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Umjetna inteligencija (UI, engl. AI)
 Umjetna inteligencija (UI) se standardno dijeli na

simboličku (često se naziva logička UI ili GOFAI) i 
subsimboličku (često se naziva statistička UI).

 Danas su u centru pažnje (duboke) neuronske mreže, kao 
najvažniji dio subsimboličke UI, no u određenim aplikacijama 
(npr. DeepMind-ovi AlphaGeometry, AlphaFold, AlphaEvolve) 
izvrsne rezultate postiže spoj neuronskih mreža i simboličke 
UI, tzv. neuro-simbolička UI.

 Kauzalno zaključivanje (causal inference) smatra se važnim 
za postizanje naprednije UI, npr. tog mišljenja su "očevi" 
dubokih neuronskih mreža Yoshua Bengio i Yann LeCun 
(dobitnici Turingove nagrade 2018. godine).

 U kauzalno zaključivanje ovdje uključujemo i kauzalno 
učenje (causal learning), kod kojega se gradi kauzalni model, 
i kauzalno rezoniranje (causal reasoning), gdje se kauzalni 
model koristi zajedno s podacima za kauzalno rezoniranje.
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Umjetna inteligencija – kratka povijest
 Pojam 'umjetna inteligencija' prvi se put koristio 1956.

na konferenciji u Dartmouthu, ali prvi rad na području UI su još 
1943. napisali Walter Pitts i Waren McCulloch "A Logical 
Calculus of the ideas Imminent in Nervous Activity",
prvi matematički model neuronske mreže.

 Dakle, neuronske mreže su prethodile simboličkoj UI.
Međutim, neuronske mreže, kao i šira statistička UI,
bile su do prije desetak godina inferiornije od simboličke UI.

 Može se reći da postoje tri vala (engl. wave) umjetne 
inteligencije. U prvom valu je prevladavala simbolička UI, koja 
je vrlo dobra u rasuđivanju (Reasoning), ali ima dosta slabe 
sposobnosti opažanja (Perceiving), a vrlo je loša kod učenja 
(Learning) i stvaranja apstrakcija (Abstracting).

 Drugi val, korištenje statističke UI (i to naročito dubokih 
neuronskih mreža), doveo je do velikih poboljšanja kod 
percepcije i učenja, ali je jako pala sposobnost rasuđivanja.
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Umjetna inteligencija

 Radi se na trećem valu, spoju simboličke i statističke UI
u hibridnu UI, koja bi imala najbolje strane obje.
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Logika, matematika, statistika
- neka pitanja

 Koje su granice matematičke logike?

 Koje su granice (aksiomatizirane) matematičke teorije?

 Postoji li slučajnost, ili je to samo privid?

 Je li simbolička UI bolja od subsimboličke UI,
ili obrnuto,
ili je bolje da koristimo obje?
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Logika sudova (Propositional Logic)

 Operatori (veznici) logike sudova (račun/algebra sudova):

negacija (negation) ¬

disjunkcija (disjunction) konjunkcija (conjunction) 

kondicional (conditional) → bikondicional (bicondicional) 

eksluzivno ili (exclusive or) nili (nor) ↓ ni (nand) ↑

 Primjer formule logike sudova:
(p → q) (¬q → ¬p)

 Napomena: mala slova (npr. p, q) označavaju
atomarne (atomic) sudove ili atome.

 Jedna interpretacija (u prirodnom jeziku):
ako pada kiša (p), tada trava je mokra (q)
ekvivalentno je
ako trava nije mokra (¬q), tada ne pada kiša (¬p).
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Logika sudova (Propositional Logic)

 Logika sudova (za razliku od složenije logike prvog reda)
ima proceduru odlučivanja (engl. decision procedure),
tj. algoritam koji u konačnom vremenu vraća odgovor da li je 
formula valjana (ili da li je zadovoljiva).

 Jedna procedura odlučivanja je izrada tablice istinitosti 
(semantička tablica).

 Sljedeća tablica istinitosti pokazuje da je (prije prikazana)  
formula logike sudova (p → q) (¬q → ¬p) valjana:
validna (teorem), jer stupac ispod ima samo oznake T:
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Logika prvog reda
(First-Order Logic)

 Logika prvog reda (logika predikata, ili račun predikata)
je nadskup logike sudova, i dodaje joj sljedeće:
- predikate: n-arni predikat se interpretira
kao n-arna relacija nad određenom domenom
- varijable i konstante (iz određene domene),
koje čine argumente predikata
- univerzalni kvantifikator (universal quantifier)

(čita se "za svaki")
- egzistencijalni kvantifikator (existential quantifier)

(čita se "postoji").

 LPR s funkcijama dodaje još funkcije,
tako da argumenti u predikatima mogu biti i funkcije.

 Kod LPR, kvantifikatori se primjenjuju samo na varijable,
a ne npr. na predikate (to je logika drugog reda).
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Logika prvog reda
(First-Order Logic)

 Primjer jednostavne formule (ovaj primjer nema funkcije):
x p(a, x) čita se "za svaki x vrijedi p(a, x)"

(x je varijabla, p je dvomjesni predikat, a je konstanta).

 Jedna interpretacija, kod koje je formula istinita:
I1 = (N , {≤}, {0}) - domena je N, tj. skup prirodnih brojeva;
predikat p se zamjenjuje relacijom ≤, konstanta a s nulom,
pa za svaki x element od N vrijedi da 0 ≤ x.

 Jedna interpretacija, kod koje formula nije istinita:
I2 = (Z , {≤}, {0}) - domena je Z, tj. skup cijelih brojeva 
(negativni cijeli brojevi, nula i pozitivni cijeli brojevi);
predikat p se zamjenjuje relacijom ≤, konstanta a s nulom,
pa ne vrijedi za svaki x element od Z da 0 ≤ x
(ne vrijedi za negativne brojeve).

 LPR nema proceduru odlučivanja, ali je poluodlučiva 
(procedura odlučivanja može ne završiti).
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Kako se gradi matematička teorija
(aksiomatski sustav)

 Treba imati određeni broj nedefiniranih termina.

 Na temelju njih, prema utvrđenim pravilima definiranja, 
grade se definirani termini.

 Treba imati određeni broj aksioma.

 Na temelju njih, prema utvrđenim pravilima zaključivanja, 
izvode se teoremi.
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Obavezne ili (vrlo) poželjne osobine 
aksiomatskog sustava

 Mora biti konzistentan, tj. u njemu se ne može dokazati
i neka tvrdnja A i njena negacija.
Nekonzistentan aksiomatski sustav je bezvrijedan.

 Vrlo je poželjno da je (sintaksno) potpun, tj. da se unutar 
njega može dokazati ili opovrći bilo koja tvrdnja izrečena u 
terminima tog sustava. Nepotpuni sustav nije bezvrijedan.

 Vrlo poželjno je da je odlučiv, tj. da ima opću metodu  
kojom se može utvrditi (ne)valjanost svake tvrdnje izrečene 
u terminima tog sustava.

 Većinom je poželjno da je neredundantan, što znači da su 
aksiomi međusobno nezavisni.

 Često se smatra da je finitni aksiomatski sustav 
metamatematički elegantniji od sustava s (prebrojivo) 
beskonačnim brojem aksioma. Peanova aritmetika nije 
finitna, jer ima aksiom indukcije (koji je, zapravo,
shema aksioma - prebrojivo beskonačan skup aksioma).
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Neeuklidske geometrije - 5. Euklidov aksiom
 Najvažniji pokretač formalizacije aksiomatskih sustava bilo 

je uvođenje neeuklidskih geometrija, koje su nastale 
negacijom 5. Euklidovog aksioma o paralelama.

 Aksiom kaže (ne u izvornoj Euklidovoj interpretaciji) da se 
kroz točku koja se nalazi izvan pravca (u istoj ravnini)
može povući točno jedan paralelan pravac.
Dugo se smatralo da 5. aksiom zavisi od drugih.

 U 19. stoljeću stvoreni su aksiomatski sustavi
(Gauss, Lobačevski, Bolay, Riemann) u kojima je
5. aksiom zamijenjen aksiomom da se kroz točku ne može 
povući niti jedan paralelan pravac (eliptičke geometrije),
ili da se može povući beskonačno puno pravaca 
(hiperboličke geometrije).

 U tim se geometrijama više ne može "prirodno dokazivati". 
Ali, matematičari su tada ustvrdili da se geometrija može 
sagraditi na temelju aritmetike, i rekli:
ako je aritmetika konzistentna, onda je i geometrija. 
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Kurt Gödel i nepotpunost aritmetike

 1929. je (sa 23 godine!) dokazao (semantičku) 
potpunost predikatnog računa 1. reda. To nije lako, za 
razliku od daleko lakšeg problema dokazivanja potpunosti 
(ili konzistentnosti) računa sudova.

 1931. godine objavljen je njegov rad kojim je srušio 
nade Hilbertovog programa.

 Prvo, dokazao je (sintaksnu) nepotpunost 
aksiomatskog sustava aritmetike (ili bilo kog sustava 
sličnog njemu). Pritom se koristio "prevođenjem" 
metamatematičkih tvrdnji u aritmetičke tvrdnje.

 To znači da se ne može napraviti konačan ili prebrojivo 
beskonačan skup (konzistentnih) aksioma iz kojih će se 
moći dokazati sve aritmetičke istine –
formalizacija ima granice!
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Usporedba osobina
logike sudova, logike 1. reda i aritmetike

OdlučivaPotpunaPouzdana /
konzistentna

Logički sustav / 
matematička 
teorija

DADA (semantički)
(Post, 1921.)

DA (pouzdana)Logika sudova

NE
Churchov teorem
(Church, Turing, 
1936.)
= rješenje za
Hilbertov
Entscheidungs-
problem (1928.)

DA (semantički)
(Gödel, 1929.)

DA (pouzdana)Logika prvog reda

NE
Churchov teorem

NE (sintaktički)
(Gödel, 1931.)

DA (konzistentna)
(Gentzen, 1936., 
nefinitnim metodama);
NE može se 
dokazati unutar nje 
same (Gödel, 1931.)

Aritmetika
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Digresija –
četiri znanstvena šoka u 20. stoljeću

 Specijalna i opća teorija relativnosti.

 Kvantna mehanika. Čak niti sam Einstein nije prihvatio 
standardnu interpretaciju kvantne mehanike
(njegova izreka: "Bog se ne kocka!").
Opća teorija relativnosti i kvantna mehanika su
međusobno kontradiktorne - to znači da
najviše jedna (od njih dvije) može biti istinita.

 Gödelovi teoremi o nepotpunosti i nemogućnosti
finitnog dokazivanja konzistentnosti aritmetike.

 Teorija determinističkog kaosa -
nemjerljivo mala različita početna stanja dovode do 
značajno različitih ishoda nakon nekog vremena
(za razliku od stohastičkih sustava).
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Deterministički kaos

 Deterministički kaos je (relativno) nova paradigma za 
matematičko modeliranje svijeta. Prije su postojale dvije 
paradigme za matematičko modeliranje svijeta.

 Prva, starija, bila je rješavanje svega pomoću
matematičke analize, tj. pomoću diferencijalnih jednadžbi.
Druga se paradigma pojavila krajem 19.stoljeća, a to je  
statistička analiza, temeljena na teoriji vjerojatnosti.

 Kako bi se mogla opisati razlika između slučajnih procesa i 
determinističkog kaosa:

- neki sustav je slučajan (stohastički) ako nemjerljivo mala 
različita početna stanja (a ponekad i ista početna stanja) 
odmah dovode do značajno različitih ishoda

- neki sustav je deterministički kaotičan ako nemjerljivo mala 
različita početna stanja ne dovode odmah do značajno 
različitih ishoda, nego tek nakon nekog vremena.

ZS - Istra informatički inženjering
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Bifurkacijski dijagram
kod logističkog preslikavanja

Xn+1 = r * Xn * ( 1 – Xn) (r je neki broj između 0 i 4)
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Vjerojatnost kao proširena logika
(probabilističko zaključivanje)

– time se bavio još George Boole!
 Iz knjige Introduction to Artificial Intelligence (Ertel W.)

 "Klasični" modus ponens (pravilo zaključivanja):
(A, A → B)  ├  B

 "Generalizirani" modus ponens:
(P(A) = α, P(B|A) = β)  ├  P(B) = ?

P(B) = P(A, B) + P(¬A, B) = P(B|A) P(A) + P(B|¬A) P(¬A)

p1 = P(A, B), p2 = P(A, ¬B),  p3 = P(¬A, B), p4 = P(¬A, ¬B)

p1 = α β

p1 + p2 = α => p2 = α (1 – β)

p1 + p2 + p3 + p4 = 1 => p3 + p4 = 1 – α

 Na formulu za entropiju H(p) = – p3 ln p3 – p4 ln p4

primjenjujemo metodu Lagrangeovih multiplikatora.
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Vjerojatnost kao proširena logika

 Entropija je maksimalna za: p3 = p4 = (1 – α) / 2
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Matematička statistika – podsjetnik;
Diskretne slučajne varijable

 Postoje diskretne (diskontinuirane) i kontinuirane slučajne
varijable.

 Diskretna slučajna varijabla takva je varijabla x koja
- prima niz vrijednosti x1, x2, …
- ali svaku od njih s određenom vjerojatnošću p(x1), p(x2), …
- pri čemu vjerojatnosti p(xi) zadovoljavaju jednakost

 p(xi) = 1

 Zakon p(x) po kojem svakoj vrijednosti xi pripada vjerojatnost 
p(xi) zovemo funkcijom gustoće vjerojatnosti
diskretne slučajne varijable x (najčešći engl. termin je 
Probability Mass Function - PMF).
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Primjer: Funkcija gustoće vjerojatnosti 
varijable r (broj glava kod bacanja pet novčića) 



22

Funkcija distribucije vjerojatnosti
slučajne varijable

 Osim funkcije vjerojatnosti, kod diskretnih slučajnih varijabli 
važna je funkcija distribucije (ili razdiobe) vjerojatnosti 
slučajne varijable (engl. Cumulative Distribution Functions -
CDF).

 Ona pokazuje kolika je vjerojatnost da slučajna varijabla x 
poprimi bilo koju vrijednost  x0:

F(x0) =  p(xi) tj. F (x0) = P{x  x0}

xi  x0
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Primjer: Funkcija distribucije varijable r
(broj glava kod bacanja pet novčića) 
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Kontinuirane slučajne varijable

 Funkcija gustoće vjerojatnosti kontinuirane slučajne 
varijable x (engl. Probability Density Function - PDF)
je takva funkcija f(x) koja ima svojstva:

1. f(x)  0 za svaki x iz domene funkcije [a, b]
(a može biti -, b može biti +)

2. ab f(x) dx = 1
(površina ispod funkcije unutar domene [a, b] je 1)

3. x1x2 f(x) dx = P{x1  x  x2}
(površina ispod funkcije unutar domene [x1, x2] jednaka je  
vjerojatnosti da varijabla poprimi vrijednost iz te domene).
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Vjerojatnost kod
kontinuirane slučajne varijable
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Normalna razdioba (Gaussova razdioba)

 Jedna od najpoznatijih funkcija gustoće vjerojatnosti
kontinuirane varijable je tzv. normalna razdioba
(poznata i kao Gaussova razdioba).

 Važna je po tome što mnoge druge razdiobe
(diskretne i kontinuirane) graniče prema njoj
ako neki parametri rastu u beskonačnost.

 Prema njoj graniči i razdioba aritmetičkih sredina uzoraka, 
bez obzira na razdiobu osnovnog skupa, ako broj elemenata 
teži ka beskonačnosti (centralni granični teorem o razdiobi 
aritmetičkih sredina velikih uzoraka).

 Posebno postoji tzv. jedinična (ili standardna)
normalna razdioba, kod koje je matematičko očekivanje = 0,
a standardna devijacija = 1.
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Funkcija gustoće vjerojatnosti
i funkcija distribucije vjerojatnosti
kod jedinične normalne razdiobe
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Testiranje statističkih hipoteza
– mogući ishodi

 Manja greška  rezultira većom greškom 
(i obrnuto), ali ne vrijedi  +  = 1.

 Uobičajeno se zadaje (mali)  (5% ili 1%),
dok  ne znamo unaprijed. Jakost testa p = 1 - .

NeistinitaIstinitaHipoteza H0

Pravilan zaključakGreška 1.vrste

(vjerojatnost je ) 

Odbacuje se

Greška 2.vrste

(vjerojatnost je )

Pravilan zaključakPrihvaća se
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Kod frekventističkog pristupa
hipoteze nemaju vjerojatnosti,

tj. mi znamo npr. P(B|H0), a ne P(H0|B)
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Višedimenzijska slučajna varijabla
(slučajni vektor) – npr. ovdje dvodimenzijska

 Funkcija gustoće vjerojatnosti: f(x, y)

 Marginalne funkcije gustoće: f(x) = ∫ f(x, y) dy

 Uvjetne funkcije gustoće: f(y|x) = f(x, y) / f(x)

 Matematička očekivanja: E(x) = ∫ x f(x) dx

 Varijance: V(x) = ∫ x**2 f(x) dx – E(x)**2

 Standardne devijacije: σ(x) = √V(x)

 Uvjetna očekivanja: E(y|x) = ∫ y f(y|x) dy
(u regresijskoj analizi zovu se funkcije regresije; nemamo
"ravnopravne" slučajne varijable, nego zavisnu(e) i nezavisne) 

 Kovarijanca: Cov(x, y) = ∫ ∫ x y f(x, y) dx dy – E(x) E(y)

 Koeficijent korelacije: ρ = Cov(x, y) / (σ(x) σ(y))

Ako su slučajne varijable nezavisne, kovarijanca je nula.
Obrnuto ne vrijedi: kod nekih teoretskih razdioba
kovarijanca je nula i kada su slučajne varijable zavisne.



31

Bayesov teorem
(Thomas Bayes, 1701-1761)

 Iz uvjetnih vjerojatnosti:
P(B|A) = P(A presjek B) / P(A)
P(A|B) = P(A presjek B) / P(B)
dobijemo jednu verziju Bayesovog teorema:
P(B|A) = P(B) P(A|B) / P(A)
P(A|B) = P(A) P(B|A) / P(B)

 Verzija Bayesovog teorema s totalnim vjerojatnostima, gdje: 
P(A1) + P(A2) + ... + P(An) = 1

 Specijalno za n = 2, gdje je P(A) + P(¬A) = 1
P(A|B) = P(A) * P(B|A) / P(B)
P(B) = P(A) * P(B|A) + P(¬A) * P(B|¬A)
pa dobijemo
P(A|B) = P(A) * P(B|A) /

(P(A) * P(B|A) + P(¬A) * P(B|¬A))
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Primjer korištenja Bayesovog teorema

A = sportaš uzima doping
¬A = sportaš ne uzima doping
B = test tvrdi da uzima doping

¬B = test tvrdi da ne uzima doping
P(B|A) = vjerojatnost da će test reći
da uzima doping onaj koji uzima (True Positive, TP)
P(B|¬A) = vjerojatnost da će test reći
da uzima doping onaj koji ne uzima (False Positive, FP)

Imamo ove podatke:
P(A) = 0,1 i p(¬A) = 0,9
P(B|A) = 0,9 i p(B|¬A) = 0,1
P(A|B) = vjerojatnost da uzima doping ako test tvrdi da uzima
P(A|B) = P(A) P(B|A) / (P(A) P(B|A) + P(¬A) P(B|¬A))
P(A|B) = 0,1 * 0,9 / (0,1 * 0,9 + 0,9 * 0,1) = 0,5
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Bejsovski (Bayesian) pristup statistici

 Dugo je prevladavao frekventistički (frekvencionistički)
pristup statistici (Fisher, Egon Pearson, Neyman).

 90-tih godina prošlog stoljeća poraslo je interesiranje za 
bejsovski pristup, kad su računala postala dovoljno snažna.

 Bejsovski pristup bi se vjerojatno trebao zvati
laplasovski pristup (Pierre-Simon Laplace, 1749.-1827.).

 Što kaže prof. Zvonimir Šikić na
https://ideje.hr/kako-je-manje-ispravna-metoda-zamijenila-
puno-ispravniju-laplace-vs-fisher/

Statističari s kraja 19. i s početka 20. stoljeća počeli su inzistirati
da se vjerojatnosti moraju shvaćati isključivo kao granične
frekvencije u tzv. slučajnim eksperimentima.
Rezultat je bila Fisherova metoda, iako nema razloga
da se ne upotrebljava generalna, precizna i matematička
Laplaceova, tj. bejesovska metoda.
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Bejsovski (Bayesian) pristup statistici

 Bejsovski pristup poznaje apriornu gustoću vjerojatnosti, 
koja zajedno s funkcijom vjerodostojnosti (dobijenom na 
temelju uzorka) daje posteriornu gustoću vjerojatnosti.

 Dalje, za razliku od frekventističkog pristupa,
kod bejsovskog pristupa:

- parametri populacije (npr. matematičko očekivanje, 
varijanca …) su slučajne varijable, koje imaju svoju 
razdiobu, a njihovi parametri se nazivaju hiperparametri

- frekventistički pristup poznaje pouzdani interval
(confidence interval), a bejsovski vjerodostojni interval 
(credible interval), kod kojeg zaista možemo govoriti o 
vjerojatnosti da se parametar nalazi unutar tog intervala

- hipoteze imaju vjerojatnost.
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Odnos između pristupa statistici i 
pristupa kauzalnom zaključivanju

 Većina onih koji podržavaju kauzalno zaključivanje
zastupa bejsovski pristup statistici,
iako ima i onih koji zastupaju frekventistički pristup. 

 Ako netko zastupa bejsovski pristup,
ne znači da automatski zastupa i kauzalno zaključivanje.

 Ipak, može se reći da postoji značajna korelacija između
onih koji zastupaju bejsovski pristup statistici
i onih koji zastupaju kauzalno zaključivanje.

 Napomena: Prevladava mišljenje da bi termin korelacija
trebalo koristiti samo kod linearnih veza između varijabli,
a u općenitom slučaju bi trebalo koristiti termin asocijacija.
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Kauzalno zaključivanje =
kauzalno učenje + kauzalno rezoniranje

 Iz knjige Elements of Causal Inference (Peters J. i ostali)



37

Knjiga "The Book of Why"
 U toj knjizi Judea Perl, računalni znanstvenik i statističar, 

dobitnik Turingove nagrade 2011. za doprinos u području 
umjetne inteligencije, pokazuje (za širu publiku, a ne samo za 
matematičare) kako je razumijevanje uzročnosti važno za 
znanost, onda i za umjetnu inteligenciju.

 "Correlation is not causation." (korelacija nije uzročna veza) 
- ova mantra, koju znanstvenici izgovaraju više od jednog 
stoljeća, dovela je do praktične zabrane kauzalnog govora. 
Kauzalna revolucija, koju su potaknuli Judea Pearl, njegovi 
kolege, te ostali znanstvenici uspostavila je proučavanje 
uzroka i posljedice na čvrstoj znanstvenoj osnovi.

 Njihov rad objašnjava kako možemo znati jednostavne stvari, i 
kako odgovoriti na teška pitanja, poput toga je li lijek izliječio 
bolest. Omogućuje nam da znamo ne samo uzrokuje li jedna 
stvar drugu: omogućuje nam istraživanje svijeta koji jest i 
svjetova koji su mogli biti.
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Pearl – ljestve uzročnosti

 Protučinjenično 
zaključivanje
- aktivnost: imaginacija
- Što bi bilo da sam 
umjesto …  napravio …?

 Intervencija
- aktivnost: intervencija
- Što ako napravim …?

 Asocijacija
- aktivnost: opservacija 
- Što ako vidim …? 
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Pearl – ljestve uzročnosti
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Eksperimenti (Randomized Control Trials, RCT)
nasuprot opservacijskim studijama

 Eksperimenti (naročito dvostruko slijepi, gdje npr.
pacijenti ne znaju primaju li lijek ili placebo,
ali to ne znaju niti liječnici koji ima daju lijek)
predstavljaju zlatni standard u statističkim testovima.

 No često se moramo zadovoljiti s podacima koje imamo,
tj. raditi opservacijske studije, bez intervencija.
Razlozi mogu biti:
- etički; npr. nije etički da teškim bolesnicima ne damo lijek
za koji vjerujemo (iako nismo sigurni) da je učinkovit
- nemogućnost; npr. ne možemo promijeniti DNK osobe pri 
rođenju, kako bismo mjerili učinak određenog gena
- financijski; testiranje je skupo, a postojeće podatke 
možemo analizirati relativno jeftino
…
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Sewall Wright, američki genetičar (1889-1988)
– otac kauzalnih dijagrama (path diagrams)
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Berkson’s paradox

 Godine 1946. Joseph Berkson, biostatističar na klinici Mayo, 
ukazao je na neobičnost opservacijskih studija provedenih u 
bolničkom okruženju: čak i ako dvije bolesti nemaju nikakve 
veze jedna s drugom u općoj populaciji, može se činiti da su 
povezane među pacijentima u bolnici.
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Berkson’s paradox
– humoristička verzija

 U filmskoj industriji, glumci/glumice koji su postali filmske 
zvijezde moraju imati barem jednu od ove dvije osobine:
- jako su zgodni
- jako su dobri glumci/glumice.

 Statistički podaci pokazuju sljedeće:
Ako je filmska zvijezda zgodna,
manja je vjerojatnost da je dobar glumac/glumica.
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Berkson’s paradox

 Razrješenje Berksonovog paradoksa za slučaj (ne)vezanih 
bolesti dobije se gledajući donji kauzalni graf. Obje bolesti 
utječu na hospitalizaciju, kao što pokazuje graf.

 To je jedan od tri osnovna grafa s tri čvora – srednji čvor
zove se mjesto sudara ili sudarač ili kolider (collider).

 Vidi se da su bolesti međusobno nezavisne. No
ako kontroliramo kolider (gledamo određenu vrijednost), 
odblokirali smo put između dva nezavisna čvora – oni su 
tada postali korelirani! Kolider ne smijemo kontrolirati!
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Statističko testiranje u osnovnoj školi
 U osnovnoj školi mjerili su učenicima duljinu stopala

i testirali sposobnost čitanja. Statistički podaci pokazali su da 
učenici s duljim stopalima bolje čitaju. Dakle, našli su značajnu 
korelaciju između duljine stopala i sposobnosti čitanja.

 Naravno, korelacija nije znači uzročnost (kako je govorio i 
Fisher). Ali, uzročnost ipak postoji, a to je u ovom slučaju dob.

 Graf odnosa između tri čvora, Dob, DS (duljina stopala)
i SČ (sposobnost čitanja) pokazuje da je Dob
zajednički uzrok ili zbunjivač (confounder).

 Da bismo vidjeli postoji li zaista veza
između DS i SČ (označeno sa ?),
trebamo blokirati put Dob → DS
tj. kontrolirati confounder!
U ovom slučaju, trebamo podatke
gledati zasebno za svaku dob
(ili školski razred).
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Simpson’s paradox
 Paradoks je prvi otkrio statističar Edward Simpson 1951.

 Donja tablica (s fiktivnim podacima) pokazuje da je lijek
loš za žene (3/40 srčanih udara kod žena koje su uzele lijek
u odnosu na 1/20 = 2/40 kod žena koje nisu uzele lijek)
i loš za muškarce (8/20 = 16/40 u odnosu na 12/40).

 No ukupno je lijek dobar (11/60 < 13/60).

 Znači li to da postoji lijek BBG - loš za žene i za muškarce,
dobar ako ne znamo spol ?!
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Simpson’s paradox
 Razrješenje Simpsonovog paradoksa za slučaj čudnovatog 

lijeka BBG dobije se tako da se kontrolira confounder,
a to je spol (Gender), jer su muškarci manje skloni da uzimaju 
propisane lijekove i više su skloni srčanim udarima.

 Nakon kotroliranja confoundera, ostaje samo direktna zavisnost 
između lijeka (Drug) i srčanog udara (Heart Attack).

 Dakle, lijek je loš za žene i za muškarce, ali je loš i ukupno. 
(naravno, to je i intuitivno logično). Lijek BBG ne postoji!
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Simpson’s paradox - drugi primjer
 Pogledajmo sada drugu tablicu, koja pokazuje jednake 

brojeve kao prethodna tablica, ali je primjer drugačiji.
Tablica pokazuje da je lijek loš i kod pacijenata koji su imali 
nizak krvni i kod pacijenata koji su imali visok krvni tlak, ali je 
ukupno dobar.

 Možemo li zaključiti kao u prvom primjeru
- da je, zapravo, lijek uvijek loš?
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Simpson’s paradox – drugi primjer
 Ovdje je odgovor suprotan: lijek je dobar i za one s niskim 

tlakom i za one s visokim tlakom, pa onda i ukupno.

 Za razliku od prvog primjera, gdje je spol bio confounder, 
ovdje tlak nije confounder, nego posrednik ili medijator
(mediator). Lijek utječe i na tlak (snižava ga) i na srčane 
udare (smanjuje ih), pa lijek djeluje na smanjenje srčanih 
udara i direktno i indirektno (preko medijatora).

 Ovdje bi bilo pogrešno kontrolirati medijator, jer bi se 
izgubila indirektna veza. Medijator kontroliramo kad hoćemo 
mjeriti direktnu vezu.
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Kontrolirati ili ne kontrolirati, pitanje je sad

 Kolider ne smijemo kontrolirati

X → K ← Y X ╨ Y | Ø

(X je nezavisno od Y ako ne kontroliramo) 

 Confounder trebamo kontrolirati

X ← C → Y X ╨ Y | C

(X je nezavisno od Y ako C kontroliramo) 

 Medijator uglavnom ne kontroliramo

X → M → Y X ╨ Y | M

(X je nezavisno od Y ako M kontroliramo)

osim kad želimo mjeriti direktnu vezu (između X i Y),
tj. eliminirati indirektnu vezu (preko M).
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Što (ne) možemo saznati iz podataka

 Ova tri osnovna usmjerena aciklička grafa
(Directed Acyclic Graph, DAG), lanac u oba smjera
i račvanje, spadaju u istu klasu ekvivalencije
– nemoguće ih je razlikovati samo na temelju podataka:

X → M → Y

X ← M ← Y

X ← C → Y

 Četvrti graf spada u drugu klasu:

X → K ← Y

 Na temelju podataka možemo saznati
je li riječ o prvoj ili drugoj klasi.
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d-separation
 Dva skupa čvorova X i Y su d-separirani (d-separated) 

skupom čvorova Z ako su svi putovi između
(bilo kojeg čvora u) X i (bilo kojeg čvora u) Y blokirani s Z.

 d-separirani čvorovi (G kao graf) su i statistički nezavisni (P):

X ╨G Y | Z => X ╨P Y | Z (obrnuto ne vrijedi)

 U donjem primjeru su čvorovi T i Y d-separirani pomoću
skupa čvorova {W2, M1} (moguće su i druge kombinacije):
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do-operator i do-calculus
 do-operator označava intervenciju, a ne opservaciju:

P(Y | do(X))  ≠  P(Y | X) - kauzalna formula ≠ statistička

 Npr. ako je X boja kose, a Y brzina trčanja,
intervencija do(X = crna), kojom ofarbamo sijedu kosu u crnu, 
neće utjecati da se Y poboljša, za razliku od opservacije
P(Y = brzo | X = crna) u odnosu na P(Y = brzo | X = sijeda).

 Ponekad možemo zamijeniti kauzalne formule sa 
statističkim formulama, tj. ne moramo raditi intervencije.
do-calculus omogućava nalaženje tih statističkih formula,
ako je to moguće (ako nije, znamo da nije).

 do-calculus temelji se na tri pravila (nisu aksiomi,
jer se mogu izvesti iz teorije vjerojatnosti) i ima ove osobine:
- pouzdan
- potpun: ako se do-operator može pretvoriti u statistički izraz, 

do-calculus to može
- postoji algoritam koji to radi u polinomijalnom vremenu.
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Na CASE 2020 prikazali smo
"Mrav i med na prizmi i valjku" (verzija 1)

http://www.istratech.hr/mrav-i-med-na-pravilnim-prizmama-i-valjku-verzija-4/
(napomena: slika prikazuje realizaciju verzije 3)


