update Allowed = No):

SELECT deptno INTO :dept.deptno -- server-derived column
FROM dept
WHERE ROWID = :dept.ROWID;

Ova tehnika osigurava da se novi broj iskoristi samo ako transakcija uspjeSno zavrsi i time se
osiguravaju brojevi bez rupa.

No ako na klijent strani (npr. Forms ili ADF) radimo POST proces (tj. DML naredbe, bez COMMIT),
onda nastaje veliki problem — druge sesije moraju Cekati da ova sesija zavrsi i otklju€a redak tablice za
generiranje brojeva. Postoji rieSenje i za takvu situaciju. Ideja je da se koriste dva generatora sekvenci —
jedan generator za privremeni broj (taj generator moze biti Oracle sekvenca, jer nam rupe ovdje nisu
vazne) i drugi generator za konacni broj dokumenta.

19

Privremeni broj punit ¢emo u BIR (Before Insert Row) okidadu baze, a krajnji broj u BUR (Before
Update Row) okidac€u, na kraju transakcije. No kako ¢e BUR okidac znati da je rije€ o kraju transakcije?
Moramo u tablicu dokumenata dodati stupac imena npr. "record_status" i pomocu okidaga baze osigurati
se da redak koji ima status "V" (Valid) ima brojeve bez rupa. Pretpostavimo da "record_status" moze imati
tri vrijednosti: N(ew), V(alid) i C(hanged), te da su validne tranzicije: N =>V,V=>C,C=>V,N=> N,V
=>V,C=>C:

ALTER TABLE dept ADD (
record _status CHAR (1) DEFAULT 'N' NOT NULL,
CONSTRAINT dept_record_status_ck
CHECK (record_status IN ('N', 'V', 'C'")))
/
CREATE OR REPLACE TRIGGER bir dept
BEFORE INSERT ON dept FOR EACH ROW
BEGIN
:NEW.record_status := 'N';
SELECT test_seq.NEXTVAL INTO :NEW.deptno FROM DUAL; -- privremeni id
END;
/
CREATE OR REPLACE TRIGGER bur_ dept
BEFORE UPDATE ON dept FOR EACH ROW
BEGIN
IF :NEW.record_status IS NULL THEN
RAISE APPLICATION_ ERROR
(-20001, 'Record status ne mozZze biti NULL!');

END IF;

IF NOT (
:OLD.record status = 'N' AND :NEW.record status = 'V' OR
:OLD.record status = 'V' AND :NEW.record status = 'C' OR
:OLD.record status = 'C' AND :NEW.record status = 'V' OR
:OLD.record status = :NEW.record status)

THEN
RAISE APPLICATION_ ERROR (-20002, 'Pogresna tranzicija!');

END IF;

IF :0LD.record status = 'N' AND :NEW.record status = 'V' THEN
:NEW.deptno := generated_id ('DEPT'); -- konaéni id

END IF;

END;

/

Na Forms strani, u Post-Forms-Commit okidacu (koji se okida neposredno prije nego sto Forms
posalje naredbu COMMIT na bazu), napiSimo sljedecéi kod:

BEGIN
IF :SYSTEM.FORM STATUS = 'QUERY' THEN RETURN; END IF;

UPDATE dept

SET record_status = 'V'

WHERE deptno = :dept.deptno
AND record_status = 'N';

SELECT deptno INTO :dept.deptno -- server-derived column
FROM dept

WHERE ROWID = :dept.ROWID;

END;

Ako Forms (ili neki drugi alat) ne bi napravio navedeni UPDATE (prije COMMIT naredbe), na bazi bi
mogli ostati dokumenti koji bi imali vrijednost "N" u statusu i privremeni broj (dokumenta). Napominjemo
da u praksi ne bismo pisali PL/SQL kod direktno u okida¢ima, nego u (pakiranim) procedurama /
funkcijama, te ne bismo direktno koristili RAISE_APPLICATION_ERROR.

Ovo je programsko rjeSenje bilo prikazano na web stranicama firme Quest u 11.mjesecu 2002.
(stranica viSe nije dostupna), te na HROUG-u 2003.

20

1.10. Nove moguénosti u bazi 12c (vezano za transakcije)

Vezano za transakcije, najvaznije nove moguénosti u bazi 12c jesu Transaction Guard i Application
Continuity (koja se temelji na Transaction Guard moguénosti). Treba naglasiti da obje moguénosti ima
samo Enterprise edicija baze, dok ih Standard edicija nema. Osim toga, Application Continuity trazi i
Active Data Guard opciju ili Real Application Clusters opciju EE baze.

Transaction Guard rjeSava jedan veliki moguc¢i problem u transakcijama. Do sada, kada je klijent
baze (to moze biti i aplikacijski server, pa ¢ak i pohranjena PL/SQL procedura) poslao bazi COMMIT
naredbu, i ako je bas tada doSlo do pada veze, klijent je dobio informaciju da je veza pala, ali ne i
informaciju da li je COMMIT uspjesno napravljen, ili nije. Klijent nije mogao niti naknadno dobiti tu
informaciju (osim, u nekim slu¢ajevima, pomocu relativno slozenih aplikacijskih rjeSenja). Zbog toga se
moglo desiti da klijent (softver ili korisnik) pokrene dva puta istu transakciju, jer ne zna da je prethodna
uspjeSno zavrsila, ili ne pokrene niti jedanput. Transaction Guard zasniva se na tome $to se u trenutku
COMMIT-a pamti tzv. logical transaction identifier (LTXID), koji se kasnije moZe koristiti za biranje
odgovarajuceg postupka u aplikaciji, kako bi se osiguralo da se neka transakcija nece izvrsiti dva puta, a
eventualno hoce jedanput. Sljedeéi pseudokod iz [13] pokazuje tipi€no koriStenje Transactional Guard
mogucénosti:

Receive a fast application notification (FAN) down event
(or recoverable error)
FAN aborts the dead session
IF recoverable error (new OCI_ATTRIBUTE for OCI, isRecoverable for JDBC)
Get last LTXID from dead session using getLTXID or from your callback
Obtain a new session
Call GET_LTXID OUTCOME with last LTXID
to obtain COMMITTED and USER CALL COMPLETED status
IF COMMITTED and USER_CALL COMPLETED
Then return result
ELSEIF COMMITTED and NOT USER_CALL COMPLETED
Then return result with a warning
(that details such as out binds or row count were not returned)
ELSEIF NOT COMMITTED
Cleanup and resubmit request, or return uncommitted result to the client

Application Continuity temelji se na Transaction Guard mogucnosti, i omoguc¢ava da se automatsko
nastavljanje nakon popravljivih (recoverable) greSaka napravi bez pisanja slozenog programskog koda.

Osim navedenih (vrlo znacajnih) mogucnosti, u bazi 12c novost je da se tzv. Basic Flashback Data
Archive moguénost sada moze koristiti i u Standard ediciji baze. Do sada su se u SE ediciji mogle koristiti
samo Flashback Query i Flashback Version Query moguc¢nosti (Flashback Transaction Query, Flashback
Transaction Backout, Flashback Table, Flashback Drop, Flashback Database, i dalje se mogu Koristiti
samo u EE ediciji). Flashback Data Archive, zapravo, nije tehnologija koja je korisna sama po sebi, veé
nadograduje ostale Flashback tehnologije. Naime, sve one (osim Flashback Database) rade na logi¢koj
razini i koriste UNDO tablespace. Budué¢i da se UNDO tablespace koristi za normalan rad baze, on lako
postaje vrlo velik. Ako Zelimo pratiti dugotrajnu povijest odredene tablice, ili nekog skupa tablica,
Flashback Data Archive omogucava da se za to odredi posebni tablespace (ili dio nekog tablespace-a).
Za svaku tablicu treba unaprijed reci da se ona sprema u Flashback Data Archive.

Na kraju, napomenimo da je Oracle 12c donio i jednu (relativno) negativhu novost. Od baze 11.1
postoji PL/SQL paket DBMS_XA. Taj paket predstavlja PL/SQL sucelje za realizaciju modela X/Open
Distributed Transaction Processing Model. Inace, XA standard je X/Open specifikacija za procesiranje
distribuiranih transakcija (distributed transaction processing) izmedu heterogenih izvora podataka, npr.
izmedu Oracle i DB2 baza podataka, a objavljen je 1991. Zapravo, vaznije od DBMS_XA paketa (koji je
potreban ako se Zeli programirati isklju€ivo kroz PL/SQL) je takav nacin rada Oracle baze od verzije 10.2
(zapravo, sa patchevima i od verzije 9.2.0.6.), kod kojeg se u distribuiranim transakcijama nikada ne
deSava zakljuCavanje redaka za Citatelje (j. za SELECT naredbe), Sto je inae mana standardne Oracle
distribuirane transakcije (kako je kratko navedeno u potpoglaviju 1.4.). No 19. poglavlje u [13] pocinje
napomenom da koristenje XA treba izbjegavati, ako je moguce: "The use of XA should be avoided, if
possible. In some cases (for example, if Oracle and non-Oracle resources must be used in the same
transaction) it may seem unavoidable, but even in some of these cases it may be possible to avoid using
XA. The use of XA can cause performance issues and lead to in-doubt transactions. It also might not be
able to take advantage of certain Oracle Database 12c Release 1 (12.1.0.1) features that enhance the
ability of applications to continue after recoverable outages."

21

2. TRANSAKCIJE | ORACLE FORMS
2.1. Forms - razvoj, varijante, arhitektura

Oracle Forms je Rapid Application Development (RAD) alat, koji je Oracle korporacija napravila
pocetkom 80-ih, nedugo nakon nastanka Oracle baze verzije 2 (verzija 1 nije nikada postojala). Njegovo
prvo ime bilo je Interactive Application Facility (IAF), i radio je kao znakovno orijentirana (character mode)
aplikacija na serveru. Nakon toga, otprilike kod pojave verzije 4 Oracle baze, ime mu promijenjeno u
FastForms, a u vrijeme baza 5 i 6 dobio je ime SQL Forms (Forms verzije 2 i 3). Nakon toga (nesto prije
pojave baze 7) ime mu je postalo (i ostalo) Oracle Forms, te je postao klijent-server GUI alat.

Klijent-server varijanta pratila je baze 6, 7 i 8, a Forms verzije bile su 4, 4.5, 5, 6 i 6i. U Forms verziji
6 pojavila se paralelno i web varijanta - Web Forms. Forms verzije 7 i 8 nikad nisu postojale, jer je broj
verzije "skocio" na 9, kako bi pratio verzije Oracle baze. Nakon verzije 6i, klijent-server varijanta viSe ne
postoji, tj. verzije 9i, 10g, 10gR2, 11g i 11gR2 (u 2014. se oCekuje pojava verzije 12c¢) rade isklju€ivo kao
web Forms aplikacije. Oracle Forms je izvorno pisan u jeziku C, a i sada3nji kod je uglavnom C kod, osim
Java apleta (koji se izvrSava u pregledniku), te odredenih pomoc¢nih dijelova na aplikacijskom serveru.

lako Oracle preferira jezik Java i Oracle Application Development Framework (ADF) za svoje Oracle
Fusion aplikacije, materijal "Oracle's development tools statement of direction" jasno kaze da ¢e Oracle i
dalje nastaviti podrzavati Oracle Forms (za razliku od npr. CASE alata Oracle Designer, koji se prestao
razvijati nakon verzije 10g) i razvijati ga u sljede¢im podrucjima:

- dodavati nove mogucnosti, koje su vazne za web, na sto elegantniji nacin;

- omoguciti da Forms i Reports aplikacije $to viSe koriste mogucnosti servisa aplikacijskog servera

i da Sto lakSe rade sa Java EE aplikacijama.

Npr., ve¢ Oracle Forms 6i omogucava prilagodljivi Ul kroz Pluggable Java Components (PJCs).
Forms 11g uveo je moguénost obostrane interakcije Forms apleta sa ostalim aplikacijama na strani
Internet preglednika, pomocéu Javascript koda. Takoder, Forms 11g omoguéava obradu eksternih
dogadaja, kao Sto su asinkroni dogadaji, koriStenjem redova (database queue) baze 10g R2 ili vece,
pomoc¢u novog Forms okidaCa When-Event-Raised. U Forms 11g vaZzna je i podrSka za Unicode stupce.

Oracle Fusion Middleware Forms Services sastoji se od tri komponente: Forms Client, Forms
Listener Servlet, Forms Runtime. Slika 2.1. prikazuje osnovnu arhitekturu Oracle Fusion Middleware
Forms Services.

Cliant

Tler Forms

racunalo mora imati instaliran JVM.

Application

Fler Weblagic izmedu Forms klijenta i pripadajuéeg Forms Runtime procesa.

isti nacin kako to radi klijent-server Forms varijanta.

Forms klijent (Forms Client) je 100%-tni Java aplet, koji se
ixack dinamicki uCitava sa Oracle Fusion Middleware aplikacijskog servera.
Client On ostvaruje korisnicko sucelje, tj. upravlija interakcijom sa
korisnikom i "crta ekrane". Da bi Java aplet mogao raditi, korisnikovo

Forms Listener Servlet upravlja kreiranjem i stopiranjem Forms
Oracle Runtime procesa za svakog korisnika, te mreZznom komunikacijom

Forms Runtime proces upravlja vezom sa bazom podataka, na

Oracle
database

Slika 2.1. Arhitektura Oracle Fusion Middleware Forms Services; Izvor [14]

22

Moguce su razliite kombinacije koriStenja Oracle Forms Runtime procesa, Oracle HTTP Listenera i
Oracle WebLogic servera, na razli¢itim hostovima (fizi€kim ili virtualnim serverima).

Npr., lijeva strana slike 2.2. prikazuje sluaj gdje jedan host sadrzZi jedan HTTP Listener i dva
WebLogic servera (svaki WebLogic server podrzava vise Forms Runtime procesa). Desna strana slike
2.2. prikazuje slu€aj gdje dva hosta sadrze po jedan HTTP Listener, a druga dva hosta sadrze po dva
WeblLogic servera. Moguée su i drugacije varijante.

Host 1 Host 2 ——
| | Oracle WebLogic Forms Server
Managed Server Runtime
Oracle HTTP
| —
| |Oracle WebLogic Forms Server
Managed Server Runtime =
Host 3 Host 4 1
Host =
| _|Oracle WebLogic Forms Server
Oracle WebLogic Forms Server Managed Server Runtime H
Managed Server Runtime L
L Oracle HTTP
Omee HICR osr |
Listener]
| | Oracle WebLogic FU:’:’;I?::H
Oracle WebLogic Forms $erver Managed Server L
Runtime L H
Managed Server H;

Slika 2.2. ViSe Oracle WebLogic servera na istom hostu na kojem je Oracle HTTP Listener (lijevo);
Vise Oracle WebLogic servera i vise Oracle HTTP Listenera na razli¢itim hostovima (desno); Izvor [15]

Kada Forms Runtime proces koristi Javu na strani aplikacijskog servera, moguce su dvije glavne

varijante koristenja Java Virtual Machine (JVM), te razliCite meduvarijante:

- Svaki Forms Runtime proces koristi svoj vlastiti JVM, kako prikazuje lijeva strana slike 2.3. Ako
svaki Forms Runtime proces koristi JVM samo mali dio vremena, onda se u ovoj varijanti
nepotrebno tro§e memorijski resursi aplikacijskog servera;

- Svi Forms Runtime procesi koriste isti JVM, kako prikazuje desna strana slike 2.3. Koristi se tzv.
JVM pooling, koji je odvojeni proces, i koji sadrzi JVM kontroler. Sa JVM poolingom, JVM se
izvodi izvan Forms Runtime procesa. Kad Forms Runtime proces zatreba izvr§avanje Java koda,
Salje poruku JVM-u koji je sadrzan u JVM kontroleru, pa JVM kreira novu Java dretvu (thread) za
njega. Forms Runtime proces cijelo vrijeme koristi tu istu Java dretvu. To rezultira znatnim
smanjenjem utroSka memorije aplikacijskog servera.

- Razlicite meduvarijante, npr. jedna skupina Forms Runtime procesa koristi jedan zajedni¢ki JVM,
druga skupina koristi drugi zajednicki JVM, a neki Forms Runtime procesi koriste svoj vlastiti

JVM.
Application Server Application Server
. Forms Runtime . Forms Runtime
Client Procass JUYM Client Process
. Forms Runtime ; Forms Runtime
Client Brocass JUYM Client Process
. Forms Runtime ¢ Forms Runtime
Client Pl JVM Client P JVM
" Forms Runtime A Forms Runtime
Client Process JVM Client Process
cli Forms Runtime VM Client Forms Runtime
et Process Process

Slika 2.3. Forms Runtime procesi bez koristenja JVM poolinga-a (lijevo)
i Forms Runtime procesi sa koristenjem JVM poolinga-a (desno); Izvor [15]

23

2.2. Neka svojstva Forms modula i Forms bloka (vezano za transakcije)

Forms blokovi €ine najvaznije dijelove Forms modula. Forms blok, kao i Forms modul, mozZe imati
Forms okidace (triggers). Forms blok sadrzi polja (items; ona isto mogu imati vlastite okidace) i retke. U
ovom potpoglavlju ukratko ¢ée se prikazati svojstva Forms modula i Forms bloka, koja su vezana za
transakcije.

Svojstva Forms modula

Validation Unit

Specificira kada ¢e se izvrsiti validacija. Moguce vrijednosti su polje, redak, blok i Forms modul (item,
record, block, forms). Podrazumijevana (default) vrijednost za vecinu platformi je polje, Sto znaci da ¢e se
validacija pokrenuti kod izlaska iz polja.

Maximum Query Time

Omogucava da se upit (query) prekine kad mu proteklo vrijeme premasi zadanu vrijednost. Ovo
svojstvo ima i Forms blok. Korisno je samo kad je svojstvo Query All Records property postavljeno na
Yes.

Maximum Records Fetched

Omogucava da se upit (query) prekine kad broj prenesenih (fetched) redaka premasi zadanu
vrijednost. Ovo svojstvo ima i Forms blok. Korisno je samo kad je svojstvo Query All Records property
postavljeno na Yes.

Isolation Mode

Mogucée vrijednosti su Read Committed (podrazumijevana vrijednost) i Serializable.

Vrijednost Serializable odreduje da ¢e transakcije u sesiji (baze) biti serijabilne, tj. da ¢e transakcija
od pocetka do kraja vidjeti uvijek iste podatke drugih transakcija (u drugoj sesiji) €ak i ako su te (druge)
transakcije napravile COMMIT. Serijabilni mod nije dobar ako postoji ve¢a Sansa da dvije transakcije
razliGitih sesija modificiraju iste retke, jer se tada Cesto javlja greSka ORA-08177: Cannot serialize
access. Ako se postavi vrijednost Serializable, pozeljno je svojstvo bloka Locking Mode postaviti na
Delayed.

Svojstva Forms bloka

Query Array Size, DML Array Size

Query Array Size specificira maksimalni broj redaka koje Forms odjednom dohvaca (fetch) sa baze.
Podrazumijevana vrijednost je broj redaka koji se prikazuju na bloku (svojstvo Number of Records
Displayed). Mala vrijednost (npr. 1) optere¢uje komunikaciju izmedu klijenta i baze.

Sliéno tome, DML Array Size specificira veli€¢inu niza (array) kojim se odjedanput radi unos, izmjena
ili brisanje viSe redaka na bazi.

Number of Records Buffered

Specificira minimalni broj redaka (za blok) koji ¢e se spremiti u memoriju. Forms smjesta retke iznad
tog broja u privremenu datoteku na disku, $to moze znacajno usporiti rad (to ovisi i 0 operacijskom
sustavu). S druge strane, vec¢i memorijski buffer trazi ve¢e memorijske resurse. Podrazumijevana
vrijednost je NULL, a ona zapravo oznaCava da ¢e broj redaka u memoriji biti jednak onome definiranom
u svojstvu Number of Records Displayed property, uve¢anom za 3.

Query All Records, Precompute Summaries

Query All Records specificira da li se svi redovi koji odgovaraju upitu nad blokom trebaju ucitati
odjednom, kod izvrSavanja upita. Podrazumijevana vrijednost je No. Vrijednost Yes korisno je postaviti
kad imamo sumarna polja, za koja zelimo da odmah prikazu ispravnu vrijednost (a ne tek kada ucitamo
sve retke).

Umjesto toga, moze se raditi i tako da se svojstvo Precompute Summaries postavi na Yes, ¢ime se
odreduje da se vrijednost svakog sumarnog polja na bloku izraCunava prije nego sto se izvrsi standardni
upit na bloku.

Database Block

DML naredbe. Ako je svojstvo oznageno sa No, to znadi da je rije€ o kontrolnom bloku.

24

Query Allowed, Insert Allowed, Update Allowed, Delete Allowed
Ova Cetiri svojstva (koja imaju i polja) specificiraju da li se nad blokom moze postaviti upit, odnosno
odgovaraju¢a DML naredba.

Query Data Source Type, DML Data Target Type

Query Data Source Type specificira tip izvora podataka za upite: Table, Procedure, Transactional
Trigger, FROM clause query. Kod opcije Table, umjesto tablice moze se "podmetnuti" i view (baze). Cak
je i preporucljivo (u vecini sluajeva) umjesto tablice koristiti view, jer se time moze izbjeéi potreba za
POST-QUERY Forms okidac¢ima, koji uglavhom sluze za naknadno dohvacanje redaka ne-osnovnih
tablica (lookup tablica). Naime, nakon §to se upit nad osnovnom tablicom ve¢ izvr$io, za svaki dohvaceni
redak osnovne tablice, POST-QUERY okidac treba izvrsiti poseban upit za lookup tablicu (ili viSe njih, ako
ima viSe lookup tablica). Takoder, koriStenjem viewa moze se izbjeci potreba za PRE-QUERY okidacima,
koji (izmedu ostalog) sluze za sortiranje po poljima lookup tablica (ta polja predstavljaju nebazna polja).

DML Data Target Type specificira tip podatkovnog odrediSta za DML naredbe: Table, Procedure,
Transactional Trigger. Umjesto tablice, kao Table se isto moZze podmetnuti view (baze). On moze biti view
koji se moze azurirati (updateable view), ili moze biti view koji ima odgovaraju¢e INSTEAD OF okidace
baze (koji zamjenjuju standardne DML naredbe na bazi).

Locking Mode

Specificira kada ¢e Forms pokusSati zaklju¢ati retke (na bazi) koje korisnik mijenja u Forms bloku.
Postoje tri vrijednosti: Immediate, Delayed i Automatic. Automatic je podrazumijevana vrijednost, ali nad
Oracle bazom znaci isto $to i Immediate.

Vrijednost Immediate ("pesimisticko zaklju¢avanje") znaci da ¢e Forms zakljucati redak (naredbom
SELECT ... FOR UPDATE) odmah nakon 3to je korisnik poeo nesto mijenjati na bilo kojem polju retka. U
tom slu€aju nije moguce da neki drugi korisnik "pregazi" promjenu koju je napravio prvi korisnik.

Vrijednost Delayed ("optimistiCko zaklju€avanje") oznaCava da ¢ée se mijenjani redak zaklju€ati tek
neposredno prije procesa postiranja (tj. kad Forms posalje bazi DML naredbe). Ako je u ovom slucaju
neki drugi korisnik ve¢ mijenjao redak, Forms upozorava korisnika da je redak ve¢ mijenjan i ne
dozvoljava COMMIT - korisnik mora dati upit za uvid u novo stanje.

Kaze se da je Delayed ("optimistiCko zaklju¢avanje") "jedini pravi nacin rada za web aplikacije", i
takav je nacin rada podrazumijevani (default) kod web aplikacija, npr. kod ADF JSF aplikacija.

Update Changed Columns Only

OznacCava da se naredbom UPDATE na bazu $alju samo mijenjani stupci (zapravo, polja), a ne svi
stupci u Forms bloku. Podrazumijevana vrijednost je No, Sto znaci da se standardno na bazu 3alju svi
stupci. Ako je svojstvo DML Array Size postavljeno na vrijednost ve¢u od 1, onda se uvijek podrazumijeva
No, tj. ignorira se ako je Update Changed Columns Only postavljeno na Yes.

Kada je Update Changed Columns Only postavljeno na No, Oracle baza moze koristiti istu UPDATE
naredbu za svaki redak, bez potrebe za ponovnim parsiranjem UPDATE naredbe. Stoga je preporucljivo
postaviti svojstvo na Yes samo u dva slu€aja. Jedan je slu¢aj kada ne Zelimo na bazu slati velika (LONG)
polja, ako ta polja korisnik nije mijenjao. Drugi je slu¢aj ako ne Zelimo da se na bazi izvrSavaju okidaci koji
su vezani za odredena polja, ako ta polja stvarno nisu mijenjana.

DML Returning Value

Poznato je da joS od baze 8, DML naredbe sadrzavaju tzv. DML Returning clause, kojom baza moze
vratiti vrijednosti (nekih) polja iz tekuceg retka, a uglavnom je rije€¢ o onim poljima ¢ije je vrijednosti baza
sama mijenjala, najéeS¢e pomocéu okidaCa baze (npr. polje ID, audit polja i dr.).

Podrazumijevana vrijednost svojstva DML Returning Value je No. Ako se postavi na Yes, Forms
automatski azurira vrijednosti (mijenjane na bazi) tih polja kod sebe. Na taj nacin nije potrebno da
programer sinkronizira ("osvjezava") ta Forms polja pomoéu POST-INSERT / POST-UPDATE Forms
okidata. Ako se DML Returning Value ostavi na No, a programer ne napravi sinkronizaciju pomocu
POST-INSERT / POST-UPDATE Forms okida¢a, onda ée korisnik imati dva problema, Ne samo da nece
vidjeti nove vrijednosti tih polja dok ponovo ne pokrene upit (re-query), nego ¢e, ako ne izvrSi ponovni
upit, dobiti udnu greSku ako ponovno mijenja redak koji je malo prije sam mijenjao (i COMMIT-irao na
bazu): FRM-40654: Record has been updated by another user. Re-query to see change.

No, da bi postavka DML Returning Value = Yes imala efekta (ij. da bi Forms koristio Returning
clause), Forms blok mora sadrzavati ROWID, tj. svojstvo (bloka) Key Mode mora biti postavljeno na
Automatic ili Unique. Takoder, Forms ne Koristi Returning clause kod procesiranja LONG polja. U takvim
slu€ajevima treba i dalje koristiti sinkronizaciju pomo¢u POST-INSERT / POST-UPDATE Forms okidaca,
kao $to se radilo prije pojave baze 8, odnosno Formsa 6 (Forms 5 nije imao svojstvo DML Returning
Value). Osim toga, nelogi¢no je da se poljima generiranim na bazi mora postaviti vrijednost Query Only =
No, da bi DML Returning Value = Yes radilo.

25

2.3. Svojstva tipiénih vrsta tekstualnih polja (text item)

U ovom potpoglavlju prikazuju se svojstva razli€itih vrsta tekstualnih polja (text item) iz prakse. Ne
prikazuju se samo svojstva vezana za transakcije, nego i svojstva vezana npr. za prikaz na ekranu, kako
bi se lak3e uvidjela razlika izmedu tih vrsta polja.

Pretpostavimo da je blok temeljen na tablici (5to se €esto radi), a ne na viewu (iako bi to bilo poZeljno
u dosta slucajeva). Dakle, imamo polja osnovne tablice, koja su bazna polja, i polja ostalih tablica (lookup
tablica), koja su nebazna polja (napomena: nebazna su i polja koja ne pripadaju nijednoj tablici). Vrlo
Cesto, Forms blok sadrzi ova polja:

- ID osnovne tablice: generira se na bazi; uglavnom je PK;

- Sifra osnovne tablice: uglavnom je UK;

- naziv osnovne tablice: moze, i ne mora biti UK;
- FK polja osnovne tablice, tj. polja koja su veza na ID-ove tablica-roditelja;
- audit polja osnovne tablice: generiraju se na bazi;
- druga polja osnovne tablice;
- polja lookup tablica: nebazna, najéeSce su to (barem) Sifra i naziv.

Tablica 2.1. prikazuje neka svojstva tipicnih vrsta tekstualnih polja. Svojstva su data u redovima, a
tipiCne vrste tekstualnih polja u stupcima.

Vrsta polja => ID i FK polja Sifra, naziv Audit polja Polja lookup tablica
Svojstvo osnovne tablice i ostala polja osnovne tablice (npr. Sifra i naziv)
osnovne tablice

Enabled nije vazno, Yes Yes Yes

ID nije vidljiv
Keyboard nije vazno, Yes No Sifra = Yes;
navigable ID nije vidljiv ostala polja = No
Database item Yes Yes Yes No
Query only vlastiti ID = Yes; No Yes nije vazno,
(ako je Yes, polje FK polja = No nije bazno polje
nije uklju¢eno u
DML)
Query allowed No Yes Yes Yes
Insert/update No Yes No Sifra = Yes;
allowed ostala polja = No
Visible No Yes Yes Yes

Tablica 2.1. Svojstva tipicnih vrsta tekstualnih polja

Tablica 2.2. prikazuje slicne podatke kao prethodna tablica, samo $to ih prikazuje u obliku koji je
uobi€ajen kod tablica odlu€ivanja: tipiCne vrste polja, koje odgovaraju unesenim vrijednostima u
odredenom stupcu, date su u zadnjem retku (na mjestu gdje se u tablici odlu€ivanja prikazuju akcije).

Database item Y Y Y Y N N
Query Only N N Y Y - -
Visible Y N Y N Y N
Operator moze DA NE NE NE DA NE
raditi (not (query only) (not visible + (not
Insert/Update visible) query only) visible)
Programski se DA DA NE NE DA DA
moze raditi (query only) (query only)
Insert/Update
Tipi¢na vrsta obi¢no surogatni audit polje surogatni polje iz pomoc¢no
polja (sa takvim polje iz klju€ (ID) bazne tablice | klju¢ (ID) lookup poljie
vrijednostima bazne bazne ili polje iz bazne tablice; ne
svojstava) tablice tablice, nebazne join | tablice, unosi se,

punjen na tablice punjen na osim Sifra

klijentu bazi (deskriptor)

Tablica 2.2. Svojstva tipi€nih vrsta tekstualnih polja, prikazana na jo$ jedan nacin

26

2.4. COMMIT i POST Forms procesi

Medu najvaznijim, ali i najsloZenijim Forms procesima, jesu COMMIT i POST procesi. Zapravo,
COMMIT proces moZe se jednostavno (i to¢no) prikazati kao:

COMMIT proces = POST proces + COMMIT naredba na bazi + Forms okida¢ Post-Database-Commit
pa je dovoljno opisati POST proces.

Sustina je u tome da se azuriranje redaka (unos / izmjena / brisanje) prvo radi samo unutar Forms
bloka. Redovi u Forms bloku dobivaju (kako je prikazano u sliedeéem potpoglavlju) odgovarajuci
transakcijski status. Kad korisnik odabere gumb Save ili funkcijsku tipku F10 (ili neki drugi nadin koji je
postavio programer), Forms Salje odgovarajuée DML naredbe na bazu, te daje COMMIT na bazu (ako je
rije€ o COMMIT procesu). Slika 2.4. prikazuje detalje Forms COMMIT procesiranja (napomena: COMMIT
procesiranje je puno detaljnije dijagramski opisano u Forms helpu verzije 6i; Forms help u verzijama 10g /

11g nema tih dijagrama).
validacija @
forme

implicimi
Savepoint
G
i : L4 C g
validacija ,,,;gpl
B Value
blokova
5 From Item
(poredu) SR
Y
¥ Pre/ On Pre/ On
Pre-Delete Post Post
pe INSERT UPDATE

ey

On-Delete implicima Post-
DELETE Forms-
naredba Commit

Post-Delete COMMIT

Post-
Database-
Commit

Slika 2.4. Forms COMMIT procesiranje

27

Kako se vidi iz dijagrama, nakon validacije na razini Forms modula, Forms Salje bazi naredbu
SAVEPOINT. U slu€aju da nesto krene krivo, Forms implicitno (ili programer eksplicitno) kasnije moze
izvrsiti ROLLBACK TO SAVEPOINT, sve do trenutka kad se bazi poSalje COMMIT. Zapravo, proces se
moze prekinuti i kod COMMIT-a, i to ne samo ako se koristi ON-COMMIT okida¢& (koji na dijagramu nije
prikazan), ve¢ i ako se koriste odgodena integritetna ograni€enja (vidjeti potpoglavlje 1.6.). Nakon
implicitnog SAVEPOINT-a, radi se validacija na razini bloka (validacija je, sama po sebi, sloZeni proces).

Nakon validacije bloka, dolaze na red DML naredbe. Prvo se radi DELETE. Prije slanja DELETE
naredbe izvrSava se (ako postoji) Pre-Delete okida¢. Nakon njega (ako postoji) izvrSava se On-Delete
okida¢ (zamjena za DELETE naredbu; uglavnom se koristi sa ne-SQL bazama) ili DELETE naredba (ako
On-Delete okida¢ ne postoji). Nakon toga izvrSava se Post-Delete naredba. Nakon obrade brisanih
redaka (iz bloka), Forms obraduje retke koji su uneseni ili mijenjani. Slicno kao kod DELETE, mogu se
koristiti Pre-Insert / Pre-Update, On-Insert / On-Update i Post-Insert / Post-Update okidagi.

Vazno je napomenuti da se prije Pre-Insert okidata automatski izvrSava Copy Value From ltem
potproces. To je vazno npr. za slu€aj kad imamo master — detalj blokove (vidjeti potpoglavlje 2.6.), a
master ima PK ili UK stupac (npr. imena ID), koji se puni na bazi, a za njega je vezan vanjski klju¢ (FK)
tablice detalja. Zbivanja onda idu ovako: na bazu se uvijek prvo Salje redak master bloka, pri ¢emu baza
generira vrijednost za PK. Ta se vrijednost pomoc¢u Post-Insert okidata na master bloku (ili na temelju
postavljenog svojstva DML Returning Value = Yes) puni u master blok. Kada (poslije) dode vrijeme za
INSERT detalja, potproces Copy Value From Item puni PK iz master bloka u odgovarajuce polje
(vanjskog klju¢a) bloka detalja. Da nije toga, detalji se ne bi povezali sa pravim master retkom.

Nakon obrade jednog bloka, obraduje se sliedeéi. Kad zavrsi obrada zadnjeg bloka, izvr§ava se (ako
postoji) Post-Forms-Commit okida¢. Njegovo ime djeluje prilicno zbunjujuce, jer se moze pomisliti da je
prije njega ve¢ izvrsen COMMIT na bazi (mozda bi bolje ime za njega bilo npr. Pre-Database-Commit). U
potpoglavlju 1.6. prikazana je uloga Post-Forms-Commit okidaga kod provjere odgodenih integritetnih
ogranienja na bazi.

Time zavrS8ava POST procesiranje. Ako je rije¢ o COMMIT procesiranju, nakon toga se na bazu 3alje
COMMIT naredba, a poslije toga izvrSava se (ako postoji) okida¢ Post-Database-Commit.

Za pokretanje COMMIT procesiranja postoji standardna Forms ikona (u meniju) Save i standardna
funkcijska tipka F10 (naravno, moze se odrediti da to bude druga tipka). Za pokretanje POST
procesiranja ne postoji standardna Forms ikona i funkcijska tipka. Programer moze sam kreirati npr.
gumb u koji stavlja poziv naredbe POST (ali, gumb se uglavnom ne radi), ili POST naredbu ugraduje u
neki drugi dio programskog koda.

Ako se zeli nadopuniti COMMIT procesiranje, onda se kreira Key-Commit okida¢ i u njega se upise
odgovaraju¢i kod, koji sadrzi i naredbu COMMIT_FORM (kojom se zapravo pokrece COMMIT
procesiranje).

Treba naglasiti da Forms ima malo nekonzistentan nacin obrade greSaka.

Greske u "pravim" PL/SQL naredbama rjeSavaju se na isti nacin kao i greSke u PL/SQL kodu na
bazi. Usput, treba napomenuti da Forms ima svoj viastiti PL/SQL interpreter (a SQL naredbe 3alje bazi na
obradu), koji je ve¢ odavno zaostao u odnosu na PL/SQL interpreter baze. Forms PL/SQL interpreter
otprilike odgovara PL/SQL interpreteru baze 8.0.

Osim "pravog" PL/SQL koda, Forms sadrzi i vlastite naredbe - Forms built-in naredbe. Te se naredbe
kod obrade greSaka ne ponaSaju na isti nacin kao "pravi" PL/SQL, ve¢ se ponasaju sli¢no kao funkcije u
jeziku C, koji nema obradu greSaka (exception handling; C++ ima obradu gre$aka). Kod poziva Forms
built-in naredbe, u slu¢aju greSke Forms nece skociti na EXCEPTION dio bloka (kao §to ¢e napraviti npr.
kod greSke u SQL naredbi). Programer je duzan (sli¢no kao u jeziku C) nakon svakog poziva Forms built-
in naredbe pomocu funkcije FORM_SUCCESS provijeriti da li je Forms naredba uspjela, npr.:

ENTER; -- primjer Forms built-in naredbe

IF FORM_SUCCESS THEN ...

Da stvar bude jo§ kompleksnija, postoje i tako sloZzene Forms built-in naredbe kod kojih provjera
pomoc¢u FORM_SUCESS ne radi — to su upravo COMMIT_FORM i POST naredbe. Njihov (ne)uspjeh
provjerava se tako da se vidi je li Forms modul u transakcijskom statusu QUERY (vidjeti statuse Forms
objekata u sljedec¢em potpoglavlju). Ako nije, znali da se desila greska, jer joS ima mijenjanih redaka:

COMMIT_ FORM;

IF :SYSTEM.FORM STATUS <> 'QUERY' THEN

MESSAGE ('An error prevented your changes from being committed.');

Spomenimo jo§ da postoji i okidaé On-Lock koji (ako postoji) zamjenjuje standardno zaklju¢avanje

koje se pokre¢e kada Forms Salje bazi naredbu SELECT FOR ... UPDATE LOCK, ili kada se izvrSava
Forms built-in naredba LOCK_RECORD.

28

2.5. Transakcijski i validacijski status Forms objekata

Neki objekti Forms modula imaju transakcijski (ili COMMIT) status, koji pokazuju Forms runtimeu
koje DML operacije treba napraviti za vrijeme COMMIT_FORM naredbe (ili POST naredbe). Objekti koji
imaju transakcijski status jesu redak, blok i sam Forms modul. Tablica 2.1. prikazuje navedene objekte i
moguce vrijednosti transakcijskog statusa.

Objekt => RECORD BLOCK FORMS MODUL
Transakcijski status
Sva polja u retku su Postoji samo jedan Svi blokovi imaju
NEW prazna. Samo jedan redak i ima status status NEW.

redak u bloku moze NEW.
imati status NEW.

Novi redak. lzvrSava

INSERT se DML naredba NE POSTOJI NE POSTOJI
INSERT.
Barem jedan redak Barem jedan blok ima
QUERY Nepromijenjeni ima status QUERY, a | status QUERY, a ostali
postojeci redak. jedan redak moze blokovi imaju status
imati status NEW. NEW.
Promijenjeni postojeéi | Barem jedan redak Barem jedan blok ima
CHANGED redak. lzvrSava se ima status INSERT, status CHANGED.
DML naredba CHANGED, ili je
UPDATE. izbrisan (na formi).

Tablica 2.3. Transakcijski status retka, bloka i Forms modula
Transakcijski status moze se Citati na dva nacina:

- pomoéu sistemskih varijabli, koje daju informaciju o TEKUCEM retku / bloku / formi:
:SYSTEM.RECORD_STATUS / :SYSTEM.BLOCK_STATUS / :SYSTEM.FORM_STATUS

- pomoc¢u GET_RECORD_PROPERTY (... STATUS) / GET_BLOCK_PROPERTY (... STATUS)
naredbi, koje daju informaciju o bilo kojem retku / bloku, a ne samo o tekuéem.(napomena:
:SYSTEM.RECORD_STATUS i GET_RECORD_PROPERTY (... STATUS) ne daju uvijek istu
vrijednost, jer :SYSTEM.RECORD_STATUS ponekad moze biti NULL).

Transakcijski status retka moZze se mijenjati pomo¢u naredbe SET_RECORD_PROPERTY (...
STATUS ...). Time se (indirektno) mijenja i transakcijski status bloka / forme.

Postoji i validacijski status, koji Forms runtimeu pokazuje da li treba napraviti validaciju nad tim
objektom. Validacijski status imaju polje i (opet) redak, kako prikazuje tablica 2.4.

Objekt => ITEM RECORD

Validacijski status
NEW Prazno polje u praznom redu. Sva polja u retku

imaju status NEW.
CHANGED Polje je mijenjano Barem jedno polje u retku

- potrebna je validacija. ima status CHANGED.

VALID Polje nije mijenjano. Sva polja u retku

imaju status VALID.

Tablica 2.4. Validacijski status polja i retka

Izmedu ostalog, validacijski status pokazuje i to da li se treba okinuti WHEN-VALIDATE-ITEM /
WHEN-VALIDATE-RECORD okidagi.

Za razliku od transakcijskog statusa, ne postoje sistemske varijable pomocéu kojih se moze dCitati
validacijski status. Medutim, postoje naredbe GET_ITEM_PROPERTY (...ITEM_IS_VALID) /
SET_ITEM_PROPERTY (...ITEM_IS_VALID...) pomoéu kojih se moze &itati / mijenjati validacijski status
polja. Status retka moze se Citati / mijenjati samo indirektno - tako da se Citaju / mijenjaju statusi polja u
retku.

29

Dakle, (samo) redak ima i transakcijski i validacijski status. Tablica 2..5 prikazuje moguce
kombinacije transakcijskog i validacijskog statusa retka.
Validacijski status => NEW CHANGED VALID
Transakcijski status
Prazanredak. [U slu€aju kada polie ima | U sluCaju kada polje ima

postavljen ‘Initial Value’, a jo$ | postavijen ‘Initial Value’, a

NEW nismo prvi put izadli iz njega, | izasli smo barem jednom iz
validacijski status polja je | njega, validacijski status
FALSE polja je TRUE

INSERT NE POSTOJI Novi redak, jos nije provjeren. Novi redak, provjeren.
Ako mijenjamo nebazno polje | Nepromijenjeni postojeci

QUERY NE POSTOJI direktno (ali, to ne radimo)! redak.
Promijenjeni postojeci redak, jos | Promijenjeni postojeci
nije provjeren. redak, provjeren.
Ovo se deSava i ako mijenjamo
nebazno polje kroz okida¢
POST_QUERY! U tom okidacu

CHANGED NE POSTOJI odmah vracamo transakcijski
status na QUERY, ¢ime se i
validacijski status postavlja na
VALID.

Tablica 2.5. Kombinacije transakcijskog i validacijskog statusa retka

Slika 2.5. prikazuje tranzicije izmedu kombinacija transakcijskog i validacijskog statusa retka.

VALIDACIJSKI
STATUS = ==——m3p
NEW CHANGED VALID
TRANSAKCLJSKI
STATUS
u kada polie ima u SSI:E:E‘]LI k?dna wel ma
NEW .'E?‘nl“n‘i"p‘r"f.‘iﬁ'.i‘:; . A erem ecnom smo e
iz njega
BAING,
MEBAZNG
INSERT X « ~ /
EBAZNO
QUERY X _.V
walidacijzki status retka wvradamo sa CHANGED na ”
WALID tako dalransakcuskl slatus postaviiamo na
QUERY, iako ved je QUERY Il
CHANGED X g2 BAZNO

Slika 2.5. Tranzicije izmedu kombinacija transakcijskog i validacijskog statusa retka

30

2.6. Master-detalj relacije

Za povezivanje dva bloka, mastera i detalja, koristi se tzv. Forms relacija (relation), koja kao Forms
objekt pripada master bloku. Forms relacija ima sljedeca svojstva.

Detail Block
Ime bloka detalja.

Join Condition
Veza izmedu mastera i detalja (npr. stavka.zag_id = zaglavlje.id), koja je zapravo dio WHERE
klauzule u SQL naredbi koju Forms automatski generira.

Delete Record Behavior

Specificira da |li se moze brisati redak master bloka, ako postoje njegovi redovi u bloku detalja.
Vrijednosti su Non-Isolated (podrazumijevana vrijednost), Isolated i Cascading.

Non-Isolated ne dozvoljava (na Forms strani) brisanje master retka koji ima retke-detalje.

Isolated dozvoljava (na Forms strani) brisanje master retka, bez brisanja redaka-detalja. No, ako na
bazi postoji FK integritetno ograni¢enje (a uobi€ajeno postoji), onda ¢e baza sprijeciti brisanje retka, osim
ako je na bazi deklarirano kaskadno brisanje detalja.

Cascading briSe (na Forms strani) master redak i pripadajuce retke-detalje.

Prevent Masterless Operations

Specificira da li korisnik moze postaviti upit nad blokom detalja, ili aZurirati blok detalja, ako ne postoji
odgovaraju¢i master redak. Kad je postavljeno na Yes (podrazumijevana vrijednost je No), ne moze se
postaviti upit ili aZurirati detalje ako nema master retka, i javljaju se poruke:

FRM-41105: Cannot create records without a parent record;

FRM-41106: Cannot query records without a parent record.

Coordination = Deferred + Automatic Query

Ova dva svojstva zajedno odreduju kako i kada ¢e se izvrsiti faza punjenja (population phase) redaka
u bloku detalja. Oba svojstva imaju moguée vrijednosti Yes ili No.

Podrazumijevana vrijednost je: Deferred = No + Automatic Query = No.

Teoretski su moguce 4 kombinacije, ali stvarno postoje samo tri:

- Deferred = No (svojstvo Automatic Query tada nije vazno): upit nad blokom detalja izvrSava se ¢im
odaberemo drugi master redak, bez ulaska u blok detalja;

- Deferred = Yes + Automatic Query = Yes: upit nad blokom detalja izvrSava se ¢im udemo u blok
detalja, bez potrebe za eksplicitnim upitom;

- Deferred = Yes + Automatic Query = No: upit nad blokom detalja izvrSava se kad udemo u blok
detalja i eksplicitno damo upit (npr. F8).
Na temelju navedenih svojstava Forms relacije, Forms Builder automatski generira sljedece objekte

u Forms modulu:

- okida¢ na razini Forms modula ON-CLEAR-DETAILS; kako mu ime kaze, on briSe iz bloka detalje
prethodnog master retka, prije nego ih napuni detaljima novog master retka;

- okidace na razini (master) bloka ON-POPULATE-DETAILS i ON-CHECK-DELETE-MASTER;
- PL/SQL procedure: Check_Package_Failure, Clear_All_Master_Details, Query _Master_Details.

Kako je vec¢ re€eno u potpoglavlju 2.4., vazno je postaviti svojstvo polja vanjskog klju¢a u bloku
detalja Copy Value From Item, tako da uzima vrijednost iz odgovarajuc¢eg (PK ili UK) polja master retka.

31

Oracle Designer omogucava jo$ neke mogucnosti u odnosu na standardno Forms rjeSenje. Npr. u
Designeru se moze postaviti da se upit nad blokom detalja izvrS8ava automatski ¢im mijenjamo master, ali
samo ako je taj blok vidljiv, da se ne bi nepotrebno troSilo vrijeme servera i klijenta. Ako blok detalja nije
vidljiv, upit se automatski izvrSava kad postane vidljiv (nije nuzno da udemo u blok detalja).

Designerovo rjeSenje temelji se na sljedec¢im objektima:

- okidaci na razini Forms modula ON-CLEAR-DETAILS i ON-POPULATE-DETAILS; kod Designera je
ON-POPULATE-DETAILS okida¢ na razini Forms modula, a ne bloka, a i njegov programski kod je
razli¢it u odnosu na Forms varijantu;

- procedure iz Designer PL/SQL librarya.

Ako kroz Forms Builder naknadno mijenjamo formu koja je napravljena kroz Designer, i dodamo
novu relaciju, vrlo je preporucljivo da nakon toga rjeSenje svedemo na Designerovu varijantu, kako ne
bismo dobili neogekivano ponasanje Forms modula.

Konkretno, treba napraviti sljedece:
- brisati okida¢e na razini (master) bloka ON-POPULATE-DETAILS i ON-CHECK-DELETE-MASTER,;
- brisati procedure Check_Package Failure, Clear_All_Master_Details i Query_Master_Details;

- mijenjati okida¢ na razini Forms modula ON-CLEAR-DETAILS, tj. u njemu brisati programski kod koji
je Forms dodao na kraju sljedeéeg programskog koda (dio za brisanje oznacen je sa italic):

/* CGBS$ON_CLEAR;PETAILS */
/* clear all detail blocks for the given master block */
BEGIN
IF (FORM_FAILURE
AND :SYSTEM.COORDINATION_OPERATION IN ('MOUSE', 'DUPLICATE_RECORD'))
THEN
RAISE FORM_TRIGGER_FAILURE;
END IF;
IF (:SYSTEM.MASTER_BLOCK = :SYSTEM.TRIGGER_BLOCK) THEN
CGBS$.CLEAR_MASTER_DETAIL
(:SYSTEM.MASTER_BLOCK, :SYSTEM.COORDINATION_OPERATION)
END IF;
END;

-- Begin default relation program section
BEGIN

Clear All Master Details;
END;

-- End default relation program section

Na kraju, treba naglasiti jednu veliku manu Forms relacija.

Nije moguée na standardan nacin u jednoj transakciji (baze) ostvariti relaciju "master—detalj—detalj od
detalja", ili u jednoj transakciji azurirati viSe zaglavlja i njihove detalje. U jednoj transakciji (na standardan
nacin) moguce je azurirati samo jedan master redak i njegove detalje, ili azurirati viSe master redaka, bez
azuriranja detalja. Razlog je taj $to Forms blok detalja moze sadrzavati retke-detalje samo jednog master
retka. Cim odaberemo drugi master redak, Forms (kako je ve¢ reéeno) brige detalje prethodnog master
retka (Clear_All_Master Details) i puni blok detalia redovima drugog master retka
(Query_Master_Details).

Za razliku od Formsa, ADF to mozZe, kako ¢e biti prikazano u 3. poglavlju.

No i Forms to moZe, ali na nestandardan nacin. Jedan od tih nacina (vjerojatno "najciSéi")
prikazujemo u sljedec¢em potpoglavlju, a sustina mu je u koristenju POST naredbe.

32

2.7. Template i library za POST-iranje kod relacije master—detalj

RjeSavanje prethodno navedenog problema, pomoéu POST naredbe, nije jednostavno, ali sustina je
jednostavna: kod odabira novog master retka, prethodni (mijenjani) master redak i svi njegovi redovi-
detalji POST-iraju se na bazu (dakle, izvr§avaju se DML naredbe, ali bez COMMIT-a).

Mi smo to rjeSenje izveli kao Designer template i pripadajuc¢i PL/SQL library.

Master redak ima oznaku valjanosti, koja se azurira na klijentu i ima Cetiri vrijednosti: * (samo na
klijentu, predstavlja NULL), N(ovi), V(aljan), P(romijenjen).

Sustina rada template-a je sljedeca:

- oznaka valjanosti (master bloka) postavlja se u formi na default * i ne smije biti server derived;
- uWHEN-NEW-RECORD-INSTANCE provjerava se status forme; ako je mijenjana, radi se POST,;
- uWHEN-VALIDATE-RECORD mijenja se oznaka valjanosti na formi (alisamo * u Nili V u P);

- uON-CLEAR-DETAILS provjerava se oznaka valjanosti (provjera se ne radi ako je rije€ o brisanju
mastera) i, ako je N(ovi) ili P(romijenjen), ne dozvoljava prijelaz na novi master;

- gumb "Spremi" postavlja oznaku valjanosti na V(aljan) (ako ve¢ nije bila) i radi COMMIT_FORM,;
- gumb "Ponisti" radi CLEAR_FORM.

PL/SQL library sadrzi dva paketa, a njihove osnovne procedure / funkcije (za potrebe POST-iranja)
su sljedece:

Paket APL_TRG (pozivi iz okidaca)

FUNCTION fs_key_clrfrm RETURN BOOLEAN,;
Implementira funkcionalnost Ponisti.
ii_fnc.ponisti promjene;
Zaustavlja procesiranje Designer-ovog koda sa RETURN FALSE;

PROCEDURE fe_key_commit;
Implementira funkcionalnost Spremi.
iii_fnc.spremi_promijene;

PROCEDURE fe_key_delrec;
iii_fnc.komitiraj brisanje _mastera;

FUNCTION bs_key_delrec RETURN BOOLEAN;
ii_fnc.provjeri dozvoljenost brisanja;
Trazi potvrdu brisanja reda. Dalje, ako tekuci blok nije master, radi
ii_fnc.postavi_status mastera;
Brisanje retka obavit ¢e, nakon potrebnih provjera, Designerov kod.

PROCEDURE fs_key_entqry;
Ne moZze se raditi upit ako nisu spremljene promjene.
ii_fnc.provjeri status mastera;

PROCEDURE fs_key_exeqry;
Ne moze se raditi upit ako nisu spremljene promjene.
ii_fnc.provjeri_status_mastera;

PROCEDURE fs_key_cquery;
Ne moze se raditi upit ako nisu spremljene promjene.
ii_fnc.provjeri status mastera;

PROCEDURE fs_key_exit;
Ne moze se izaci ako nisu spremljene promjene.
ii_fnc.provjeri status mastera;

33

PROCEDURE fs_on_clear_details;
iii_fnc.provjeri_status mastera;

FUNCTION fs_when_validate_record RETURN BOOLEAN;
ii_fnc.postavi_status_mastera;

FUNCTION fs_when_new_block_instance RETURN BOOLEAN;
Ako je iii_fnc.zabrani_detalje _bez zaglavlja = FALSE, zaustavi daljni Designerov kod.
Inace, nastavi.

FUNCTION fs_when_new_record_instance RETURN BOOLEAN;
iii_fnc.postiraj;

Paket IlI_FNC (funkcionalnosti)

FUNCTION blok_je_prometni (blok_p IN VARCHAR2) RETURN BOOLEAN;
Pokazuje da li je blok zasnovan nad tablicom ¢iji naziv pocCinje slovom 'T', §to znaci da se radi o
transakcijskim podacima. Koristi se kako bi se zabranilo brisanje transakcijskih redaka, koji imaju
redne brojeve, i stvaranje "rupa" u rednim brojevima.

FUNCTION oznaka_valjanosti RETURN VARCHAR2
Vraca vrijednost polja za oznaku valjanosti.

PROCEDURE spremi_promjene;
Ako se dalo 'Spremi' dok je kurzor bio na novom/mijenjanom retku,
potreban je POST da se izvrSi INSERT / UPDATE retka.
POST / COMMIT_FORM je uspio ako je nakon njega status forme QUERY.
Pamti se (u lokalnu varijablu) stara vrijednost oznake valjanosti (da bi se vratila nakon
eventualnog neuspjeha), pa se stavlja oznaka da je master valjan, za provjeru COMMIT pravila.
Ako nije uspjela provjera COMMIT pravila, vraéa se stara oznaka.

PROCEDURE ponisti_promjene;
Nakon provjere, promjene se ponistavaju.

PROCEDURE postiraj;
Vraa varijablu ozn_brisan_master m na 'N' onda kad se NIJE izvrSila procedura
postavi_status_mastera nakon brisanja master retka.
Radi se samo ako je bilo promjena na formi.

PROCEDURE postavi_status_mastera;
Ne radi ako se pokrece iz spremi_promjene sa oznakom valjanosti 'V'.
Ne radi ako se pokrece iza provjeri_status_master nakon brisanja mastera.

PROCEDURE provjeri_status_mastera;
Ova validacija potrebna je ako se mijenja samo master.
Ako je pokrenuto brisanje mastera, ne provjerava se oznaka valjanosti.

PROCEDURE komitiraj_brisanje_mastera;
Postira promjene mastera.
Ako nakon toga status forme nije QUERY, znacli da postiranje nije uspjelo, javlja gresku i
poniStava promjene.
Inace, radi COMMIT_FORM.

PROCEDURE provjeri_dozvoljenost_brisanja;
Redak se ne moze obrisati ako je tekuc¢a pozicija na zaglavlju i njegova bazna tablica je prometna
i memorijska oznaka statusa je V(aljan) ili P(romijenjen).

FUNCTION zabrani_detalje_bez_zaglavlja RETURN BOOLEAN;
Osigurava zabranu prelaska na novi blok, ukoliko u bloku zaglavlja nije dovrSen unos
(klijent nije generirao ID na PRE-INSERT)
Ako je ostao na master bloku, onda ne treba provjera.

34

2.8. Razli¢iti nacini poziva Forms modula

Osim vrlo jednostavnih (ili vrlo specijalnih) aplikacija, veéina aplikacija sastoji se od viSe Forms
modula. Naravno, postavlja se pitanje na koji nacin povezati te module, npr. kako pozivati jedan modul iz
drugog.

NajCeSc¢e realiziramo poziv drugog modula iz prvog modula tako da korisnik odabere modul iz menija
koji je pridruzen svakom modulu. Pritom se modul moze pozvati na tri nacina, tj. pomocu tri Forms
naredbe:

- OPEN_FORM;
- CALL_FORM;
- NEW_FORM.

NEW_FORM nismo nikada koristili, jer (naj¢e$¢e) nije primjeren za Windows nacin rada, zato $to
zatvara prvi modul kod pokretanja drugog modula. Prednost koristenja NEW_FORM nacina rada je u
tome da se smanjuju memorijski zahtjevi na strani Forms klijenta (u klijent-server Forms varijanti) ili
Forms aplikacijskog servera. Kod poziva novog modula sa NEW-FORM (a isto vrijedi i za CALL_FORM)
mogu se odabrati tri vrijednosti ROLLBACK_MODE parametra, kojim se odreduje kako ¢e Forms runtime
postupiti u slu¢aju ROLLBACK-a koji se desio u pozvanoj formi:

- TO_SAVEPOINT (default): izvrSit ¢e se ROLLBACK TO SAVEPOINT svih ne-COMMIT-iranih
promjena (ukljuCujuc¢i i POST-irane promjene) do SAVEPOINT tocke, koja se inate automatski
postavlja kod ulaska u pozvani modul; to znac¢i da ¢e se ponistiti sve promjene koje je napravio
pozvani modul, ali se neée ponistiti promjene koje je napravio pozivajuc¢i modul (i oni prije njega, ako
ih ima);

- NO_ROLLBACK: nece se izvrsiti ROLLBACK, $to znadi da ¢e ostati saCuvane sve promjene (a ostat
¢e i zaklju€ani redovi), pa i one koje je napravio pozvani modul;

- FULL_ROLLBACK: ponistit ¢e se sve promjene; ne moze se navesti FULL_ROLLBACK kod poziva iz
modula koja radi u tzv. post-only modu, koji je opisan dolje, kod CALL_FORM naredbe.

OPEN_FORM i CALL_FORM vidljivo se razlikuju po tome sto CALL_FORM ne dozvoljava "Setanje"
izmedu pozivajuéeg i pozvanog modula. MoZzemo raditi samo u pozvanom modulu, jer je pozvani modul
modalan — moramo izaéi iz njega da bismo se mogli vratiti u pozivaju¢i modul. Ako jedna forma pozove
drugu sa OPEN_FORM, slobodno se moZemo "Setati" izmedu te dvije forme (osim ako smo napravili
modalan prozor, ali to obi¢no ne radimo).

No, vaznija razlika je u tome Sto OPEN_FORM dozvoljava da se pozvani modul pokrene u posebnoj
sesiji baze (u odnosu na pozivaju¢i modul), dok kod CALL_FORM naredbe (kao i NEW_FORM) pozvani i
pozivajuc¢i modul rade uvijek u istoj sesiji baze.

Kada pozivamo module iz menija, uvijek koristimo OPEN_FORM u novoj sesiji. Istina, to povecava
broj sesija na bazi, ali to nam se ¢ini sasvim normalnim. Ako npr. korisnik otvori dva Forms modula, od
kojih jedan sluzi za azuriranje npr. dobavljata, a drugi sluzi za azuriranje npr. artikala, izgleda nam
logi¢no da su to dvije nezavisne sesije (kao da dva korisnika rade na dva ra¢unala). Treba naglasiti da,
iako se za svaki modul otvara nova sesija, sve te sesije (kao i sve sesije Forms procesa) koriste istu
konekciju na bazu, i (§to je mozda i vaznije) sve te sesije na bazi posluzuje isti background proces baze.
Znadi, osim Sto se povecava broj sesija na bazi, takav nacin rada ne optereéuje bazu znacajnije.

CALL_FORM koristimo uvijek za poziv LOV Forms modula, a i u nekim drugim specijalnim
slu¢ajevima kada je proces jako kompliciran, pa je zato rijeSen kroz viSe Forms modula.

Vazno je napomenuti da kod CALL_FORM moZemo imati samo jedan tzv. "Call form stack", tj. ne
mozemo imati dva (ili viSe) CALL_FORM "lanaca" (vidjeti Forms help).

Takoder, kod CALL_FORM (i NEW _FORM) postoji dodatno ograni¢enje u radu s transakcijom. Ako
pozivajuc¢i modul nije napravio POST (ili COMMIT_FORM, ali ovo drugo nema puno smisla ako su oba
modula dio jedne transakcije), pozvani modul je u tzv. post-only modu, tj. pozvani modul ne moze
napraviti COMMIT ili (kompletni) ROLLBACK. Pozvana forma moze napraviti samo ROLLBACK TO
SAVEPOINT (SAVEPOINT se automatski radi kod poziva), tj ponistiti samo ono $to je on napravio.
Pritom se, zbog ROLLBACK TO SAVEPOINT, mozZe desiti sljedeéi problem (koji je vezan za uobi¢ajeno
ponaSanje baze, vidjeti poCetak potpoglavlja 1.3.): ako je pozvana forma zakljuala neke retke, a onda
napravila ROLLBACK TO SAVEPOINT, oni su i dalje ostali zaklju€ani za neku tre¢u formu koja radi u
posebnoj sesiji baze i koja je te retke ve¢ pokusavala zaklju€ati.

35

2.9. Forms i odgodena deklarativna integritetna ogranié¢enja na bazi

Kao Sto je prikazano u potpoglavlju 1.6., Oracle baza ima joS od verzije 8.0 moguc¢nost odgadanja
provjere deklarativnih integritetnih ograni¢enja (najkasnije do COMMIT-a).

NaZalost, ako koristimo Oracle Forms, greSke vezane za odgodena deklarativha ograni€enja ne
obraduju se dobro u Forms runtimeu. Jo$ jedan problem (puno vedéi) javlja se ako u Formsima koristimo
POST built-in.

Npr. dodajmo DEPT tablici odgodeni primarni kljuc:

ALTER TABLE dept
ADD CONSTRAINT dept pk PRIMARY KEY (deptno) INITIALLY DEFERRED
USING INDEX

/

Ako unesemo npr. dva retka sa istom vrijedno$¢u u stupcu DEPTNO, te damo COMMIT naredbu
kroz SQL+, dobijemo o¢ekivane poruke o gresci:

ORA-02091: transaction rolled back

ORA-00001: unique constraint (SCOTT.DEPT_PK) violated

Sada kreirajmo najjednostavniji Forms modul koriste¢i Forms Data Block Wizard i unesimo iste
podatke kroz Forms. Nakon Save (tj. COMMIT_FORM) ne dobijemo odgovarajuéu poruku o gresci, ¢ak
niti ako koristimo ON-ERROR Forms okida¢ ili SQLERRM. Naprotiv, Forms prvo javlja poruku kao da je
sve u redu:

FRM-40400: transaction finished, 2 Record saved

a nakon toga javlja poruku:

FRM-99999: Error 408 occurred.

Naravno, podaci ipak nisu mogli biti uneseni u bazu, jer deklarativnho ograni€enje na bazi radi, ali
Forms odito javlja pogrednu (prvu) poruku. Po svemu se ¢&ini da je to Forms bug, koji mozda nikada nece
biti rijeSen (postoji od Forms 6, pa do danas).

No ¢ak i da ova pogresna poruka bude rijeSena u nekoj buduc¢oj Forms verziji (npr. Forms 12c),
postoji i veci problem, ako koristimo POST built-in. Kako je navedeno u potpoglavlju 2.4., POST built-in
upisuje podatke iz Forms modula u bazu, ali ne izvrSava COMMIT (naredbu baze). Nakon POST-iranja
redaka, Forms "zaboravlja" koji su redovi uneseni / mijenjani / brisani. Problem je sa odgodenim
deklarativnim ograni¢enjima u tome da nakon COMMIT naredbe, ako ograni¢enja nisu zadovoljena, baza
automatski radi ROLLBACK cijele transakcije.

RjeSenje za oba problema je relativno jedostavno — trebamo sami provjeriti da li je odgodeno
deklarativno ogranicenje zadovoljeno prije nego $to se desi COMMIT naredba na bazi, koristeci naredbu:

SET CONSTRAINT dept pk IMMEDIATE
/

Navedenu naredbu mozZemo staviti u jedan “generiCki” paket, koji koristi dinamicki SQL:

CREATE OR REPLACE PACKAGE deferred constraints AS
PROCEDURE set_immediate (p_constraint VARCHAR2?) ;
PROCEDURE set_deferred (p_constraint VARCHAR2?) ;
END deferred constraints;
/
CREATE OR REPLACE PACKAGE BODY deferred constraints AS
PROCEDURE set_immediate (p_constraint VARCHAR2) IS
BEGIN
EXECUTE IMMEDIATE 'SET CONSTRAINT ' || p_constraint || ' IMMEDIATE';
END;

PROCEDURE set_deferred (p_constraint VARCHAR2) IS

BEGIN
EXECUTE IMMEDIATE 'SET CONSTRAINT ' || p_constraint || ' DEFERRED';
END;
END deferred constraints;

/

36

Naravno, da bi drugi korisnici (a ne samo vlasnik sheme SCOTT) mogli koristiti paket, treba (npr. kao
korisnik SYSTEM) napraviti globalni sinonim:

CREATE PUBLIC SYNONYM deferred constraints FOR scott.deferred constraints
/

Zatim korisnik SCOTT daje pravo odredenom korisniku da koristi taj paket:

GRANT EXECUTE ON deferred constraints TO your_ user
/

Nakon toga dodamo u Forms modul ON-COMMIT okida¢ (koji se okida umjesto standardnog
COMMIT_FORM built-in-a), sa sljedeéim programskim kodom:

BEGIN
deferred constraints.set_ immediate ('dept_pk');
deferred constraints.set deferred ('dept_pk');
COMMIT FORM;
EXCEPTION
WHEN OTHERS THEN
MESSAGE
('"COMMIT ERROR: ' || DBMS_ERROR_CODE [A DBMS_ERROR_TEXT);
PAUSE;
deferred constraints.set deferred ('dept pk');
RAISE FORM_TRIGGER_FAILURE;
END;

Naravno, umjesto naredbi MESSAGE i PAUSE u praksi ¢emo koristiti neki drugi nacin prikaza
poruke o gresci (najvjerojatnije ¢e to biti ALERT), koji je viSe "user friendly".

Primijetimo da smo naizgled mogli postiéi isti rezultat i bez paketa na bazi, piSuci sav programski kod
u ON-COMMIT Forms okida&u, npr:

FORMS DDL ('SET CONSTRAINT dept_ pk IMMEDIATE') ;

IF NOT FORM_SUCCESS THEN
MESSAGE
('COMMIT ERROR: ' || DBMS _ERROR CODE || ' ' || DBMS_ERROR_TEXT) ;
PAUSE;
FORMS_DDL ('SET CONSTRAINT dept_pk DEFERRED') ;
RAISE FORM_TRIGGER_FAILURE;
ELSE
FORMS_DDL ('SET CONSTRAINT dept_pk DEFERRED') ;
COMMIT FORM;
END IF;

Medutim, taj nacin radi dobro samo ako Forms modul pokrenemo kao korisnik SCOTT, tj. kao
korisnik koji je vlasnik tablice DEPT. Naime, ako ne-vlasnik tablice pokusSava izvrsiti SET naredbu na
odgodenom deklarativnom ogranienju, dobije poruku:

ORA-02448 Constraint does not exist

Ovo je programsko rjeSenje bilo prikazano na web stranicama firme Quest u 4.mjesecu 2003.
(stranica viSe nije dostupna), te na HROUG-u 2002.

37

3. TRANSAKCIJE | ORACLE ADF
3.1. ADF - razvoj i arhitektura

Kako kaze Steve Munch, jedan od kreatora Oracle ADF-a (Application Development Framework), u
predgovoru knjige [10] svojih kolega iz Oraclea, ve¢ u ljeto 1996. godine, 6 mjeseci nakon $to je Sun
izdao verziju Jave 1.0, u Oracleu su odlugili raditi deklarativni, RAD (Rapid Application Development) alat
temeljen na jeziku Java. Prvo izdanje frameworka, koji se tada nije zvao ADF ve¢ JBO (Java Business
Objects), uslijedilo je 1999. godine. Ubrzo mu je ime promijenjeno u BC4J (Business Components for
Java). BC4J je pokrivao onaj dio koji danas pokriva ADF BC (Business Components), evolutivni
nasljednik BC4J-a.

Uz BC4J, Oracle je poCeo razvijati i odgovarajuci IDE (Interactive Development Environment) imena
JDeveloper, licenciraju¢i 1998. tadasnji Borlandov alat JBuilder. Vrlo brzo, 2001., Oracle je temeljito
preradio JDeveloper, pri ¢emu ga je u potpunosti "prepisac" u Java kod (to je bila verzija 9i; verzije od 4
do 8 su preskoCene, kako bi alat pratio verziju tadasnje baze 9i). Ubrzo se, u verziji 10g (koja je zapravo
bila 9.0.5), prvi put pojavio termin ADF. 2005. godine, u novoj verziji 10g (10.1.3), Oracle JDeveloper je
postao besplatan softver (free software).

Za razliku od "nizeg" dijela, tj. ADF BC-a (bivSeg BC4J-a), "visi" dio, koji se odnosi na Controller i
View dio MVC (Model View Controller) arhitekture, razvijao se manje evolutivno, sa velikim skokovima,
Sto je pratilo uobiCajena zbivanja u cijeloj softverskoj industriji vezanoj za Java web aplikacije. Poznato je
da su se dinamicke stranice u JEE arhitekturi (Java Enterprise Edition; prije se oznacavalo kao J2EE)
prvo radile u servlet tehnologiji. Na temelju nje nastala je JSP (Java Server Pages) tehnologija. Oracle je
ubrzo uvidio da te tehnologije nisu dovoljno produktivne, jer ne omogucavaju odgovaraju¢e module ili
komponente, pa je razvio svoju specijalnu tehnologiju UIX (User Interface XML), temeljenu na
komponentama. UIX Components su sluzile za definiranje i za renderiranje (rendering, prikazivanje)
stranica, a UIX Controller za upravljanje dogadajima i interakciju izmedu stranica u aplikaciji. Na neki
nacin, UIX su bili prete€a standardne JSF (Java Server Faces) tehnologije, Cija je (usavrSena) varijanta i
ADF JSF.

Slika 3.1. prikazuje razli¢ite sastavne dijelove ADF frameworka, podijeljene u Cetiri sloja (sloj izvora
podataka, npr. baze podataka, ne spada u ADF).

Microsoft Excel

Mobile Mobile
ADF Swing ADF Deskiop Native Browser JSF ADF Faces View

Integration Client Client

ADF Desktop

Integration ADF Mobile JSF Controller Controller
Serdet

ADF Binding Layer
Model
ADF Data Control Layer
ADF Business . . .
Components EJB and JPA JAVA Web Services Business Services
Data Source Data Services

Slika 3.1. Sastavni dijelovi ADF frameworka; Izvor [11]

38

Kako se vidi na slici 3.1., uz tri MVC sloja postoji i Business Services sloj, &iji je jedan "predstavnik"
ADF BC (zapravo se i Model sloj na slici dijeli na podslojeve ADF Data Control i ADF Binding). lako se
ADF framework moZe slagati od razli€itih "kockica" na pojedinom sloju, uobi€ajeni "izbor" (onaj koji je
zapravo i Oracleov izbor za izradu Oracle Fusion aplikacija) oznacen je Zutom bojom, a &ine ga (od dolje
prema gore) ADF BC, ADF Model, ADF Controller, ADF JSF.

Koje su sli¢nosti izmedu standardne JEE arhitekture i Oracle ADF arhitekture (koja se u sustini
temelji na JEE arhitekturi, ali ju nadograduje, i nije standardna arhitektura) prikazano je na slici 3.2.

View | JSF | | ADF Faces |
Controller ‘ JSF Controller(FacesServiet) | | ADF Controller ‘
Model | | ADF Binding |

8K
&

Session Facade/

Service Layer Application Module

SessionBean / Java Class

=
=

[I
[[
JPQL |H ADF View Objects [
Data Access T _/g—
Layer . .
I I
JPA Entity Classes |- ADF Entity Objects |-
R A iessa R il
il .
Data sources

Slika 3.2. Usporedba JEE i ADF arhitekture; Izvor [11]

ADF Business Service sloj Cine tri vrste ADF komponenti (ili objekata; no pojam "objekt" je tako
preopterecen da je vrlo nezgodno Sto ga Oracle koristi i za te komponente): Entity Object (ADF BC EO, ili
samo EO), View Object (ADF BC VO, ili VO), Application Module (ADF BC AM, ili AM). EO su sli¢ni JEE
JPA (Java Persistence API) Entity klasama, ali EO imaju neke prednosti, npr. podr8ku za keSiranje
podataka (na aplikacijskom serveru), upravljanje transakcijama, deklarativnu validaciju i dr. VO su sli¢ni
JEE JPQL-u (Java Persistence Query Language), ali bolje podrzavaju vizualno i deklarativnho
programiranje, deklarativno upravljanje stanjima (declarative state management) i dr. AM je transakcijska
komponenta koja je konceptualno sli¢na Session Facade sloju izgradenom na temelju Session Bean-ova
iz EJB (Enterprise JavaBeans) arhitekture (ili specifikacije), ali razlike su medu njima fundamentalne.

Data Binding sloj u ADF-u, poznat i kao ADF Model, je jedinstven i nema odgovarajuéu kopiju u JEE
svijetu. ADF Model odvaja Ul od implementacije poslovnih servisa i pruza generiCka rieSenja za kolekcije
podataka koje vracaju poslovni servisi. Konceptualno sliéne moguénosti ima Context and Dependency
Injection (CDI) sloj iz Java EE, ali na drugaciji nagin.

ADF Controller je donekle slican standardnom JEE JSF Controlleru (&iji su glavni zadaci obrada
zahtjeva prema stranicama, i navigacija medu stranicama), ali omoguéava modularniji razvoj aplikacija,
jer razbija monolithu web aplikaciju u viSestruko iskoristive dijelove, tzv. ADF Task Flows. Svaki Task
Flow moZe imati svoje vlastite transakcijske atribute, upravljanje resursima, definicije za managed
beanse, rjeSenja za navigaciju.

ADF Faces su vrlo sliéni standardnim JSF, i izgradeni su povrh njih, ali imaju brojne dodatne
mogucénosti, kao Sto su grafovi i dijagrami, komponente za dijaloge, deklarativne komponente, data
streaming, mogucnost ugradnje Task Flows, AJAX-enabled Ul komponente i dr.

39

3.2. Entity Object

Kako je re€eno u prethodnom potpoglavlju, ADF BC Entity Object (ADF BC EO, ili samo EO) su
jedna od tri najvaznije komponente ADF Business Service sloja. Termin Entity Object nije bas najsretniji,
npr. kada se koristi unutar Sireg termina Entity Object Instance (a znamo da su u objektnoj paradigmi
pojmovi objekt i instanca (klase) sinonimi). EO zapravo predstavlja na ADF strani (odredene) objekte iz
baze. Jedan EO predstavlja jednu tablicu, jedan pogled (view) baze (i termin view je jako preopterecen,
kao i termin object), jedan sinonim ili jedan materijalizirani pogled (materialized view). U nastavku ¢éemo
(zbog kraceg izrazavanja) uvijek govoriti kao da EO predstavlja (samo) tablicu.

EO se zapravo sastoji od Cetiri potkomponente, a to su:

- EO XML definicija (EO definition XML metadata file): XML datoteka koja sadrzi metapodatke za EO;

- EO klasa za definiciju (EO definition): to je klasa koja predstavlja definiciju za EO tokom izvodenja;
podrazumijevana (default) klasa je oracle.jbo.server.EntityDeflmpl, a moZe se napraviti podklasa te
klase, Sto se rjede radi;

- EO klasa: ta klasa predstavlja instance danog entiteta, pa se €esto naziva i EO Instance (viSe termina
istog znacenja, te ponekad loSe odabrani termini, sigurno ne olakSavaju ucenje ADF-a); kako
literatura Cesto navodi: "pojednostavljeno reCeno, instanca te klase predstavlja redak u tablici baze"
(no to nije ba$ najpreciznije, jer se redovi iz baze na kraju drze u entity cacheu); podrazumijevana
(default) klasa je oracle.jbo.server.Entitylmpl, a moze se napraviti podklasa te klase, $to se obi¢no i
radi;

- Entity collection (ili Entity cache) klasa: ta klasa predstavlja cache za instance (objekte) danog
entiteta; podrazumijevana (default) klasa je oracle.jbo.server.EntityCache, a moZe se napraviti
podklasa te klase, &to se vrlo rijetko radi.

EO definicija (pa onda i EO instanca) sadrzi atribute, koji odgovaraju atributima tablice na bazi.
Koridtenje EO (u drugim komponentama, u VO) naziva se EO Usage. Slika 3.3. prikazuje odnos izmedu
EO definicije, EO instance, EO atributa i EO Usagea.

Entity Object
Instances

h

Are templates for

Entity Entity Object
Attributes |7 Contain| Definitions
h
Refer to
Entity Object
Usages

Slika 3.3. EO definicija je predlozak za EO instancu; Izvor [8]

Dvije EO definicije (koje predstavljaju npr. dvije tablice na bazi) mogu biti povezane asocijacijom,
koja je najCeSc¢e nastala iz FK veze medu tablicama na bazi (ali to ne mora biti). Buduéi da EO nastaju na
temelju EO definicija, tada su i odgovaraju¢i EO medusobno povezani. Slika 3.4. prikazuje asocijaciju
izmedu dva EO, te entity cache.

Entity Definition Entity Collection(Entity Cache)

Entity Object E
AssociationH

Entity Object

Slika 3.4. Veza EO definicije i EO, asocijacija izmedu dva EO, te entity cache; Izvor [11]

40

Kada definiramo EO atribute, za rukovanje transakcijama vazna su nam sljedeca svojstva atributa.

Persistent / Transient

Oznacava da li je atribut perzistentan, tj. izvor / odrediSte mu je baza podataka (napomena: ADF BC
moze raditi i s drugim izvorima podataka, ali u tekstu se ograni€avamo na bazu podataka) ili tranzijentan,
tj. ne sprema se u bazu podataka. Vrijednosti tranzijentnih atributa derivirane su na neki nacgin (preko
Groovy izraza ili Java koda) iz drugih atributa. Tranzijentni atributi ponekad mogu posluziti kao
privremena spremista za podatke.

Refresh on Insert, Refresh on Update

Moze se odabrati da se vrijednost podataka osvjeZi s baze, nakon $to se redak posalje na bazu, tj.
nakon Sto se na bazi izvrSi INSERT ili UPDATE. Ovo svojstvo je sliéno svojstvu Forms bloka DML
Returning Value (vidjeti potpoglavlje 2.4.), j. koristi se to $to (jo$ od baze 8) DML naredbe sadrzavaju tzv.
DML Returning clause, kojom baza moze vratiti vrijednosti (nekih) polja iz tekué¢eg retka, a uglavnom je
rije¢ o onim poljima Cije je vrijednosti baza sama mijenjala, najée$ce pomocu okidata baze.

Change Indicator

Za razliku od Formsa, kod kojih je podrazumijevano (default) pesimisticno zaklju¢avanje redaka
(redak se zakljuéava ¢im ga korisnik po¢ne mijenjati, dakle prije nego Sto se radi UPDATE), ADF
podrazumijevano zakljuCavanje je optimisticko (redak se zaklju¢ava tek neposredno prije UPDATE). Kod
optimistiCkog zaklju€avanja, ADF standardno treba usporediti sve atribute, da bi vidio da li je netko drugi
u meduvremenu mijenjao redak. Kako bi se ubrzala usporedba, moze se oznaciti da su samo neki atributi
indikatori promjene (npr. audit polje koje sadrzi datum i vrijeme izmjene).

Type: DBSequence

Kao tip atributa moze se odabrati DBSequence, ¢ime se automatski postavi i Refresh on Insert. Tako
se postavlja kada baza generira vrijednost atributa za PK / UK (npr. ID) pomocu okida¢a baze. ADF
privremeno puni PK / UK atributu jedinstvene negativne brojeve, koji se nakon INSERT-a na bazu
zamjenjuju vrijednostima koje je generirao okidal baze. Napomenimo da kod master-detalj veze,
DBSequence ne puni na detalju odgovarajué¢i ID mastera - to radi, bez dodatnog programiranja,
kompozitna asocijacija (opisana u nastavku ovog potpoglavlja).

Kod svojstva Change Indicator spomenuta su dva nacina zakljuCavanja u ADF-u, pesimisti¢ko i
optimisti¢ko (kakve ima i Forms). Medutim, ADF ima Cetiri nacina provjere da li netko drugi mijenja redak,
od kojih je jedno zapravo takvo da se nikakva provjera ne radi. Ostaju tri korisna nadina, tj. uz
pesimistiCko i optimistiCko zaklju€avanje, postoji i provjera koja ne trazi zaklju€avanje. Izbor se radi kroz
jbo.locking.mode konfiguracijsko svojstvo.

To svojstvo moze se postaviti na dva nadina:
- za odredeni aplikacijski modul: kroz Edit, u Properties tab, mijenja se jbo.locking.mode;
- zacijelu aplikaciju: u adf-config.xml postavlja se odgovarajuci Locking Mode.

Moguce vrijednosti za jbo.locking.mode su sljedece:
- None: niSta se ne radi;

- Pessimistic: pesimistiCko zaklju¢avanje, kako je prije objasnjeno; ne preporu¢a se za web aplikacije,
jer ¢im netko pokuSa promijeniti bilo koji podatak retka, redak ostaje zaklju€¢an do kraja transakcije;

- Optimistic: optimisti¢ko zaklju€avanje (default), kako je prije objasnjeno;

- Optupdate: sliéno kao optimistiCko zaklju€avanje, ali bez zaklju¢avanja (samo provjerava da li su
stare vrijednosti polja iz retka jednake onima koji su sada na bazi), pa ne pruza istu sigurnost kao
optimistiCko zaklju¢avanje; i kod ovog nacina, kao i kod optimistickog, usporedba se moze ubrzati
pomocu svojstva Change Indicator.

Asocijacije izmedu entiteta mogu imati razliCite kardinalnosti, izmedu ostalog i 1 : N. No, postoji
posebna vrsta 1 : N asocijacija, tzv. kompozitna asocijacija ili kompozicija (nekad se koristio i naziv jaka
agregacija, jer se do (uklju€ujuéi) UML-a 2 smatralo da postoji i slaba agregacija; slaba agregacija se u
UML-u 2 prikazivala pomoéu neispunjenog dijamanta; kompozicija se prikazuje pomocéu ispunjenog
(crnog) dijamanta). Kod kompozitne asocijacije, instanca jedne klase moze postojati samo kao dio
instance druge klase (npr. stavka ne mozZe postojati bez dokumenta).

41

Kada se u ADF-u oznaci da je asocijacija izmedu dva EO kompozitna, time se osigurava da se na
detalju puni odgovarajuéi ID mastera, a rijeSava se i pravilan redoslijed slanja redaka na bazu (prvo
master, pa detalji). Kompozitnoj asocijaciji se mogu postaviti sliede¢a svojstva:

- Use Database Key Constraints: nema utjecaja na ADF, omoguéava da se na bazi generira FK na
bazi ADF definicije;

- Implement Cascade Delete: brisanjem roditeljskog entiteta, automatski se briSu (na ADF strani)
entiteti-djeca; ako nije oznaceno, ADF ne dozvoljava brisanje roditelja koji ima djecu;

- Optimize for Database Cascade Delete: ako je selektirano, kod brisanja roditelja, ADF nece slati na
bazu DELETE naredbe za brisanje djece, jer se tada pretpostavlja da na bazi postoji ON DELETE
CASCADE FK;

- Cascade Update Key Attributes: automatski azurira FK polja djece kod promjene PK / UK roditelja;
medutim, nije preporucljivo da aplikacija mijenja PK / UK;

- Update Top-level History Columns: kada se unosi / mijenja / briSe dijete, automatski se azuriraju audit
polja roditelja;

- Lock Level: odreduje se da li ¢e se zaklju€ati redak roditelja, ako se zaklju¢a bilo koje njegovo dijete;
moguce varijante su:
- None: roditelj se nece zakljucati;
- Lock Container: zaklju€at ¢e se prvi (neposredni) roditelj;
- Lock Top-level Container: zaklju€at ¢e se vr3ni roditelj, ili onaj u hijerarhiji koji ima iskljueno Lock
Top-level Container svojstvo.

Kod asocijacije, vazno je spomenuti tzv. association accessor. To je operacija (ponekad
implementirana kao Java metoda), kojom EO s jedne strane veze, preko tzv. accessor atributa, moze
pristupati redovima EO koji se nalazi na drugoj strani veze. JDeveloper standardno generira association
accessor za svaku stranu veze. Postoji svojstvo kojim se moze optimizirati ponasanje za association
accessor. U EO roditelja, unutar General grupe svojstava i unutar Tuning sekcije, moze se ukljuciti
svojstvo Retain association accessor rowset. Tada ¢e ADF izvrsiti upit za dohvat rowseta djece samo prvi
put, tj. samo kod prvog pristupanja accessor atributu, a kasnije ¢e biti koriSten isti rowset. No u tom
slu¢aju klijent mora pozvati reset() kod svakog koristenja, kako bi resetirao stanje iteratora, kako prikazuje
sljedeci kod iz [11]:

RowIterator rowIter= DeptEOImpl.getEmpEO() ;
rowIter.reset();
while (rowIter.hasNext()) {

Row row=rowIter.next();

//Row represent Emp entity instance

}

Sliéno kao Sto postoje Forms validacijski i transakcijski atributi (vidjeti potpoglavlje 2.6.), postoje sli¢ni
atributi i za ADF EO retke, sto prikazuje slika 3.5.

setNewRowState()
P Initialized I

setAttribute() |
i 7~ EntityDef:: createlnstance2()
1
1
I New - | Dead I
< remove() A
commit
finder methods on commit
EntityDef or ViewObject y .
- : . Deleted I
executeQuery on m A
ViewObject commit
setAttribute() femoveq
———————————>| Modified l---_-__--_--

commit - Successful Transaction Commit

Slika 3.5. Razli¢iti statusi EO retka kod transakcije; 1zvor [11]

42

3.3. View Object

ADF BC View Object (ADF BC VO, ili samo VO) ima tri potkomponente koje su sli€¢ne odgovarajuéim
potkomponentama za EO (prve tri navedene), te Cetvrtu koja je specifitna za VO:
- VO XML definicija (VO definition XML metadata file): XML datoteka koja sadrzi metapodatke za VO;

- VO klasa za definiciju (VO definition): to je klasa koja predstavlja definiciju za VO tokom izvodenja;
podrazumijevana (default) klasa je oracle.jbo.server.ViewDeflmpl, a moze se napraviti podklasa te
klase, Sto se rjede radi;

- VO Kklasa: ta klasa predstavlja instance danog viewa, pa se ¢esto naziva i VO Instance;
podrazumijevana (default) klasa je oracle.jbo.server.Viewlmpl; moZe se napraviti podklasa te klase,
Sto se obi¢no i radi, a tada se moze oznaciti pomocu Include bind variable accesors da se generiraju
odgovaraju¢e seter / geter metode, pomocéu kojih se moze pisati programski kod u kojem se
pogreSna imena atributa otkrivaju kod kompajliranja (u suprotnom se imena atributa piSu u
navodnicima, pa se greSke otkrivaju tek kod izvodenja);

- VO Row klasa: ta klasa predstavlja retke dobivene na temelju rezultata upita; moze se napraviti
podklasa te klase, $to se obi¢no i radi, a tada se mozZe oznaciti pomoéu Include accesors da se
generiraju odgovarajuce seter / geter metode za VO Row atribute.

VO definicija (pa onda i VO instanca) sadrzi atribute. Buduéi da VO moze biti temeljen na EO
(jednom ili viSe), ali moze biti temeljen i na SQL upitu, VO atributi mogu odgovarati atributima EO, ili
stupcima iz SQL upita. Slika 3.6. prikazuje odnos izmedu VO definicije, VO instance, VO atributa i ve¢
prije prikazanih EO komponenti.

Entity Entity Object
Attributes Contain Definitions
A A
Refer to

Entity Object

Usages
A
Can refer to Can contain
View View Object
Attributes Contain Definitions

Are templates for

A 4

View Object
Create Instances

View Rows <

Slika 3.6. VO definicija je predloZzak za VO (VO instancu), sadrzi VO atribute,
temelji se na EO (ne uvijek, mozZe i na SQL upitu); Izvor [8]

Na slici 3.6. vidi se i komponenta View Rows. View Rows se uvijek nalaze unutar skupa redaka, koji
se naziva View Row set (ili samo Row set). Row set ima i barem jedan row set iterator, koji sluzi za
iteriranje kroz row set. Jedan row set moze imati viSe row set iteratora, a jedan VO moze imati viSe row
setova. Row set sadrzi i pripadajuée Bind varijable.

Treba naglasiti da row set ne sadrZi potpune retke, ve¢ samo "pokazivace" na tzv. query collection
(koji se ponekad naziva i View cache, sli¢no kao entity cache; ponekad se naziva i View Object Row
cache — zaista previ$e naziva). No, niti query collection ne sadrzi uvijek retke. Naime, ako je VO temeljen
na SQL upitu, onda query collection zaista sadrzi potpune retke. Ako je VO temeljen na EO (jednom ili
viSe), onda query collection sadrzi samo "pokazivace" na entity cache.

43

Sljedeca slika 3.7. prikazuje VO (koji sadrzi definiciju upita i definiciju atributa), koji ima Row set (na
slici je prikazan samo jedan row set, ali VO ih mozZe imati viSe). Row set ima Bind varijable i Row set
iteratore (na slici je prikazan samo jedan row set iterator, ali row set ih mozZe imati viSe). Kako slika
prikazuje, row set sadrZi retke, ali to su samo pokazivaci, koji pokazuju na query collection. Buduci da se
pretpostavlja da je prikazani VO temeljen na EO (na slici je temeljen samo na jednom EO), query
collection dalje sadrzi pokazivaCe na entity cache.

Entity Object Caches

I

I

I

I

| \

i [J i
| Entity Object b‘j‘ |
|

1

Query Collection Cache |

View Object "
| 3%
*Query
- Attribute Definitions =

| Row L/ij

i 1

I Row Set

Query Collection

g B

- Bind Variables i
Row Set lterator

| Row

Slika 3.7. Odnos izmedu VO, row seta, query collection i entity cachea; Izvor [11]

No to nije sve o VO komponentama. VO sadrZi i tzv. View criteria, koji predstavljaju "filter" za upit
definiran u VO, tj. sluZze za dinami¢ko nadogradivanje WHERE klauzule VO upita. Jedan VO se mozZe
povezati s drugim VO, pomocu tzv. View linka (slika 3.8.). View link moZe nastati na temelju asocijacije
izmedu EO na kojima su VO temeljeni, ali ne mora.

..

View Object

View Link

View Definition

i

Query Collection Cache

View Object
*Query

3Gt Query Collection

«Attribute Definitions [Rw]|
@ A
View Criteria

| View Criteria Row

Row Set

«Bind Variables
*Row Set Iterator

g S

Slika 3.8. Jo$ jedan prikaz VO komponenti — novost su View criteria i View link; 1zvor [11]

44

Slika 3.9. prikazuje kako razli¢ite VO (i ne-VO) komponente rade upit nad bazom. Na slici se nalazi i
jedna komponenta koja ¢e biti objasSnjena u sljede¢em potpoglavlju — aplikacijski modul (Application
Module). Treba napomenuti da slika nije potpuno detaljna za slu¢aj kada je VO temeljen na EO (jednom
ili viSe). Naime, vec¢ je re€eno da u tom slugaju (kada je VO temeljen na EO), query collection ne sadrzi
potpune retke, ve¢ samo pokazivaCe na entity cache (koji na slici 3.8. nije prikazan). Dakle, u tom slu¢aju
slici bi trebalo dodati i entity cache, te pokazati kako se on puni redovima, a query collection se puni
samo s pokazivaCima na entity cache.

‘ Client ‘ Application Module

i 1: find ViewObject

i
I
2: ViewObject i
I
i
I

3: executeQuery

‘ View Object ‘ ‘ Row Set ‘ ‘ Query Collection H Database ‘

4 getDefaultRowSet

»
L

5: executeQuery

»1 6: initQueryCollection
7: prepareRowSetFor Query

R 3 executeQueryForCollectiof

A

9: executeQuery

| 10: SELECT Query
_11: ResultSet |

v

12: setResultSetForCollection

|

Slika 3.9. Uloge razli¢itih komponenti kod izvodenja upita nad bazom; Izvor [11]

VO sluzi za izvodenje upita nad bazom, ali ne sluzi (direktno) za azuriranje baze. Azuriranje baze
radi se uvijek kroz EO (na kojem je VO temeljen), kako prikazuje slika 3.10.

— Entity
‘ Client ‘ ‘ DBTrasaction ApplicationModule ‘ Object ‘
T T T
I
Commit | i i
> : |
| !
| |
| ¢ Validate beforevalidate ‘J:_ i
il I
loop [for each|validation Iistener]) validate - ;L
after Validate ~
loop [for eadH] transaction post listener]/
! postChanges lock

pre[areForDML
doDML

loop [for each|transaction listener])

[¢ doBeforeCommit

beforeCommit
beforeCommit
doCommit

A4

doAfterCommit

Y

afterCommit

A4

J afterCommit

]
1
|
1
1
]
i
1
1
]
i
1
1
]
i
1
1
I
|
1
i ! l postChanges
i
]
1
1
]
i
1
1
]
i
1
1
]
i
1
1
]
i
1
1
]
i
1
1
I
i
1
1
I
i
1
1
I
i
1
1
]
i
1
1
I
i
1
1
]

e

Slika 3.10. AZuriranje baze radi se kroz EO; Izvor [11]

45

Kako je prije re€eno, VO se moze temeljiti na SQL upitu, ili na jednom ili viSe EO (zapravo se VO
moze temeljiti i na statickim podacima, ali taj slu€aj je puno rjedi u praksi). Oracle priru¢nik [16] navodi (u
42.2.2) kako je pozeljno (skoro) svaki VO, pa i onaj koji sluzi samo za &itanje (read only), temeljiti na EO -
kaZe se da dodatni posao punjenja entity cachea ne narusava performanse za viSe od 5% u odnosu na
varijantu kada read only VO nije temeljen na EO (nego na SQL upitu). Prednost toga da se VO temelji na
EO dolazi do izrazaja narocito u slu¢aju kada se VO sastoji od viSe EO. Tada ADF moze poku$ati kreirati
optimiziraniji upit nego sto bi bio onaj ruéno pisan. Dalje, tada se kod punjenja query collectiona pune i
oba (ili vise) entity cachea. Ako neki drugi VO (unutar istog aplikacijskog modula, kako ¢e biti objaSnjeno
u sljedeéem potpoglavlju) koristi jedan ili viSe tih istih EO, onda se ne¢e morati uvijek izvrSavati upit na
bazu, jer ¢e ADF naci podatke za drugi VO u entity cacheu koiji je napunio prvi VO.

Kada se VO sastoji od vise EO, a VO sluzi za azuriranje (indirektno, jer se stvarno azuriranje uvijek
radi kroz EO), onda se obi¢no samo jedan EO u VO oznac€i kao Updateable, a ostali su vrste Reference.
To ne mora uvijek biti tako - jedan VO moZe imati i viSe EO oznacenih kao Updateable, ali najéeSce je
samo jedan EO oznacen sa Updateable.

Buduéi da vise VO moze biti temeljeno na istom EO (bilo da je to primarni ili sekundarni EO), pitanje
je Sto se deSava kada se kroz jedan VO (indirektno) mijenjaju podaci u EO (primarnom, najesc¢e), i ti se
podaci jo$ nisu poslali na bazu, tj. pitanje je koje podatke tada vidi drugi VO koji koristi isti EO (obi¢no kao
sekundarni EQ). Ako su to VO u razli¢itim aplikacijskim sesijama, onda drugi VO nece vidjeti mijenjane
podatke, osim ako se koriste shared (na razini aplikacije, ne sesije) aplikacijski moduli, $to ée biti
prikazano u sljede¢em potpoglavlju. Ako su to VO u istoj aplikacijskoj sesiji, onda se zeljeno ponasanje
moze birati pomocéu VO svojstva za View link consistency. Npr., moze se izabrati da drugi VO vidi
promjene koje je napravio prvi VO. Napomena: Oracle priru¢nik [16] u 42.1.2 kaze da je naziv View link
consistency "povijesan" (mi bismo rekli zbunjujuéi) — njegova je primjena nekada bila ograni¢ena samo na
specijalne slu¢ajeve, a sada vrijedi za svaki VO, neovisno da li se taj VO nalazi u View link vezi, ili ne.

View link consistency pona8anje mozZe se mijenjati na razini aplikacijskog modula, kroz svojstvo
jbo.viewlink.consistent (ili programski na razini VO). Moguce vrijednosti su:

- DEFAULT: znadi da je za single EO usage, View link consistency ukljuen; za viSestruke EO usages,
View link consistency nije ukljuen samo za one sekundarne EO usages koji su oznaleni kao
Updateable (tj. nisu oznaCeni kao Reference);

- true: znadi da je View link consistency uklju¢en u svim slu€ajevima;

- false: znaci da je View link consistency isklju¢en u svim slu¢ajevima.

Treba napomenuti da View link consistency ne radi (automatski se iskljucuje) kada se VO upitu
dinamicki (pomoéu setWhereClause() metode) mijenja WHERE klauzula.

View link sluzi za "deklarativno" pristupanje podacima redaka-detalja iz master retka (ili obrnuto). U
View Link Properties mozZe se odabrati da li ¢e view link biti jednosmjeran (unidirectional - default) ili
dvosmjeran (bidirectional).

Za programsko pristupanje podacima koriste se View Link Accessor atribut i Java metode.
Napomena: ovaj accessor nema nikakve veze sa ve¢ spomenutim accessor geter / seter metodama, koje
se dobiju kada se odabere Include bind variable accesors / Include accesors kod generiranja vlastitih VO
i VO Row klasa; takoder, ovaj accesor nije isto Sto i View Accessor, koji sluzi npr. kod koristenja LOV-ova
i kod validacije. Ako se Zeli optimizirati pristup pomoc¢u View Link Accessora, moze se na VO, u Tuning
sekciji stranice General, oznaciti Retain View Link Accessor Row Set. Za programski pristup, tj. preko
View Link Accessor metoda, nije potrebno da postoji view link izmedu VO (za razliku od "deklarativhog"
pristupa).

Osim navedenih svojstava jbo.viewlink.consistent i Retain View Link Accessor Row Set, VO ima jo$
svojstava koja sluze za optimizaciju. U Tuning sekciji stranice General (za VO), mogu se postaviti i
sljedeca svojstva, vezana za dohvacanje redaka iz baze:

- All rows ili Only up to row number: ozna¢ava da li nema ograni€enja na broj redaka, ili je broj redaka
ograni¢en na uneseni broj;

- At Most one Row: korisno je kada se samo Zeli vidjeti da li ima redaka u nekom upitu;

- No Rows: korisno je kada se redovi samo unose.

Za izbor All rows ili Only up to row number, moguce je dalje odabrati sljedece:

- In Batches of (ili fetch size): oznacava koliko redaka odjednom ADF dohvaca sa baze (u Formsima se
to svojstvo bloka zove Query Array Size); ako se pusti podrazumijevana (default) vrijednost, koja je 1,
to za vecinu slu€ajeva nije dobro;

- As needed ili All at once: oznacava da se redovi sa baze dohvacaju kad je potrebno (npr. za prikaz
na ekranu, ili programski dohvat), ili se svi redovi dohvaéaju odjednom (kao kada se u Formsima
odabere Query All Records na bloku), npr. zbog izrauna nekog sumarnog polja.

Treba napomenuti jo§ jedno vazno VO svojstvo - Auto Refresh. Ono ée ukratko biti objaSnjeno u
sljedec¢em potpoglavlju, kad bude rije€i o dijeljenim (shared) aplikacijskim modulima.

46

MoZe se napraviti usporedba izmedu Forms bloka i ADF EO i VO komponenti. MoZe se reéi da je
Forms blok monolitan, tj. sadrzi funkcionalnosti koje su u ADF-u podijeljene izmedu EO i VO komponenti
(zapravo, Forms blok ima i neke funkcionalnosti, vezane za korisni¢ko sucelje i navigaciju, koje u ADF
arhitekturi pripadaju ADF View i ADF Controller slojevima). U odnosu na ADF EO i VO, Forms blok ima
barem ove dvije (velike) mane:

- u master-detalj relaciji, Forms u detalinom bloku ne mozZe istovremeno sadrZavati detalje za viSe
mastera; za razliku od toga, jedan VO moze imati viSe row setova, pa i query collectiona; u ADF-u je
zato lako napraviti rijeSenje za situaciju "master-detalj-detalj od detalja" u istoj transakciji; zbog toga u
ADF-u nije potrebno raditi POST-iranje (barem ne zbog master-detalj potreba), kao Sto je ono
spomenuto kod Formsa u potpoglavlju 2.6.;

- Forms blok se ne moze pretrazivati ili sortirati bez upita na bazu (zapravo, moguce je da se
programski rade trikovi, npr. pomoéu Record group, ali takva rjeSenja su neskalabilna i nisu
elegantna); za razliku od toga, VO se moze pretraZivati, i njegovi podaci sortirati, bez upita na bazu,
Sto Ce se kratko prikazati u nastavku.

Kada se izvodi upit (query) nad VO, moZe se odrediti koji e se izvor podataka koristiti:
- Scan database tables: €ita se baza, $to je podrazumijevano (default) ponaSanje;
postavlja se programski sa vo.ViewObject. QUERY_MODE_SCAN_DATABASE_TABLES;
- Scan view rows: Cita se query collection (kolekcija prvo mora biti napunjena upitom na bazu);
postavlja se programski sa vo.ViewObject. QUERY_MODE_SCAN_VIEW_ROWS;
- Scan entity cache: Cita se entity cache (moguce je samo za VO temeljene nad EO);
postavlja se programski sa vo.ViewObject. QUERY_MODE_SCAN_ENTITY_ROWS.

Slijedi primjer iz [11], u kojem se vidi i primjena kombinacije tih postavki:

// Defined In custom ApplicationModuleImpl
public void queryUsingMulitpleQueryModes () {
//Find the view object
ViewObject employeeVO = findViewObject ("EmployeeDetails") ;

//Combine both database mode and entity cache query mode
employeeVO. setQueryMode (
ViewObject.QUERY MODE_SCAN DATABASE TABLES |
ViewObject.QUERY MODE SCAN ENTITY ROWS) ;

//Execute query
employeeVO.executeQuery () ;

// Business logic to manipulate row goes here

}

Takoder, VO omogucavaju sortiranje redaka u memoriji, to je korisno npr. i za slu¢aj kada se Zeli
sortirati po VO tranzijentnim podacima (koji niti ne postoje na bazi). Sortiranje redaka u memoriji moze
raditi sporo, ako je broj redaka jako velik — treba uzeti u obzir da je baza (tj. DBMS sustav) ipak puno
pogodnija za sortiranje velikog broja redaka. Primjer sortiranja:

vo.setSortBy ("ImeAtributa desc");

VO omogucavaiju i filtriranje podataka u memoriji. Postoje dva (programska) nacina:
- filtriranje (u memoriji) pomocéu RowMatch - koristi se klasa oracle.jbo.RowMatch;
- filtriranje (u memoriji) nadjacavanjem metode rowQualifies() iz ViewObjectimpl klase.

| u View criteria potkomponenti moguce je definirati izvor podataka. Moguce postavke su:
- Database: Cita se baza, $to je podrazumijevano (default) ponasanje;
programski se postavlja sa vc.setCriteriaMode(ViewCriteria. CRITERIA_MODE_QUERY);
- In-memory: €ita se u memoriji;
programski se postavlja sa vc.setCriteriaMode(ViewCriteria. CRITERIA_MODE_CACHE);
- Both: prvo se postavlja upit na bazu, a onda se dodaje upit u memoriji;
programski se postavlja kombinacijom prethodne dvije metode:
vc.setCriteriaMode
(ViewCriteria.CRITERIA MODE_QUERY |
ViewCriteria.CRITERIA MODE CACHE) .

47

3.4. Application Module

ADF BC Application Module (ADF BC AM, ili samo AM) ima tri potkomponente koje su formalno
sliéne odgovaraju¢im potkomponentama za EO i VO:
- AM XML definicija (AM definition XML metadata file): XML datoteka koja sadrzi metapodatke za AM;

- AM klasa za definiciju (AM definition): to je klasa koja predstavlja definiciju za AM tokom izvodenja;
podrazumijevana (default) klasa je oracle.jbo.server.ApplicationModuleDeflmpl, a moze se napraviti
podklasa te klase, to se rjede radi;

- AM Kklasa: ta klasa predstavlja instance danog AM, pa se Cesto naziva i AM Instance;
podrazumijevana (default) klasa je oracle.jbo.server.ApplicationModulelmpl; moZe se napraviti
podklasa te klase, §to se obi¢no i radi.

Slika 3.11. prikazuje glavne sastavne dijelove AM, a to su VO instance (zajedno s View link
instancama), te drugi (ugnijezdeni) AM.

‘Service Layer‘ Business Logic

‘ Data Access Layer

Application Module View Objects Entity Objects Data Source

“““““““““““ ‘< .
K~

C— |view Object Instance > | View Object

Row Set
View Link Instance lterator |

O— View Object Instance Entity Object
S— K—
View Link
(—— Business Methods
Association k

Generic Infrastructure ; ; /
O— View Object

Methods Entity Object

) Nested
C Application Module

‘ Oracle ADF Infrastructure Services

Slika 3.11. Glavni sastavni dijelovi AM, te prikaz svih najvaznijih BC komponenti i njihovih odnosa;
Izvor [11]

Slika 3.11. daje i kompletan prikaz svih najvaznijih BC komponenti i njihovih odnosa. Vidi se da AM
ne koristi EO na direktan nacin, ve¢ indirektno, preko VO.

VO i EO c¢ine sloj pristupa podacima (Data Access Layer).

Sve tri glavhe komponente zajedno (AM, VO i EO) &ine sloj poslovne logike (Business Logic).

Na "rubu" AM je servisni sloj, tj. ono &to je izloZzeno gornjim slojevima, a izloZzene su VO instance,
vlastite (uglavnom Java) metode, generi¢ke metode koje pruza ADF, te ugnijezdeni AM.

Sve zajedno €ini ADF infrastrukturne servise.

48

Jo§ jedan dobar prikaz najvaznijih BC komponenti i njihovih odnosa daje slika 3.12. Na toj se slici vidi
da jedan AM (odnosno AM instanca) moze sadrzavati dvije (ili viSe) instance istog VO. Npr. AM instanca
na slici ima dvije instance Employees VO, od kojih je jedna vezana View linkom na drugi VO
(Departmens) u master-detalj vezu, a druga instanca je samostalna.

Application Module Departments | Depanments Database
View Entity Object
Departments XML | Java | XML | Java ||
View A 7'y 7 y
h 4 v -
ViewLink Association
Employees
Miew XML | Java XML | Java
y F
\ 4 v
Employees Employees [4— Employees |
View B View < Entity Oblect
XML | Java XML | Java
XML Java SQL | PL/SQL

Slika 3.12. Jos jedan prikaz svih najvaznijih BC komponenti i njihovih odnosa; Izvor [8]

Osim prethodno navedenih komponenti, postoje jos neke komponente koje ADF Kkoristi za izvodenje
AM instance:
- Application Pool: odgovoran je za upravljanje priCuvom (pool) instanci AM; podrazumijevana (default)
klasa je oracle.jpo.common.ampool.ApplicationPoollmpl; u bc4j.xcfg datoteci odredenom AM moze
se postaviti svojstvo PoolClassName tako da pokazuje na neku drugu klasu;

- Connection Strategy: Application pool koristi ovu komponentu za kreiranje novih instanci AM i za
konektiranje na izvor podataka (uglavnhom bazu); podrazumijevana (default) klasa je
oracle.jbo.common.ampool.DefaultConnectionStrategy; u bcdj.xcfg datoteci moze se postaviti
svojstvo jbo.ampool.connectionstrategyclass tako da pokazuje na neku drugu klasu;

- Session: session objekt sprema kontekst sesije za klijenta; session objekt se instancira za svaki vrsni
(root) AM, kada se taj AM aktivira; podrazumijevana (default) klasa je oracle.jbo.server.Sessionimpl;
u bcdj.xcfg datoteci moze se postaviti svojstvo SessionClass tako da pokazuje na neku drugu klasu;

- Transaction Handler: upravlja transakcijom (baze), koja je vezana za KkorisniCku sesiju;
podrazumijevana (default) klasa je oracle.jbo.server.DefaultTxnHandlerlmpl; moZze se postaviti
drugacije, na malo kompleksniji nagin nego sto je bilo kod prethodnih komponenti.

Navedene podrazumijevane (default) komponente se, zapravo, vrlo rijetko zamjenjuju s nekim
drugim komponentama.

Cesto je potrebno dijeliti podatke izmedu vise korisni¢kih sesija (opet napominjemo da korisni¢ka
sesija nije isto $to i sesija baze, jer se jedna korisniCka sesija moze realizirati kroz vise sesija baze, §to je
standardno u web aplikacijama). Narocito to vrijedi za Sifarnike i sli€¢ne podatke, koji se rijetko mijenjaju, a
potrebni su skoro svim korisnicima (poslovne aplikacije). Uglavhom nije dobro da su takvi podaci
multiplicirani u memoriji aplikacijskog servera, ve¢ je pozZeljno da se u memoriji nalaze samo jednom i da
sve aplikacijske sesije koriste iste podatke.

Za potrebe dijeljenja podataka, ADF ima tzv. dijeljene (ili zajedniCke - shared) AM instance. AM
instanca moze biti dijeljena na razini aplikacije (application level shared application module), pa tada svi
korisnici koriste istu AM instancu i vide iste podatke. AM moze biti dijeljena i samo na razini korisnicke
sesije (session level shared application module), pa tada sve AM instance u istoj aplikacijskoj sesiji, koje
se nalaze unutar vrSnog (root) AM (unutar kojeg se nalazi i djeljiva AM instanca) vide njene podatke (AM
koje se nalaze u istoj aplikacijskoj sesiji, ali unutar drugog vr§nog AM, ne vide njene podatke).

AM se oznacava djeljivim tako da se izabere na odgovarajuéem tabu, Application ili Session, unutar
Project Properties, ADF Business Components, Application Module Instances.

49

VO instance koje se nalaze u AM dijeljenom na razini aplikacije, koriste viSe row iteratora za isti row
set, kako bi svaki korisnik mogao nezavisno iterirati kroz podatke. Ako je VO upit parametriziran, onda se
za razli¢ite korisnike kreiraju i njihovi row setovi, te razliciti query collection, ali se uvijek koristi isti entity
cache.

Query collection koja se nalazi u ne-dijelienom (non-shared) AM je labavo referencirana (weakly
referenced), dok je query collection koja se nalazi u dijelienom AM d&vrsto referencirana (strongly
referenced). To je vazno za JVM, jer garbage collector moze ukloniti one objekte koji su labavo
referencirani, ali ne i one koji su ¢vrsto referencirani. Slika 3.13. pokazuje labavo referencirane i ¢évrsto
referencirane VO potkomponente kod ne-dijelienog AM. Vidi se npr. da je samo primarni row set ¢vrsto
referenciran, a sekundarni row setovi su labavo referencirani. U djeljivom AM su sve VO potkomponente
¢vrsto referencirane.

Entity Cache
o | I I
] I u
Unmodified * b Modified
\ i
v Qc Ca‘rche j
R T TR EEEEEE > J
. Default Row Set Secondary Row Set
| v ——» Strong Reference
‘ v R » Weak Reference
1
Row il
Row Set Cache

Slika 3.13. Labavo i ¢vrsto referencirane VO potkomponente kod ne-dijelienog AM; Izvor [11]

Vazno je napomenuti da svi ugnijezdeni AM, koji se nalaze unutar istog vrSnog (root) AM, dijele
zajednicki entity cache, konekciju na bazu i transakciju, kako prikazuje slika 3.14. AM dijeljeni na razini
korisniCke sesije, zapravo se kreiraju kao ugnijezdeni AM.

U ADF verzijama prije 11.1.2.x, osim eksplicitho, AM su se gnijezdili i implicitno (AM koji su se
nalazili unutar istog task flowa, automatski su se gnijezdili). O task flowu bit ée govora u potpoglavlju 3.7.

Root Application Module
PP =
, , ' b
O— | View Object Instance | I |
<:>| Database |
i |
View Link Instance : Connection |
I
O— | View Object Instance | : Transaction | 1
|
O— ; I
: Entity Cache :
O—] [|Nested Application Module-l <:> 1 :
|
| N 1‘

Slika 3.14. Ugnijezdeni AM dijele zajednicki entity cache, konekciju na bazu i transakciju; Izvor [11]

U prethodnom potpoglavlju (3.3.) napomenuto je da VO, uz svojstva koja su tamo prikazana, ima i
svojstvo Auto Refresh, koje se moze postaviti u Tuning sekciji stranice General. lako to svojstvo nije usko
vezano za dijeljene (shared) AM, ipak se naj¢esce koristi uz njih. To se svojstvo moze koristiti na Oracle
bazi 10.2 ili vecoj, koje podrzavaju tzv. Continuous Query Notification (CQN). CQN od baze 11g postoji u
dva oblika [12], kao Object Change Naotification (OCN) i Query Result Change Notification (QRCN).
Sustina je u tome da baza gura (push) informacije o promjeni redaka prema klijentu (naravno, klijent
moze biti i aplikacijski server), a klijent na temelju dobivenih informacija izvrSava upit i osvjezava svoj
cache. ADF kroz JDBC API prije izvrSenja VO upita 3alje registraciju tog upita bazi. U ADF-u se najéeS¢e
tako osvjezavaju VO koji se nalazi u AM dijeljenom (shared) na razini aplikacije.

50

3.5. Kako pomiriti HTTP stateless protokol i stateful zahtjeve

HTTP protokol radi iznad TCP / IP (ili UDP / IP) para protokola, a kao HTTPS iznad TLS (SSL)
protokola (koji radi iznad TCP protokola). Poznato je da HTTP protokol izvorno nije bio misljen kao temelj
za rad poslovnih aplikacija (koje koriste transakcije), ve¢ za primanje zahtjeva (requests) i za slanje
(response) statiCkih HTML stranica.

Vrlo brzo je bilo potrebno prikazivati dinamicke stranice, §to se u Java tehnologiji prvo radilo (a i
danas je to temelj rada) pomoc¢u Java servleta. Pojednostavljeno re¢eno, Java servleti su Java programi
na aplikacijskom serveru, koji dinamicki generiraju web stranice.

Slika 3.15. prikazuje korake u HTTP komunikaciji. Vidi se da (1) HTTP listener osluskuje zahtjeve
(requests) na portu 80 (default). Korisnik u web pregledniku klikne na neki link (2), ¢ime pokre¢e HTTP
zahtjev (3), koji preko interneta dolazi do HTTP listenera (4). HTTP listener uspostavlja komunikaciju s
klijentom (5) i predaje kontrolu web server programu (6). Web server obraduje zahtjev (7). Ako je sadrza;j
dinamicki, web server poziva odgovarajuéi program, npr. Java servlet, koji generira stranicu (8). Na kraju
web server Salje stranicu (staticku ili dinamicki generiranu) klijentu, a klijentov web preglednik prikazuje tu
stranicu (9). Time se HTTP komunikacija (request-response par) zavrSava, a TCP veza u pravilu ostaje i
dalje aktivna (tzv. perzistentna TCP veza).

Web Browser

HTTP Request

GET /jspapp/jsp/forum_query.jsp HTTP/1.1
User-Agent: Mozilla/4.0

Host: www.oracle.com

Accept-Language: en-us

HTTP Web Server /
HTTP Response @

1
HTTP/1.1 200 OK @ =
User-Agent: Mozilla/4.0 Web server Port 80 listener

Server: 127.0.0.1
Content-Type: text/html K
<html>

- fheacb ﬁﬁj j2ee @
] home
config
server.xml
applications

jspapp
WEB. INF

|jsp
—|— forum_gquery.jsp

Slika 3.15. Koraci u web (HTTP) komunikaciji; Izvor [8]

Slika 3.16. prikazuje osnove rada Java servleta. Java servlet svaki zahtjev obraduje u posebnoj Java
dretvi (thread), koja referencira svoje vlastite request-response objekte. Na kraju svakog HTTP request-
response para, dretva se zatvara (ili vraéa u thread pool), a request-response objekte ¢e podistiti
garbage collector.

Container
Client A HTTP request HTrp reques; Client B
= =
B -
B0 Serviet EERY
= f
{thread ;}/ {thread B>/ 5 Each tlient gets 3 sepavate
\ \ Hhvead Lor eath r:r-\uzs‘t.\ and the
Container allotates new "C“\“ES{
response request request i and vesponse °bjzc+'5'

Slika 3.16. Osnove rada Java servleta; lzvor [1]

51

Dakle, HTTP protokol je stateless, tj. "ne Cuva stanje". To je jako nezgodno npr. za poslovne
transakcije. Kako duhovito prikazuje slika 3.17., nakon zavrdetka HTTP request-response komunikacije,
web server zaboravlja klijenta, tj. ne prepoznaje ga kod sljedeceg HTTP zahtjeva.

I'm sorry, but I don't
remember you. I'm sure we
shared good times together,
but we'll have to start over.

But things were
going so well... I thought
we had a relationship...

Slika 3.17. Nakon zavrSetka HTTP komunikacije, web server zaboravlja klijenta; 1zvor [1]

Naravno, znamo da se poslovne transakcije ipak obavljaju preko HTTP protokola, pa je jasno da je
za navedeni problem nadeno (kakvo-takvo) rieSenje. Rije€ je o kolacic¢ima (cookies), koji sluze za razliCite
namjene, ali i za realizaciju aplikacijskih sesija (jedna aplikacijska sesija sastoji se od jednog ili vise HTTP
request-response parova; kako je vec¢ re€eno, aplikacijska sesija nije isto Sto i sesija baze). Kako
prikazuje slika 3.18., kod uspostavljanja HTTP komunikacije, aplikacijski server kreira novi ID sesije i Salje
ga klijentu (web pregledniku). Kod svake sljedec¢e komunikacije, klijent Salje serveru taj ID sesije, na
temelju ¢ega ga server prepoznaje.

Yes, but I'm state-challenged and
won't remember you, so I'm giving
you a unique session ID, You MUST give
that back to me each time you make a

request, so Tl know if's you.

Hey server,
here's my first request,
with the parameter
"dark”. Can we start a
conversation?

Container

Let's see..#42... oh, there
you are! Yes, I remember

Here's my second
request, with the parameter
“ale”. My ID# is 42... do you now. Last time you said that
you remember me? you liked “dark” beer...

5 =l (ID# 42
a request, “ale” ID# 42 5350085 T\ “dark”

, [T = [Tale® 'Iﬁrpszg‘g‘é‘
W4
S . st
‘*’%M""&
Container

Slika 3.18. Realizacija aplikacijske sesije preko HTTP protokola; Izvor [1]

Prikazani nacin rada ne koristi se samo kod Java servleta, ve¢ i novijih tehnologija JSP (Java Server
Pages) i JSF (Java Server Faces), koje se temelje na Java servlet tehnologiji (JSF se temelji i na JSP).

Treba napomenuti da je moguce realizirati aplikacijske sesije i onda kada klijent (iz nekog razloga)
ne dozvoljava kolagice. Tehnika se zove URL rewriting, jer svaki URL poziv tada dobiva oblik:
URL+;jsessionid=1234567. Korisnik ju ne moze sprijeciti, ali treba ju eksplicitno programirati u odgovoru
(response). Server prvo pokusa raditi s kola€i¢ima, a ako ne uspije, prebacuje se na URL rewriting nacin.

52

3.6. Save Points, Application Module Pools i Connection Pools

U prethodnom potpoglavlju prikazane su osnove rada s kolaci¢ima za sesije (session cookies),
pomocu kojih HTTP stateless protokol radi sa aplikacijskim sesijama koje se proteZzu kroz dva ili viSe
HTTP request-response para. No ¢esto poslovna aplikacija ima zahtjeve koji su sloZeniji od jednostavne
identifikacije aplikacijske sesije, a to su zahtjevi za upravljanjem aplikacijskim stanjem (application state
management).

ADF omogucava upravljanje aplikacijskim stanjem na dvije razine. Jedno je upravljanje na controller
sloju, pomoéu Save For Later moguénosti u Task Flowu (TF), a drugo je upravljanje aplikacijskim
modulima (AM) na model sloju.

Da bi se u aplikaciji koristila moguc¢nost Save for later, u aplikaciji treba postaviti odgovaraju¢e Save
Points, tj. toCke u kojima Zelimo da ADF zapamti stanje aplikacije i podataka, kako bi se kasnije moglo
vratiti stanje koje je bilo u tim to€kama, pomo¢u Save Point Restore. Vazno je reéi da ovdje nije rije¢ o
paméenju podataka na bazi (to nije SAVEPOINT na bazi), ve¢ o paméenju stanja aplikacije i podataka u
aplikaciji. Save for later moze raditi (tj. snimiti podatke) eksplicitno, tj. na korisnikov zahtjev (ali to
programer treba programirati) ili implicitno, npr. kada istekne timeout sesije, ili kada korisnik zatvori prozor
web preglednika.

Vazno je napomenuti da su spomenuti Save points (bilo eksplicitni, bilo implicitni) zapravo Controller
Save Points, a oni se temelje na Model Save Points. Za razliku od Controller save point, koji pamti
podatke i na razini controller i model sloja, Model save point pamti podatke samo na razini model sloja.
Mozemo rec¢i da Model save point pamti stanje transakcije (ali, ne na bazi, nego u aplikaciji), a ne
cjelokupne aplikacije. Kao i Controller save point, tako se i Model save point moze pozvati implicitno (npr.
automatski kod ulaza u novi TF, koji dijeli data controle s TF koji ga je pozvao) ili eksplicitno, programski.
Model savepoint se moze primijeniti sve dok commit ili rollback operacija ne kompletira transakciju.

Jos vaznija (i sloZzenija) mogucnost od Save For Later, je upravljanje aplikacijskim modulima (AM) na
model sloju. Za te potrebe koriste se Application Module Pools i Connection Pools (pricuve AM instanci,
priGuve konekcija).

Application module pool (AM pool) je kolekcija AM instanci iste vrste (tj. iste AM definicije). AM pool
omogucéava da veéi broj korisnika moze (kvazi) istovremeno raditi na manjem broju AM instanci, time
Stedec¢i memoriju i procesne moguénosti aplikacijskog servera (ili klijenta - AM pool, kao i cijeli ADF BC,
moze raditi i na klijentu, u klijent-server arhitekturi).

AM instanca u poolu moZze biti u jednom od tri stanja:

- bezuvjetno slobodna za koristenje (ili nereferencirana), bilo kom korisniku;

- slobodna za koristenje, ali referencirana na aplikacijsku sesiju koja ju je prethodno koristila i koja
(aplikacijska sesija) joS nije zavrSila; u ovom slu¢aju AM instanca moZe se ipak predati drugom
korisniku, ovisno o tzv. AM State Management Release Levelu, pri E¢emu ée standardno doci do tzv.
pasivizacije (a kasnije aktivacije) AM instance, kako ¢e kasnije biti prikazano;

- zauzeta — neki korisnik (odnosno njegova Java dretva na aplikacijskom serveru) trenutacno koristi tu
AM instancu.

Osim AM poola, postoji i connection pool. Postoje dvije vrste connection poolova, koje se koriste u
ovisnosti o tome da li se konekcije konfiguriraju kao JDBC URL konekcije, ili JNDI name for a data source
konekcije. Ako se koriste JDBC URL konekcije, samo tada se koristi ADF connection pool (u nastavku se
pretpostavlja da se koriste samo JDBC URL konekcije). Osnovno pravilo za ADF connection pool je: po
jedan connection pool (dakle, skup konekcija, a ne jedna konekcija) se kreira za svaki par <JDBCURL,
Username> na svakom JVM-u (aplikacija moze raditi na viSe JVM instanci), pri ¢emu konekciju zahtijeva
root AM instanca (ugnijeZdene AM instance koriste istu konekciju kao njihova root AM instanca).

Kako je prethodno spomenuto, postoje AM State Management Release Leveli, koji se (opcenito, ili
za odredenu AM instancu) mogu birati deklarativno ili programski. Postoje tri mogucnosti:

- Managed release level: on se podrazumijeva (default); ADF pokusSava dodijeliti istu AM instancu
odredenoj aplikacijskoj sesiji, dok to moze; kad ne moze, doci ¢e do pasivizacije AM instance, Cime
se sprema aplikacijsko stanje, a kasnije do aktivacije (u nastavku se ti procesi detaljnije prikazuju);

- Unmanaged release level: nikakvo stanje se ne sprema izmedu vise HTTP request-response parova
iste aplikacijske sesije; to je potpuno stateless ponaSanje;

- Reserved release level: to je 1:1 veza izmedu AM instance i aplikacijske sesije (preko data controle);
to je potpuno stateful ponasanje, koje se ne preporucuje kod web aplikacija, osim kad zatreba.

53

Slika 3.19. prikazuje osnovnu arhitekturu za AM state management. Na slici su prikazane dvije
aplikacijske sesije, koje se odvijaju (svaka) kroz tri HTTP request-response para. Postoje dvije instance
aplikacijskog servera (zbog vecée raspolozivosti), od kojih svaka ima svoje AM poolove. Aplikacijski
serveri (. ADF runtime) spremaju (nakon svakog request-response para, ili samo kad dode do potrebe
za pasivizacijom) stanje AM instance u XML, a taj XML sprema se u BLOB polje odredene tablice u bazi
(opcionalno se mozZe spremati i u datoteku na serveru).

ADF Session Cookie

] I_)
| i
E e Reguest + — !
-— 1
oo | Response — — O | Or H
| iPod Nano [1 Q Request+ —» g :
|_Car Adapter | 1|~ Recponse — o i
)

Checkout (A) Request+ —sf 2 AM Pool [+ State

[f+— Responze — tanagement
Schema

Server Cluster

]
i
i
)
or Farm ;
[r
E Reguest+ —» :
ansns [@— Response — B ses |
]
[Shiekz _[1)(Z) Recuest+ —» E R
é Cona 1z 1102 pocponee — 5 :-
]
Checkout Request+ —»f P /
+— Response — AM Pool 1!
- i
i _

Slika 3.19. Osnovna arhitektura za AM state management; Izvor [16]

Prikazimo ukratko $to se deSava kod pasivizacije i aktivacije AM instance, a to se deSava onda kada
se za AM koristi Managed release level (default):

- kod prvog HTTP request-response para nove aplikacijske sesije, aplikacijskoj sesiji dodjeljuje se neka
nereferencirana (pretpostavimo da takva postoji) AM instanca iz AM poola;

- na kraju HTTP requesta, ta se AM instanca vraca u AM pool, ali sada kao referencirana (od strane
data controla, koji je vezan za aplikacijsku sesiju); na taj nacin ¢uvaju se u memoriji npr. svi EO i VO
cachevi, kursori baze i dr. za aplikacijsku sesiju, $to je svakako brZze nego da se oni pune svaki put
kod novog HTTP request-response para iste aplikacijske sesije; treba napomenuti da se uobi¢ajeno
(default) €uva i veza izmedu AM instance i konekcije (iz connection poola); dok god ne dode do
pasivizacije, aplikacija se ponasa kao prava stetefull aplikacija;

- kod sljiede¢eg HTTP requesta, aplikacijskoj sesiji dodjeljuje se "njena" AM instanca, Cime se
uobicajeno (default) dodjeljuje i ista konekcija na bazu (Sto znadi i ista sesija na bazi);

- kada neka druga aplikacijska sesija zatrazi AM instancu iz AM poola, ali viSe nema slobodnih
instanci, ADF runtime gleda da li ima referenciranih AM instanci koje trenutno nisu zauzete
(rezervirane AM instance se nikada ne diraju); ako postoji referencirana i nezauzeta AM instanca,
njeno stanje se prvo pasivira u XML oblik (XML se, kako je ve¢ re€eno, standardno sprema u BLOB
polje tablice na bazi, ali moZe i u datoteku); AM instanca se onda "isprazni" i preda drugoj
aplikacijskoj sesiji na koristenje;

- kod sljedeceg HTTP requesta od strane prve aplikacijske sesije, ADF runtime joj (kako je prethodno
ve¢ prikazano) trazi nereferenciranu AM instancu (ako takva postoiji), ili radi postupak pasivizacije nad
AM instancom koja je referencirana (ali nezauzeta) od strane druge aplikacijske sesije; nakon toga
izvodi se postupak aktivacije, tj. podaci koji su spremljeni u XML (kod pasivizacije) sada sluze za
punjenje "prazne" AM instance.

Ukoliko se desi da neki zahtjev ne moze biti zadovoljen (npr. nema nezauzetih instanci, ili su sve
instance u rezerviranom modu), a AM pool je dostignuo maksimum, aplikacijska sesija se prekida.

54

Treba napomenuti da do pasivizacije mozZe doéi jo§ u dva sluCaja. Jedan je implicitan, kada
aplikacijskoj sesiji istekne vrijeme (timeout). Drugi je slu¢aj kada se parametar jbo.dofailover postavi na
true (default je false), pa se pasivizacija radi svaki put (za potrebe visoke raspolozivosti), tj. na kraju
svakog HTTP requesta, a ne samo onda kada AM instancu treba dati drugoj aplikacijskoj sesiji.

Kod pasivizacije se spremaju dvije vrste podataka - transakcijski i ne-transakcijski podaci.
Transakcijski podaci su podaci o novim, mijenjanim i brisanim redovima iz EO cacheva koji pripadaju root
AM instanci te aplikacijske sesije (za mijenjane retke ¢uvaju se i stare i nove vrijednosti).

Ne-transakcijski podaci su sljedeci, za svaki VO (bez obzira da li je VO kreiran staticki ili dinamicki):

- indikator tekuceg retka, te novi redovi i njihove pozicije;

- ViewCriteria i odgovarajuéi parametri;

- flag koji pokazuije da li je row set bio izvrsen;

- Range start i Range size, Acces mode, Fetch mode i Fetch size;

- bilo koji drugi VO podaci (napomena: i tranzijentni VO podaci se mogu snimiti, ako je tako odabrano
na VO tranzijentnim atributima za vrijeme dizajna);

- SELECT, FROM , WHERE, ORDER BY klauzule koje su kreirane ili mijenjane dinamicki.

Kako je ve¢ re€eno, kod pasivizacije se stvara XML datoteka, koja se standardno (default) sprema u
BLOB polje odredene tablice na bazi. Parametrom jbo.passivationstore moze se birati da li se Zeli
spremati u bazu ili datoteku, a vrijednosti parametra su database ili file (to se moze mijenjati i
programski). Ako se XML sprema u bazu, tablica za spremanje zove se PS_TXN, a nalazi se u shemi
(baze) koja je specificirana parametrom jbo.server.internal_connection. Kod pasivizacije, koristi se
sekvenca na bazi PS_TXN_SEQ za kreiranje ID-a retka te tablice. Prethodni redak (ako postoji) iste
aplikacijske sesije se briSe. Ako se desi neka greska, brisanje se moze raditi i ru¢no, kroz odgovarajuéi
PL/SQL paket BC4J_CLEANUP.

Ponekad je potrebno eksplicitno (programski) pasivirati neke podatke koje standardan ADF proces
ne pasivira. Proces pasivizacije tih korisni¢ki-definiranih podataka opisan je u Oracle ADF priru¢nicima
[16]i[17] (za ADF 11g i ADF 12c), ali i kao jedan "recept" u "kuharici" [4].

Kako se naglaSava u [16] i [17], vrlo je vaZno testirati aplikaciju tako da se parametar
jbo.ampool.doampooling (privremeno) postavi na false (default je true). Naime, kada imamo malo
korisnika (npr. kod testiranja) moze se desiti da nam se uopce nece desiti pasivizacija, pa ¢e nam bez
problema proéi situacije kada u ne-zadnjem HTTP request-response paru koristimo globalne varijable iz
paketa na bazi, ili radimo postiranje na bazu, ili pozivamo procedure na bazi koje rade DML. Buduéi da
nije doslo do pasivizacije, a AM instanca standardno ima vezanu konekciju (pa onda i sesiju) na bazu,
aplikacija nam se ponasa kao prava stateful aplikacija. Medutim, ¢im prvi put (najéesce je to u produkciji)
dode do pasivizacije, vidjet ¢emo da se u takvim sluajevima izgube vrijednosti pakirane varijable ili DML
izmjene na bazi, zato jer nova AM instanca (nakon aktivacije), u pravilu dobije novu konekciju (pa onda i
sesiju) na bazi. Naravno, pasivizacija se deSava samo kod Managed release levela (default), a kod
Reserved ne dolazi do pasivizacije, niti do tih (moguéih) problema. Zato je pozeljno u takvim slu€ajevima
odabrati Reserved release level, ali samo za odabrane AM, a mozZe se programski odrediti da AM bude
Reserved samo odredeno vrijeme, dok je to zaista potrebno.

Napomenimo da postoji literatura, npr. [11], u kojoj se mogu naci i detaljniji prikazi (npr. kao na slici
3.20.) od onih u Oracle priru¢nicima (koji imaju skoro 2000 stranica) [16] i [17] (za ADF 11g i ADF 12c).

Client Configuration | {PﬂnlManager ‘SessionCookie []
it 3 £ —
createRoatApplicationModule
findPool
areeiopool create /—l

1

1

ApplicationModylePool createSeskionCookie |

1

SessionCookie |

i

|
|
™ !
ApplicationModule
instantiateResource

createApplicationmodule

createRootApplicatiorModule

| I 1
I Assoicates Session N
ApplicationModule sttt Aquired database connection
Starts applicaton mode 2 ycle |

ApplicationModule |
|

ApplicationModule

Slika 3.20. Sto se zbiva kada (novi) klijent zatrazi AM instancu iz AM poola; Izvor [11]

55

Za Application Module Pools i Connection Pools postoje (brojni) parametri, koji se mogu podeSavati i

kroz tab Pooling and Scalability na dijaloSkom prozoru Edit BC Configuration, kako prikazuje slika 3.21.

Edit Business Components Configuration E]

Business Component Configuration Name: ‘StoreSerwteAMlOEal |

| Application Module “ Pooling and Scalability ‘ Properties ‘

application Poal Connection Poal

Initial Pool Size ’_D‘I Initial Pool Size I—UT
Maximum Pool Size 4096}& Maximum Pool Size: ,Tgsi:
Referenced Pool Size ’—101; Minimum Available Size l—s‘é
Minimum Avalable Size [5] Magirnum Available Size ,—25‘3
Maximum Available Size ’—25}§ Idle Ingtance Timeout (s): ,—SDQE
Idie Instance Timeaut (s): ’Tm; Pool Polling Interval {s): ,—Eﬂﬂ‘i
Pool Polling Interval (s): ’TD:E

[Failover Transaction State Upon Managed Release

[] Discannect Application Module Lpon Release

Suppart Dynamic JDBC Credentials

Reset Non-Transactional State Upon Unmanaged Release

Enable Application Madule Pocling

‘ Reset |

[hep | ok

Cancel ‘

Slika 3.21. Application Module Pools i Connection Pools parametri; Izvor [16]

U nastavku se kratko prikazuju neki parametri (Cetiri od sedam) vezani za ponaSanje AM poola:

Failover Transaction State Upon Managed Release (jbo.dofailover):

podrazumijevana vrijednost (default) je false; kada se postavi na true, tada se pasivizacija deSava
svaki put nakon zavrSetka HTTP zahtjeva, tj. svaki put kada se AM instanca vra¢a u AM pool; default
vrijednost ima prednost brZzeg rada (do pasivizacije, pa onda i aktivacije, dolazi puno rjede), a ne-
default se koristi za povecanje raspolozivosti (high availability);

Row-Level Locking Behavior Upon Release (jbo.locking.mode):
podrazumijevana vrijednost je optimistic, a moze biti i pesimistic i optupdate (kako je veé bilo govora
u potpoglaviju 3.2.);

Disconnect Application Module Upon Release (jbo.doconnectionpooling):

kako navodi priru¢nik [16], ime jbo.doconnectionpooling je zbunjujuée, a pravo znaenje parametra je
upravo Disconnect Application Module Upon Release; podrazumijevana vrijednost je false, Sto znadi
da ¢e AM instanca, nakon vra¢anja u AM pool, zadrZati konekciju (pa time i sesiju) baze; default
vrijednost donosi bolje performanse, a omogucava da se sacuvaju vrijednosti na bazi (globalne
varijable u paketu, rezultati DML naredbi) koje je napravio prethodni HTTP request-response par (iste
aplikacijske sesije), a koji (HTTP par) nije dao commit (naravno, kod pasivizacije se ta veza gubi);

Enable Application Module Pooling (jbo.ampool.doampooling):
kako je ve¢ prije reCeno, podrazumijevana vrijednost je true, a pozeljno ju je postaviti na false kod
testiranja aplikacije.

U nastavku se kratko prikazuju parametri vezani za veli¢inu AM poola:

Initial Pool Size (jbo.ampool.initpoolsize):

broj AM instanci koje se kreiraju kod inicijalizacije AM poola; podrazumijevana vrijednost je 0;
priruénik [16] preporuCuje da se stavi 10% viSe od oc€ekivanog broja AM instanci potrebnih da
zadovolje sve korisnike koji rade u isto vrijeme (to ne znali da mora biti 10% viSe od broja korisnika
koji rade u isto vrijeme);

Maximum Pool Size (jbo.ampool.maxpoolsize):
maksimalni broj AM instanci koje ¢e AM pool kreirati; podrazumijevana vrijednost je 4096;

Referenced Pool Size (jbo.recyclethreshold):

maksimalni broj AM instanci koje ¢e ADF runtime pokusSati saCuvati za aplikacijsku sesiju koja ih je
prethodno koristila; trebao bi biti manji nego Maximum Pool Size; podrazumijevana vrijednost je 10.

56

U nastavku se kratko prikazuju parametri vezani za Cid¢enje (cleanup) AM poola:

- Minimum Available Size (jbo.ampool.minavailablesize):
nakon Sto se kod €iSéenja eliminiraju sve AM instance koje su neaktivhe duZe vrijeme no $to je
definirano parametrom Idle Instance Timeout, proces €iS¢enja neée eliminirati dodatne AM instance
ispod tog broja; podrazumijevana vrijednost je 5;

- Maximum Available Size (jbo.ampool.maxavailablesize):
idealni maksimalni broj AM instanci u AM poolu; nakon $to se kod ¢iSéenja eliminiraju sve AM
instance koje su neaktivne duze vriieme no Sto je definirano parametrom Idle Instance Timeout
(parametar je naveden u nastavku), proces ¢iS¢enja ¢e eliminirati i druge AM instance, dok ne dode
do tog broja; podrazumijevana vrijednost je 25;

- Idle Instance Timeout (jbo.ampool.maxinactiveage):
vrijeme (u milisekundama) koliko AM instanca moZe biti neaktivna; kad se premasi to vrijeme,
instanca je spremna za eliminiranje iz AM poola; podrazumijevana vrijednost je 600 000 (10 minuta);

- Pool Polling Interval (jpo.ampool.monitorsleepinterval):
vrijeme (u milisekundama) izmedu dva procesa CiS¢enja AM poola; podrazumijevana vrijednost je
600 000 (10 minuta);

- Maximum Instance Time to Live (joo.ampool.timetolive):
vrijeme (u milisekundama) nakon kojeg ¢e se nekoriStena AM instanca odrediti kao kandidat za
eliminiranje iz AM poola, neovisno da li ¢e se time broj AM instanci spustiti ispod Minimum Available
Size; podrazumijevana vrijednost je 3 600 000 (1 sat).

Kako je ve¢ prije re€eno, kod testiranja aplikacije pozZeljno je parametar Enable Application Module
postaviti na false, kako bi se testiralo Sto se deSava kod pasivizacije. Medutim, kako kazu autori u
prezentaciji "Worst Practices for Developing an ADF Application" (OOW 2103), to nije dovoljno. Treba
testirati i s tim parametrom postavljenim na true (default), ali sa parametrima Initial Pool Size, Maximum
Pool Size, Referenced Pool Size, Minimum Avaliable Size i Maximum avaliable size postavljenim na 1,
kako bi se testiralo nesto sasvim suprotno - ne gubljenje podataka (losing state), veé curenje podataka
(leaking state), kad neki korisnik vidi podatke iz sesije drugog korisnika.

U nastavku se kratko prikazuju parametri vezani za connection pool:

- Initial Pool Size (jbo.initpoolsize):
broj JDBC konekcija koje se kreiraju kod inicijalizacije connection poola; podrazumijevana vrijednost
je0;

- Maximum Pool Size (jbo.maxpoolsize):
maksimalni broj JDBC konekcija koje ¢e connection pool kreirati; podrazumijevana vrijednost je 4096;

- Minimum Available Size (jbo.poolminavailablesize)
nakon $to se kod ¢iSéenja eliminiraju sve JDBC konekcije koje su neaktivnhe duze vrijeme no sto je
definirano parametrom Idle Instance Timeout, proces CiSéenja nece eliminirati dodatne JDBC
konekcije ispod tog broja; podrazumijevana vrijednost je 5;

- Maximum Available Size (jbo.poolmaxavailablesize)
idealni maksimalni broj JDBC konekcija u connection poolu; nakon $to se kod €iS¢enja eliminiraju sve
JDBC konekcije koje su neaktivne duze vrijeme no $to je definirano parametrom Idle Instance
Timeout (parametar je naveden u nastavku), proces €iSéenja ¢e eliminirati i druge JDBC konekcije,
dok ne dode do tog broja; podrazumijevana vrijednost je 25;

- Idle Instance Timeout (jbo.poolmaxinactiveage):
vrijeme (u milisekundama) nakon kojeg neaktivha JDBC konekcija postaje kandidat za eliminiranje iz
connection poola; podrazumijevana vrijednost je 600 000 (10 minuta);

- Pool Polling Interval (jbo.poolmonitorsleepinterval):

vrijeme (u milisekundama) izmedu dva procesa CciSéenja connection poola; podrazumijevana
vrijednost je 600 000 (10 minuta).

57

3.7. Task Flow i transakcije

Jedan od najvaznijih dodataka u JDeveloperu / ADF-u 11g, u odnosu na JDeveloper / ADF 10g, bila
je pojava Task Flows (ADF TF, ili samo TF), koji spadaju u ADF Controller sloj. TF omogucavaju izradu
web aplikacija koje su modularnije nego prije, a Ul dijelovi aplikacije mogu se viSestruko koristiti puno
lakSe nego prije. Postoje dvije vrste TF: unbounded TF i bounded TF. TF se sastoje od niza aktivnosti,
koje nisu samo aktivnosti prikaza stranice (View Activity), nego i sljedeée aktivnosti: Method, Control Flow
Router (usmijerivac), Task Flow Call (poziv drugog TF), Parent Action, Task Flow Return (zadnje dvije
aktivnosti ima samo bounded TF).

Unbounded TF moze imati vie ulaznih i vise izlaznih todaka. Cesto se koristi za definiranje menija.
Bounded TF ima samo jednu ulaznu to¢ku, a moze imati viSe izlaznih toCaka. Bounded TF moze kod
ulaza primati parametre od pozivatelja, te vra¢ati povratne vrijednosti (return values) kod izlaska. Moze se
temeljiti na kompletnim JSF stranicama ili fragmentima stranice (page fragments). Sa stanovista
transakcija, najvaznije je Sto za bounded TF postoji razraden sustav deklarativhog ili programskog
upravljanja transakcijama (na Controller sloju).

Kada se TF koriste zajedno s ADF BC donjim slojem (kako se najéeS¢e radi), tada BC sloj, konkretno
root AM, posjeduje konekciju na bazu, transakciju, te podatke (kolekcije) i metode — tj. posjeduje (jednom
rije€ju) servise. Te servise BC sloj predaje View i Controller slojevima preko apstrakcija zvanih Data
Control. ADF Controller i TF (kao dio Controllera) mogu viSe data controla grupirati zajedno,
omogucavajuci time da se nad tom grupom data controla napravi jedan "aplikacijski" commit ili rollback
(napomena: to nije SQL COMMIT / ROLLBACK naredba na bazi, ve¢ nesto slicno kao COMMIT_FORM /
CLEAR_FORM built-in naredba u Formsima; COMMIT / ROLLBACK naredba na bazi samo je mali dio
tog procesiranja). lako BC servisi i dalje posjeduju transakciju i izvrSavaju svoj vlastiti djelomiéni commit il
rollback, ADF Controller definira granice ukupne transakcije (pocetak i kraj).

Svaki TF moze imati svoj vlastiti tzv. Data Control Frame. Unbounded TF uvijek ima svoj vlastiti data
control frame. Bounded TF moze imati svoj vlastiti data control frame, ili ga dijeliti s TF-pozivateljem, a to
se definira na pozvanom bounded TF (a ne na TF-pozivatelju), kroz stranicu Overview -> granu Behavior
-> dio Transaction -> Share data controls with calling task flow. Ako se odabere, onda se u odgovarajuéu
XML datoteku zapisuje vrijednost Shared za svojstvo data-control-scope, a inae se zapisuje vrijednost
Isolated.

Kada bounded TF na izlazu izvr§ava TF return aktivnost, provjerava se da li je taj TF konfiguriran za
commit tekuée transakcije (to se odreduje drugim svojstvom, o emu ¢e biti govora kasnije). Ako jeste,
ADF runtime trazi njegov data control frame — bilo njegov vlastiti, bilo onaj koji dijeli s (nekim) TF-
pozivateljem. Data control frame tada delegira commit poziv rukovatelju transakcije (transaction handler
instance) na daljnje procesiranje. Rukovatelj transakcije iterira kroz sve data controle koje postoje u data
control frameu i poziva naredbu commitTransaction na svakom vrSnom (root) data controlu. Data controle
dalje delegiraju commit poziv transakcijskim objektima (transaction object) koji su povezani za AM.
Napomena: ako TF-dijete participira u transakciji koju je startao pozivatelj, ili je AM ugnijezden u drugi
AM, oni dijele zajedni¢ki transakcijski objekt. Commit poziv, koji je bio delegiran transakcijskom objektu,
sada ¢e napraviti commit svih promjena u svim AM-ovima koji su vezani za taj transakcijski objekt.
Navedena zbivanja prikazuje slika 3.22.

o

| .
i commit I
Data Control = Transaction
I commit
Commit Call on Data Control Frame :
: Application Module

Slika 3.22. Zbivanja kod "aplikacijskog" commita u bounded task flowu; Izvor [11]

58

Slika 3.23. prikazuje jedan primjer koji objaSnjava kada se kreiraju, odnosno kada se ne kreiraju data

control frameovi. Prvo unbounded TF UTF1 kreira novi data control frame #1, koji moze dijeliti s drugim
TF-ovima koje poziva, a koji imaju definirano data-control-scope = shared. Na slici su to bounded TF
BTF2, BTF3 i BTF4. Za razliku od njih, BTF5 ima definirano data-control-scope = isolated, tj. kreira svoj
vlastiti data control frame #2. Njega dijeli BTF6, dok BTF7 opet kreira svoj vlastiti data control frame #3,
kojega dijeli i BTF8.

Slika 3.23. Kada se (ne) kreiraju data control frameovi - primjer; lzvor [9]

Osim navedenog svojstva Share data controls with calling task flow (kako piSe na ekranu), odnosno

data-control-scope (kako piSe u XML datoteci), bounded TF ima jo$ jedno vazno svojstvo. Isto kao
prethodno svojstvo, moze se odabrati kroz stranicu Overview -> granu Behavior -> dio Transaction, ili
kroz XML svojstvo Transaction. To svojstvo ima Cetiri vrijednosti, koje se malo drugacije zovu na ekranu i
u XML datoteci. Vrijednosti na ekranu bolje objasnjavaju o ¢emu je rije€ (nego one u XML datoteci):

"Always Begin New Transaction" vrijednost odreduje da BTF starta novu transakciju. Uobi€ajeno se
ova vrijednost koristi zajedno sa isolated data control scope. Naime, ako se "Always Begin New
Transaction" koristi sa shared data control scope, tada se data controle prethodnog TF koriste i u
teku¢em TF, i tada se, ako prethodni TF (odnosno njegove data controle) ima otvorenu transakciju (tj.
isTransactionDirty() == true), kod izvodenja javlja greSka "ADFC-00020 + Task flow '<name>'
requires a new transaction, but a transaction is already open on the frame". BTF koji ima "Always
Begin New Transaction" mora na kraju pozivati TF flow return activity, koja poziva commit() ili
rollback(). Ti pozivi commit() ili rollback() operacija nad data control frame, zapravo pozivaju commit ili
rollback na svim data controlama koje su povezane za taj frame. Drugacije je ponaSanje kada se
commit ili rollback operacije pozivaju iz Data Control Palette — one rade commit ili rollback samo na
odredenoj data controli, a ne nad svim data controlama koje su povezane za frame.

"Always Use Existing Transaction" vrijednost odreduje da pozvani BTF dijeli transakciju sa
pozivaju¢im BTF. Ako se kod izvodenja desi da pozivajuc¢i BTF nije imao transakciju, pozvani BTF
javlja greSku "ADFC-00006: Existing transaction is required when calling task flow <task flow name>".
Inace, BTF sa ovom opcijom ne moZe se tokom dizajna vezati za isolated data control scope.
Takoder, takav BTF ne moZe tokom dizajna kod izlaska raditi commit ili rollback (JDeveloper nas
spreCava u tome). A ako se commit ili rollback i pokrenu programski, tokom izvodenja ée se te
operacije jednostavno zanemariti (nece se desiti greska, ali se te operacije nece izvrsiti).

"Use Existing Transaction if Possible" je najfleksibilnija od svih opcija. Ona je kombinacija "Always
Begin New Transaction" i "Always Use Existing Transaction" opcija. Ako se "Use Existing Transaction
if Possible" koristi sa isolated data control scope, ponasa se na isti nac¢in kao "Always Begin New
Transaction" sa isolated data control scope. Ako se "Use Existing Transaction if Possible" koristi sa
shared data control scope, njeno pona$anje ovisi o tome da li je BTF-pozivatelj otvorio transakciju.
Ako je BTF-pozivatelj otvorio transakciju, onda je ponaSanje isto kao "Always Use Existing
Transaction" sa shared data control scope. Ako BTF-pozivatelj nije otvorio transakciju, onda je
ponadanje kao "Always Begin New Transaction" sa shared data controls scope. Ovu opciju
odabiremo kad nismo sigurni kako ¢e se BTF koristiti.

"<No Controller Transaction>" je najkompleksnija za razumijevanje.

59

"<No Controller Transaction>" opcija ima sljedece osobine:

- ne starta novu transakciju;

- ne provjerava i ne traZi da je transakcija otvorena na data control frame;

- na kraju TF ne poziva finalizaciju za data control frame transakciju, tj. ne poziva DataControlFrame
commit() ili rollback() operacije.

No, prije spominjana pravila ipak vrijede i kod ove opcije. Ako se "<No Controller Transaction>"
opcija kombinira sa isolated data control scope, ipak ¢ée se instancirati novi data control frame i nove data
controle. Ako se kombinira sa shared data control scope, dijelit ¢e data control frame i data controle iz
prethodnog TF. Sa "<No Controller Transaction>" imamo vecéu slobodu programske (ne-deklarativne)
intervencije, ali sa slobodom dolazi i odgovornost za ispravno ponasanje programskog koda.

Kako kaze autor u [9], postoje 64 teoretske kombinacije, jer 4 (opcije za kontrolu transakcije) puta 2
(opcije za dijeljenje data control frame) daje 8 kombinacija, ali onda imamo 8 * 8 kombinacija za
pozivajuci TF i pozvani TF zajedno. Istina, neke od tih kombinacija ipak nisu teoretski moguce, jer ih
spreCava JDeveloper tokom razvoja (npr. "Always Use Existing Transaction" i isolated data control
scope).

Zato je u [9] prikazao Cetiri "Ciste" kombinacije (koje ¢e biti kratko prikazane u nastavku):

- potpuno odvojene transakcije: dva BTF su potpuno izolirana, tako da svaki za sebe radi commit ili
rollback;

- garantirano povezane transakcije: ili u potpunosti dijele transakciju i podatke, ili se javlja greska;

- fleksibilni rezim transakcija: pozvani BTF ¢e dijeliti transakciju sa BTF-pozivateljem, ako je moguce, a
inace Ce kreirati vlastitu transakciju;

- "<No Controller Transaction>" opcija: autor kaZe da ova opcija, koristena sa prethodne tri opcije,
stvara najkompleksniju situaciju, i da bi ju trebalo koristiti sa duznom paznjom.

U nastavku su prikazane prva, druga i Cetvrta varijanta (slike 3.24. - 3.26.). Treca varijanta bila bi
kombinacija prve i druge. U sva tri slu¢aja UTF poziva BTF1, koji nakon toga poziva BTF2.

Data Control Frame #0 Data Control Frame #1 Diata Control Frame #2

Unbounded Task Flow Bounded Task Flow #1
Isolated Data Control Scope
Always Begin New
Transaction

Bounded Task Flow #2
Isalated Data Control Scope
Always Begin New
Transaction

g
-
=

Task Flow Transaction B

Task Flow Transaction A
g

Transaction

Dirty
[
a

j—
4 o
E =
n

Transaction
Dirty
ES
n
-
=

X=30 L. Task Flow Return
¥=20 |~ | Commit

Task Flow Return
Commit

4

[

=1
M

Slika 3.24. Potpuno odvojene transakcije izmedu BTF1 i BTF2; Izvor [9]

60

Data Control Frame #0

Data Control Frame #1

Unbounded Task Flow

Bounded Task Flow #1
Isolated Data Control Scope
Always Begin New

Bounded Task Flow #2
Shared Data Control Scope
Abways Use Existing

Transaction Transaction

g

Task Flow Transaction A

Transaction Dirty

Task Flow Return
Commit
¥=30 Task Flow Return —
Y =40 l Commit
X=30
=40

Slika 3.25. Garantirano povezane transakcije — BTF2 koristi istu transakciju kao BTF1; Izvor [9]

Prethodne dvije varijante su bile relativno jednostavne za razumijevanje. Sljedeca varijanta (na slici
3.26.) je sloZenija. Sli¢i na prethodnu varijantu, ali ovdje BTF1 ima "<No Controller Transaction>" opciju.
lako rezultat izgleda kao u prethodnoj varijanti, treba napomenuti da ovdje commit radi BTF2, a ne BTF1.
U slu€aju kada bi BTF1 radio neke izmjene nakon poziva BTF2, to bi se moralo programirati koristenjem
commit ili rollback operacija iz Data Control Palette, jer BTF1 nema TF return activity.

Data Control Frame #0 Data Control Frame #1

Unbounded Task Flow

Bounded Task Flow #1
Isolated Data Control Scope
<No Controller Transaction>

Call

F > X=10
Y=20

Task Flow Transaction A

Bounded Task Flow #2
Shared Data Control Scope
Use Existing Transaction if

Passible

61

I 3 | I 3 X=30
call ¥=20
Update Y = 40
=
g
2 E A=30
=] Y =40
=
=
X=30 |- Task Flow Returni
v=a0 | 1 Commit
Task Flow Return
Commit
X=30
¥ =40

Slika 3.26. Slozenija varijanta — BTF1 ima "<No Controller Transaction>" opciju; Izvor [9]

ZAKLJUCAK
Ispravno rukovanje transakcijama u bazama podataka vrlo je bitno za poslovne aplikacije.

NaZalost, greSke u rukovanju transakcijama obi¢no se kod testiranja teZze uoce, jer Eesto ovise o
spletu dogadaja, broju korisnika koji istovremeno rade i sl. NajéeSce se puno lak8e uoce npr. greSke u
korisnickom sucelju (Sto ne znadi da su te greSke nevazne, ili da ih je uvijek lako ispraviti). GreSke u
transakcijama mogu uzrokovati npr.:

- pogredne podatke; primjer: derivirani iznos u zaglavlju dokumenta nije izraunat u istoj transakciji
u kojoj su mijenjani podaci iz stavaka dokumenta, na temelju kojih se taj iznos racuna;
zanemarimo pitanje da li (ni)je dobro imati derivirani iznos na razini zaglavlja dokumenta;

- gubljenje dokumenata; primjer: raCun je Stampan, COMMIT slijedi iza Stampanja, ali transakcija
se prekinula i u bazi nema dokumenta, a Stampan je;

- pojavu "rupa" u rednim brojevima dokumenata; primjer: za punjenje brojeva dokumenata koristi
se sekvenca sa baze, $to ne garantira da nece biti rupa ...

Kako ¢esto naglaSava Tom Kyte (izmedu ostalog, i izvrsnoj knjizi [7]), Cesto aplikacijski programeri
gledaju na DBMS sustav kao na "crnu kutiju". Nemaju vremena (ili motivacije) za dublje upoznavanje s
mogucnostima konkretnog DBMS sustava, drze da su svi DBMS sustavi isti (ili vrlo sli¢ni), Zele pisati
genericki kod (neovisan o DBMS-u) itd.

Naravno, postoje sluCajevi kada je pisanje generi¢kog koda (vrlo) opravdano, npr. kada je rije€ o
softveru koji zaista mora raditi na ve¢em broju razliitih DBMS sustava. No, Cesto se potreba za
neovisnoS¢u od DBMS sustava postavlja kao zahtjev iako se u stvarnosti radi samo s jednom vrstom
DBMS sustava. A, kako Tom Kyte nagladava, razliiti DBMS sustavi priliéno se razlikuju bas po
upravljanju transakcijama, zaklju€avanju redaka i sl.

Npr. do prije nekoliko godina, Oracle je bio jedan od rijetkih "velikin" DBMS sustava koji je Citateljima
podataka dozvoljavao Citanje podataka, bez obzira §to ih je neki pisac (DML naredbom) zaklju¢ao (u
Oracle bazi Citatelji ne zakljuGavaju retke drugim Cditateljima i piscima, a pisci ne zaklju¢avaju retke
Citateljima).

Nije onda ¢udno da su se u drugim DBMS sustavima preporucivale (pre)kratke transakcije, ili to $to
JDBC sustav ima za parametar AutoCommit podrazumijevanu (default) vrijednost AutoCommit = true ($to
oznaCava da svaka uspjedna SQL naredba na kraju radi implicitni COMMIT), pa se u JDBC literaturi kao
jedna od najvaznijih stvari za ispravno rukovanje transakcijama navodi to da na po€etku programskog
koda treba staviti:

connection.setAutoCommit(false);

Aplikacijski programeri ponekad ne nalaze vremena za upoznavanje problematike rukovanja
transakcijama niti unutar alata s kojima rade, npr. Forms i ADF alata, ve¢ se pouzdaju u podrazumijevano
(default) ponasanje, ponekad i ne znajuci kakvo je to ponasanje.

Istina, Cesto se transakcije i u bazi (npr. Oracle), i u alatima (npr. Forms i ADF), mogu koristiti na
"standardan" nacin, i Cesto je tako i najbolje. No u praksi se neminovno javljaju sluajevi kada treba
posegnuti za nekim rjeSenjem koje nije "standardno”.

62

LITERATURA

1. Basham, B., Sierra, K., Bates, B. (2008): Head First Servlets and JSP (2. izdanje), O’'Reilly Media

2. Bernstein, P.A., Newcomer, E. (2009): Principles of transaction processing (2. izdanje),
Elsevier / Morgan Kaufmann Publishers

3. Date, C.J. (2004): An introduction to Database Systems (8. izdanje), Addison-Wesley
4. Haralabidis, N. (2012): Oracle JDeveloper 11gR2 Cookbook, Packt Publishing
5. Harris, T. (2010): Transactional Memory (2. izdanje), Morgan & Claypool

6. Herlihy, M., Shavit, N. (2012): The Art of Multiprocessor Programming (2. izdanje),
Elsevier / Morgan Kaufmann Publishers

7. Kyte, T. (2009): Expert Oracle Database Architecture, Apress

8. Mills, D., Koletzke, P., Roy-Faderman, A. (2010): Oracle JDeveloper 11g Handbook,
Oracle Press

9. Muir, C. (2012): Oracle ADF Task Flow Transaction Fundamentals,
tekst iz serije ADF Architecture Square, Oracle

10. Nimphius, F., Munsinger, K., (2010): Oracle Fusion Developer Guide, Oracle Press

11. Purushothaman, J., (2012): Oracle ADF Real World Developer's Guide, Packt Publishing

Oracle priruénici za bazu:

12. Oracle Database Advanced Application Developer's Guide 11g Release 2,
E17125-03, August 2010

13. Oracle Database Development Guide 12c Release 1, E17620-11, June 2013

Oracle priruénici za Forms:

14. Oracle Forms Services & Oracle Forms Developer 11g Technical Overview,
An Oracle White Paper, 2009.

15. Forms Services Deployment Guide 11g Release 2, E24477-03, November 2012

Oracle priruénici za ADF:

16. Fusion Developer's Guide for Oracle Application Development Framework 11g Release 2,
E16182-05, March 2013

17. Developing Fusion Web Applications with Oracle Application Development Framework 12c,
E23132-01, June 2013

63

