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Umjetna inteligencija (Ul, engl. Al)

Umijetna inteligencija (Ul) se standardno dijeli na
simboliCku (Cesto se naziva logiCka Ul ili GOFAL) i
subsimbolicku (Cesto se naziva statistiCka Ul).

Danas su u centru paznje (duboke) neuronske mreze, kao
najvazniji dio subsimboliCke Ul, no u odredenim aplikacijama
(npr. DeepMind-ovi AlphaGeometry, AlphaFold, AlphaEvolve)
izvrsne rezultate postize spoj neuronskih mreza i simboliCke
Ul, tzv. neuro-simbolicka Ul.

Kauzalno zaklju€ivanje (causal inference) smatra se vaznim
za postizanje naprednije Ul, npr. tog misljenja su "ocCevi"
dubokih neuronskih mreza Yoshua Bengio i Yann LeCun
(dobitnici Turingove nagrade 2018. godine).

U kauzalno zakljuCivanje ovdje ukljuCujemo i kauzalno
ucenje (causal learning), kod kojega se gradi kauzalni model,
| kauzalno rezoniranje (causal reasoning), gdje se kauzalni
model koristi zajedno s podacima za kauzalno rezoniranje.



Umjetna inteligencija — kratka povijest

Pojam 'umjetna inteligencija’ prvi se put koristio 1956.

na konferenciji u Dartmouthu, ali prvi rad na podrucju Ul su jos
1943. napisali Walter Pitts i Waren McCulloch "A Logical
Calculus of the ideas Imminent in Nervous Activity",

prvi matematicki model neuronske mreze.

Dakle, neuronske mreze su prethodile simbolickoj Ul.
Medutim, neuronske mreze, kao i Sira statistiCka Ul,
bile su do prije desetak godina inferiornije od simbolicke UI.

Moze se reci da postoje tri vala (engl. wave) umjetne
inteligencije. U prvom valu je prevladavala simboliCcka Ul, koja
je vrlo dobra u rasudivanju (Reasoning), ali ima dosta slabe
sposobnosti opazanja (Perceiving), a vrlo je loSa kod ucCenja
(Learning) i stvaranja apstrakcija (Abstracting).

Drugi val, koristenje statistiCke Ul (i to narocito dubokih
neuronskih mreza), doveo je do velikih poboljsanja kod
percepcije i ucenja, ali je jako pala sposobnost rasudivanja.



Umjetna inteligencija

Enables reasoning over
Perceiving narrowly defined problems
Learning
Abstracting No learning capability
Reasoning and poor handling of

uncertainty

Nuanced classification and
prediction capabilities

Perceiving
Learning

Abstracting _
Reasoning No contextual capability and

minimal reasoning ability

0 Radi se na treCem valu, spoju simboliCke i statistiCke Ul
u hibridnu Ul, koja bi imala najbolje strane obje.

Perceiving
Learning
Abstracting

Reasoning



Logika, matematika, statistika
- neka pitanja

0 Koje su granice matematicke logike?
0 Koje su granice (aksiomatizirane) matematicke teorije?
0 Postoiji li slu€ajnost, ili je to samo privid?

O Je li simbolicka Ul bolja od subsimbolicke Ul,
ili obrnuto,
ili je bolje da koristimo obje?



Logika sudova (Propositional Logic)

0 Operatori (veznici) logike sudova (racun/algebra sudova):
negacija (negation) =
disjunkcija (disjunction) v konjunkcija (conjunction) A
kondicional (conditional) — bikondicional (bicondicional) <
eksluzivno ili (exclusive or) @ nili (nor) |  ni(nand) 1
O Primjer formule logike sudova:

(P —q) < (7q— 7p)
0 Napomena: mala slova (npr. p, q) oznaCavaju

atomarne (atomic) sudove ili atome.

0 Jedna interpretacija (u prirodnom jeziku):

d
e
d

KO pada kisa (p), tada trava je mokra (q)
Kvivalentno je

KO trava nije mokra (7q), tada ne pada kisa (7p).



0 Logika sudova (za razliku od slozenije logike prvog reda)
ima proceduru odlucivanja (engl. decision procedure),
tj. algoritam koji u konacnom vremenu vraca odgovor da li je
formula valjana (ili da li je zadovoljiva).

[0 Jedna procedura odlucCivanja je izrada tablice istinitosti
(semanticka tablica).

0 Sljedeca tablica istinitosti pokazuje da je (prije prikazana)
formula logike sudova (p — q) < (7q — ~p) valjana:

p q |(p — ¢q) < (— g — — D)
T T \|T T T T F T T F T
T F|T F F T T F F F T
F T|F T T T F ¥F T T FE
F F|F T F T T F T T F




Logika prvog reda
(First-Order Logic)

0 Logika prvog reda (logika predikata, ili racun predikata)
je nadskup logike sudova, i dodaje joj sljedece:
- predikate: n-arni predikat se interpretira
kao n-arna relacija nad odredenom domenom
- varijable i konstante (iz odredene domene),
koje Cine argumente predikata
- univerzalni kvantifikator (universal quantifier)
v (Cita se "za svaki")
- egzistencijalni kvantifikator (existential quantifier)
1 (Cita se "postoji").
0 LPR s funkcijama dodaje jos funkcije,
tako da argumenti u predikatima mogu biti i funkcije.

0 Kod LPR, kvantifikatori se primjenjuju samo na varijable,
a ne npr. na predikate (to je logika drugog reda).



Logika prvog reda

(First-Order Logic)
Primjer jednostavne formule (ovaj primjer nema funkcije):
vx p(a, x) cita se "za svaki x vrijedi p(a, x)"
(x je varijabla, p je dvomjesni predikat, a je konstanta).

Jedna interpretacija, kod koje je formula istinita:

1= (N, {s}, {0}) - domena je N, tj. skup prirodnih brojeva;
predikat p se zamjenjuje relacijom <, konstanta a s nulom,
pa za svaki x element od N vrijedi da 0 < x.

Jedna interpretacija, kod koje formula nije istinita:

12 =(Z, {<}, {0}) - domena je Z, tj. skup cijelih brojeva
(negativni cijeli brojevi, nula i pozitivni cijeli brojevi);
predikat p se zamjenjuje relacijom <, konstanta a s nulom,
pa ne vrijedi za svaki x elementod Zda 0 < x

(ne vrijedi za negativne brojeve).

LPR nema proceduru odlucivanja, ali je poluodluciva
(procedura odluCivanja moze ne zavrsiti).



Kako se gradi matematicka teorija
(aksiomatski sustav)

Treba imati odredeni broj nedefiniranih termina.

Na temelju njih, prema utvrdenim pravilima definiranja,
grade se definirani termini.

Treba imati odredeni broj aksioma.

Na temelju njih, prema utvrdenim pravilima zakljucivanja,
izvode se teoremi.
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Obavezne ili (vrlo) pozeljne osobine

aksiomatskog sustava

Mora biti konzistentan, tj. u njemu se ne moze dokazati
| neka tvrdnja A i njena negacija.
Nekonzistentan aksiomatski sustav je bezvrijedan.

Vrlo je pozeljno da je (sintaksno) potpun, tj. da se unutar
njega moze dokazati ili opovrci bilo koja tvrdnja izreCena u
terminima tog sustava. Nepotpuni sustav nije bezvrijedan.
Vrlo pozeljno je da je odluciv, tj. da ima opCu metodu

kojom se moze utvrditi (ne)valjanost svake tvrdnje izreCene
u terminima tog sustava.

Vecinom je pozeljno da je neredundantan, sto znaci da su
aksiomi medusobno nezavisni.

Cesto se smatra da je finitni aksiomatski sustav
metamatematicki elegantniji od sustava s (prebrojivo)
beskonacnim brojem aksioma. Peanova aritmetika nije
finitna, jer ima aksiom indukcije (koji je, zapravo,
shema aksioma - prebrojivo beskonacan skup aksioma).
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Neeuklidske geometrije - 5. Euklidov aksiom

Najvazniji pokretac formalizacije aksiomatskih sustava bilo
je uvodenje neeuklidskih geometrija, koje su nastale
negacijom 5. Euklidovog aksioma o paralelama.

Aksiom kaze (ne u izvornoj Euklidovoj interpretaciji) da se
kroz toCku koja se nalazi izvan pravca (u istoj ravnini)
moze povuci tocno jedan paralelan pravac.

Dugo se smatralo da 5. aksiom zavisi od drugih.

U 19. stoljeCu stvoreni su aksiomatski sustavi

(Gauss, Lobacevski, Bolay, Riemann) u kojima je

5. aksiom zamijenjen aksiomom da se kroz toCku ne moze
povuci niti jedan paralelan pravac (eliptiCke geometrije),
Il da se moze povuci beskonacno puno pravaca
(hiperboliCcke geometrije).

U tim se geometrijama vise ne moze "prirodno dokazivati".
Ali, matematicari su tada ustvrdili da se geometrija moze
sagraditi na temelju aritmetike, i rekli:

ako je aritmetika konzistentna, onda je i geometrija.
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Kurt Godel i nepotpunost aritmetike

1929. je (sa 23 godine!) dokazao (semantiéku)
potpunost predikatnog racuna 1. reda. To nije lako, za
razliku od daleko Iakseg problema dokazivanja potpunosti
(ili konzistentnosti) racuna sudova.

1931. godine objavljen je njegov rad kojim je srusio
nade Hilbertovog programa.

Prvo, dokazao je (sintaksnu) nepotpunost
aksiomatskog sustava aritmetike (ili bilo kog sustava
slicnog njemu). Pritom se koristio "prevodenjem™
metamatematickih tvrdnji u aritmeticke tvrdnje.

To znaci da se ne moze napraviti konacan ili prebrojivo
beskonacan skup (konzistentnih) aksioma iz kojih Ce se
mocCi dokazati sve aritmetiCke istine —

formalizacija ima granice!
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Logicki sustav /
matematicka
teorija

Logika sudova

Logika prvog reda

Aritmetika

Pouzdana /
konzistentna

DA (pouzdana)

DA (pouzdana)

DA (konzistentna)
(Gentzen, 1936.,

nefinitnim metodama);

NE moze se

dokazati unutar nje
same (Godel, 1931.)

Potpuna

DA (semanticki)
(Post, 1921.)
DA (semanticki)
(Godel, 1929.)

NE (sintakticki)
(Gédel, 1931.)

Odluciva

DA

NE

Churchov teorem
(Church, Turing,
1936.)

= rjesenje za
Hilbertov
Entscheidungs-
problem (1928.)

NE
Churchov teorem
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Digresija —
cetiri znanstvena soka u 20. stoljecu
Specijalna i opc¢a teorija relativnosti.

Kvantna mehanika. Cak niti sam Einstein nije prihvatio
standardnu interpretaciju kvantne mehanike

(njegova izreka: "Bog se ne kocka!").

Opca teorija relativnosti i kvantna mehanika su
medusobno kontradiktorne - to znaci da

najvise jedna (od njih dvije) moze biti istinita.

Godelovi teoremi o nepotpunosti i nemogucnostsi
finitnog dokazivanja konzistentnosti aritmetike.

Teorija deterministickog kaosa -

nemjerljivo mala razliCita poCetna stanja dovode do
znacajno razliCitih ishoda nakon nekog vremena
(za razliku od stohastiCkih sustava).
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Deterministicki kaos

0 Deterministicki kaos je (relativho) nova paradigma za
matematicko modeliranje svijeta. Prije su postojale dvije
paradigme za matematiCko modeliranje svijeta.

O Prva, starija, bila je rjeSavanje svega pomocu
matematiCke analize, tj. pomocu diferencijalnih jednadzbi.
Druga se paradigma pojavila krajem 19.stoljeca, a to je
statistiCka analiza, temeljena na teoriji vjerojatnosti.

0 Kako bi se mogla opisati razlika izmedu sluCajnih procesa i
deterministiCkog kaosa:

- neki sustav je sluCajan (stohastiCki) ako nemjerljivo mala
razliCita poCetna stanja (a ponekad i ista poCetna stanja)
odmah dovode do znacCajno razliCitih ishoda

- neki sustav je deterministiCki kaotiCan ako nemjerljivo mala

razliCita poCetna stanja ne dovode odmah do znacajno
razliCitin ishoda, nego tek nakon nekog vremena.
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Bifurkacijski dijagram
kod logistickog preslikavanja

Xnt1 =r*Xn *(1—=Xn) (rje neki brojizmedu 0i 4)

1.0

0.8 -

g ol gissnesm

X —
04 =
0.2

0.0

2.4

I I I I I | I I | | I | I I | |

2.6 2.8 3.0 3.2 3.4 A6 38 4.0
T

17



Vjerojatnost kao prosirena logika
(probabilisticko zakljucivanje)
— time se bavio jos George Boole!
O |z knjige Introduction to Artificial Intelligence (Ertel W.)

0 "Klasicni" modus ponens (pravilo zakljuCivanja):
(A,A—B) | B

0 "Generalizirani" modus ponens:

(P(A) =0, P(B|A)=B) | P(B)=7
P(B) =P(A, B) + P(7A, B) = P(B|A) P(A) + P(B|~A) P(—A)
p1=P(A, B), p2=P(A, °B), p3 =P(7A, B), p4 = P(-A, 7B)

pr=af
p1+p2=a =>p2=a(1-P)
p1+p2+p3+ps=1 =>p3+psa=1-a

0 Na formulu za entropiju H(p) = — p3 In p3 — p4 In p4
primjenjujemo metodu Lagrangeovih multiplikatora.
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Vjerojatnost kao prosirena logika

0 Entropija je maksimalnaza: p3=p4=(1-qa)/2

P(B)

0.8

0.6

0.4

0.2

P(B) = P(A) (P(BIA) - 1/2) + 1/2

0.2 0.4 0.6 0.8
P(A)

P(BIA)=1
P(BIA)=0.9
P(BIA)=0.8
P(BIA)=0.7
P(BIA)=0.6
P(BIA)=0.5
P(BIA)=0.4
P(BIA)=0.3
P(BIA)=0.2
P(BIA)=0.1

P(BIA)=0
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Matematicka statistika — podsjetnik;
Diskretne slucajne varijable

Postoje diskretne (diskontinuirane) i kontinuirane slucajne
varijable.

Diskretna slucajna varijabla takva je varijabla x koja
- prima niz vrijednosti x,, X,, ...
- ali svaku od njih s odredenom vjerojatnoscu p(x,), p(X,), -..
- pri Cemu vjerojatnosti p(x;) zadovoljavaju jednakost

2. p(x;) =1
Zakon p(x) po kojem svakoj vrijednosti x. pripada vjerojatnost
p(x.) zovemo funkcijom gustocCe vjerojatnosti
diskretne slucajne varijable x (najcesci engl. termin je
Probability Mass Function - PMF).

20



Primjer: Funkcija gustocCe vjerojatnosti
varijable r (broj glava kod bacanja pet novcica)

0.3 -

p(r)

0.2 5

0.1=

1 2 3 4 5

Number of heads, r



Funkcija distribucije vjerojatnosti
slucajne varijable

O Osim funkcije vjerojatnosti, kod diskretnih slucajnih varijabli
vazna je funkcija distribucije (ili razdiobe) vjerojatnosti
slu€ajne varijable (engl. Cumulative Distribution Functions -
CDF).

0 Ona pokazuje kolika je vjerojatnost da sluCajna varijabla x
poprimi bilo koju vrijednost < x,:

F(X,) = 2 p(X;) tj. F (Xy) = P{X < X}
X; < X
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Primjer: Funkcija distribucije varijable r
(broj glava kod bacanja pet novcica)

I g g
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Kontinuirane slucajne varijable

0 Funkcija gustocCe vjerojatnosti kontinuirane slucajne
varijable x (engl. Probability Density Function - PDF)
je takva funkcija f(x) koja ima svojstva:

1. f(x) > 0 za svaki x iz domene funkcije [a, b]
(a moze biti -0, b moze biti +x)
2. [P f(x) dx = 1
(povrsina ispod funkcije unutar domene [a, b] je 1)
3. 2 f(x) dx = P{x, < x < x,}
(povrsina ispod funkcije unutar domene [x,, X,] jednaka je
vjerojatnosti da varijabla poprimi vrijednost iz te domene).
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Vjerojatnost kod

kontinuirane slucajne varijable

Probability
Density

Function,
(x)

Area gives probability
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Normalna razdioba (Gaussova razdioba)

Jedna od najpoznatijih funkcija gustoce vjerojatnostsi
kontinuirane varijable je tzv. normalna razdioba
(poznata i kao Gaussova razdioba).

Vazna je po tome sto mnoge druge razdiobe
(diskretne i kontinuirane) granice prema njoj
ako neki parametri rastu u beskonacnost.

Prema njoj granici i razdioba aritmetickih sredina uzoraka,
bez obzira na razdiobu osnovnog skupa, ako broj elemenata
tezi ka beskonacnosti (centralni granicni teorem o razdiobi
aritmetickih sredina velikih uzoraka).

Posebno postoji tzv. jedinicna (ili standardna)
normalna razdioba, kod koje je matematiCko oCekivanje = 0,
a standardna devijacija = 1.
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Funkcija gustoce vjerojatnosti
| funkcija distribucije vjerojatnosti
kod jediniche normalne razdiobe

0.75 -

o
ul
1

Cumulative Probability

0.25 =
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Testiranje statistickih hipoteza
— moguci ishodi

Hipoteza H, Istinita Neistinita

Odbacuje se  Greska 1.vrste Pravilan zakljuCak
(vjerojatnost je o)

Prihvaca se Pravilan zakljuCak Greska 2.vrste
(vjerojatnost je [3)

0 Manja greSka a rezultira vecom greskom 3
(i obrnuto), ali ne vrijedi o + 3 = 1.
0 UobiCajeno se zadaje (mali) o (5% ili 1%),
dok B ne znamo unaprijed. Jakost testap =1 - 3.
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Kod frekventistiCkog pristupa
hipoteze nemaju vjerojatnosti,
tj. mi znamo npr. P(B|Ho), a ne P(Ho|B)

B podrucje
P(A|HO) =1 - alfa = prihvaca se hipoteza H1
P(B|HO) = alfa (3rafirano)

P(A|H1) = beta
P(B|H1) = 1-beta

(alfa + beta =/=1)

P(A) + P(B) = 1
P(HO) + P(H1) =1

Bijelo podrucje
=tocCna je hipoteza HO

A podrudje
= prihvaca se hipoteza HO
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Visedimenzijska slucajna varijabla
(slucajni vektor) — npr. ovdje dvodimenzijska
Funkcija gustocCe vjerojatnosti: f(x, y)
Marginalne funkcije gustoce: f(x) = | f(x, y) dy
Uvjetne funkcije gustoce: f(y|x) = f(x, y) / f(x)
Matemati¢ka oéekivanja: E(x) = | x f(x) dx
Varijance: V(x) = | x**2 f(x) dx — E(x)**2
Standardne devijacije: o(x) = VV(x)
Uvjetna oéekivanja: E(y|x) = | y f(y|x) dy
(u regresijskoj analizi zovu se funkcije regresije; nemamo
"ravnopravne" sluCajne varijable, nego zavisnu(e) i nezavisne)
0 Kovarijanca: Cov(x, y) =] | xy f(x, y) dx dy — E(x) E(y)
0 Koeficijent korelacije: p = Cov(x, y) / (o(x) o(y))
Ako su slucajne varijable nezavisne, kovarijanca je nula.

Obrnuto ne vrijedi: kod nekih teoretskih razdioba
kovarijanca je nula | kada su sluCajne varijable zavisne. 50




Bayesov teorem

(Thomas Bayes, 1701-1761)
O Iz uvjetnih vjerojatnosti:
P(B|A) = P(A presjek B) / P(A)
P(A|B) = P(A presjek B) / P(B)
dobijemo jednu verziju Bayesovog teorema:
P(B|A) = P(B) P(A|B) / P(A)
P(A|B) = P(A) P(B|A) / P(B)

0 Verzija Bayesovog teorema s totalnim vjerojatnostima, gdje:
P(A1) + P(A2) + ... + P(An) = 1
0 Specijalno za n = 2, gdje je P(A) + P(7A) = 1
P(A|B) = P(A) * P(B|A) / P(B)
P(B) = P(A) * P(B|A) + P(mA) * P(B|7A)
pa dobijemo
P(A|B) = P(A) * P(B|A) /
(P(A) * P(BJA) + P(7A) * P(B|A))
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Primjer koristenja Bayesovog teorema

A = sportas uzima doping
A = sportas ne uzima doping
B = test tvrdi da uzima doping
B = test tvrdi da ne uzima doping
P(B|A) = vjerojatnost da Ce test reci
da uzima doping onaj koji uzima (True Positive, TP)
P(B|™A) = vjerojatnost da Ce test reci
da uzima doping onaj koji ne uzima (False Positive, FP)

Imamo ove podatke:

P(A)=0,1ip("A)=0,9

P(B|A)=0,9ip(B|~A) =0,1

P(A|B) = vjerojatnost da uzima doping ako test tvrdi da uzima
P(A|B) = P(A) P(B|A) / (P(A) P(B|A) + P(mA) P(B|7A))
P(AB)=0,1*0,9/(0,1*0,9+0,9*0,1)=0,5
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Bejsovski (Bayesian) pristup statistici

0 Dugo je prevladavao frekventisticki (frekvencionistiCki)
pristup statistici (Fisher, Egon Pearson, Neyman).

O 90-tih godina proslog stoljeca poraslo je interesiranje za
bejsovski pristup, kad su raCunala postala dovoljno snazna.

[0 Bejsovski pristup bi se vjerojatno trebao zvati
laplasovski pristup (Pierre-Simon Laplace, 1749.-1827.).

O Sto kaze prof. Zvonimir Sikié na

Statisticari s kraja 19. i s poCetka 20. stoljeCa poceli su inzistirati
da se vjerojatnosti moraju shvacati iskljuCivo kao granicne
frekvencije u tzv. slucajnim eksperimentima.

Rezultat je bila Fisherova metoda, iako nema razloga

da se ne upotrebljava generalna, precizna i matematicka
Laplaceova, {j. bejesovska metoda.
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Bejsovski (Bayesian) pristup statistici

0 Bejsovski pristup poznaje apriornu gustocu vjerojatnosti,
koja zajedno s funkcijom vjerodostojnosti (dobijenom na
temelju uzorka) daje posteriornu gustocu vjerojatnosti.

0 Dalje, za razliku od frekventistiCkog pristupa,
kod bejsovskog pristupa:

- parametri populacije (npr. matematicko oCekivanje,
varijanca ...) su slucajne varijable, koje imaju svoju
razdiobu, a njihovi parametri se nazivaju hiperparametri

- frekventistiCki pristup poznaje pouzdani interval
(confidence interval), a bejsovski vjerodostojni interval
(credible interval), kod kojeg zaista mozemo govoriti 0
vjerojatnosti da se parametar nalazi unutar tog intervala

- hipoteze imaju vjerojatnost.
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Odnos izmedu pristupa statistici |
pristupa kauzalnom zakljucivanju

Vecina onih koji podrzavaju kauzalno zakljuCivanje
zastupa bejsovski pristup statistici,
lako ima | onih koji zastupaju frekventisticki pristup.

Ako netko zastupa bejsovski pristup,
ne znaci da automatski zastupa | kauzalno zakljuCivanje.

Ipak, moze se reci da postoji znacajna korelacija izmedu
onih koji zastupaju bejsovski pristup statistici
| onih koji zastupaju kauzalno zakljucCivanje.

Napomena: Prevladava misljenje da bi termin korelacija
trebalo koristiti samo kod linearnih veza izmedu varijabli,

a u opcenitom slucaju bi trebalo koristiti termin asocijacija.
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Kauzalno zakljucivanje =
kauzalno ucenje + kauzalno rezoniranje

O Iz knjige Elements of Causal Inference (Peters J. i ostali)

[ causal model }

subsumes

Y

causal learning -

observations &

/——\ outcomes incl.
U changes &

interventions

~

causal reasoning i |
|
|
|
|
|
|
|
|

statistical learning
Y

[ probabilistic model }

/—\ observations
\—///,? & outcomes

Figure 1.1: Terminology used by the present book for various probabilistic inference
problems (bottom) and causal inference problems (top):; see Section 1.3. Note that we use

probabilistic reasoning

the term “inference” to include both learning and reasoning.

subsume
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Knjiga "The Book of Why"

O U toj knjizi Judea Perl, racunalni znanstvenik i statisticar,
dobitnik Turingove nagrade 2011. za doprinos u podrucju
umjetne inteligencije, pokazuje (za siru publiku, a ne samo za
matematicare) kako je razumijevanje uzrocnosti vazno za
znanost, onda i za umjetnu inteligenciju.

0 "Correlation is not causation.” (korelacija nije uzrocna veza)
- ova mantra, koju znanstvenici izgovaraju vise od jednog
stoljeCa, dovela je do praktiCne zabrane kauzalnog govora.
Kauzalna revolucija, koju su potaknuli Judea Pearl, njegovi
kolege, te ostali znanstvenici uspostavila je proucavanje
uzroka i posljedice na cvrstoj znanstvenoj osnovi.

O Njihov rad objasnjava kako mozemo znati jednostavne stvari, |
kako odgovoriti na teska pitanja, poput toga je li lijek izlijeCio
bolest. Omogucuje nam da znamo ne samo uzrokuje li jedna
stvar drugu: omogucuje nam istrazivanje svijeta koji jest |
svjetova koji su mogli biti.

37



Pearl — ljestve uzro€nosti

0 Protucinjeni¢no
zakljucivanje
- aktivnost: imaginacija
- Sto bi bilo da sam

umjesto ...

napravio ...?

O Intervencija
- aktlivnost: intervencija
- Sto ako napravim ...7?

[0 Asocijacija

- aktivnost: opservacija
- Sto ako vidim ...?

I 3. COUNTERFACTUALS

ACTIVITY:  Imagining, Retrospection, Understanding
QUESTIONS:  What if I had done ...2 Wihy?

(Was it X that caused Y? What if X had not
A occurred? What if 1 had acted differently?)

EXAMPLES:  Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had nor
killed him? Whar if T had nor smoked for the

last 2 years?

L_ _J
nh [
ik 2. INTERVENTION
: ACTIVITY: Doing, Intervening
QUESTIONS:  What if 1do...2 How?
(What would Y be if 1 do X?
A How can I make Y happen?)
EXAMPLES:  If I take aspirin, will my headache be cured?
What if we ban cigarertes?
i J

1. ASSOCIATION
ACTIVITY:

Secing, Observing

QUESTIONS:  What if I sec...?
(How are the variables related?
How would seeing X change my belief in Y?)

EXAMPLES:  What does a symptom tell me about a disease?
What does a survey tell us about the

elecrion resulrs?
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Pearl — ljestve uzrocnosti

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell
P(y|z) How would seeing X me about a disease?
change my belief inY? What does a survey tell us
about the election results?
2. Intervention Doing What if? What if I take aspirin, will
P(y|do(z), z) What if [ do X? my headache be cured?
What if we ban cigarettes?
3. Counterfactuals | Imagining, Why? Was it the aspirin that
P2’ s%) Retrospection | Was it X that caused Y? | stopped my headache?
What if I had acted Would Kennedy be alive
differently? had Oswald not shot him?
What if I had not been
smoking the past 2 years?
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Eksperimenti (Randomized Control Trials, RCT)
nasuprot opservacijskim studijama

0 Eksperimenti (narocCito dvostruko slijepi, gdje npr.
pacijenti ne znaju primaju li lijek ili placebo,
ali to ne znaju niti lijeCnici koji ima daju lijek)
predstavljaju zlatni standard u statistickim testovima.
0 No Cesto se moramo zadovoljiti s podacima koje imamo,
tj. raditi opservacijske studije, bez intervencija.
Razlozi mogu biti:
- eticki; npr. nije etiCki da teSkim bolesnicima ne damo lijek
za koji vjerujemo (iako nismo sigurni) da je ucinkovit
- nemogucnost; npr. ne mozemo promijeniti DNK osobe pri
rodenju, kako bismo mijerili uCinak odredenog gena
- financijski; testiranje je skupo, a postojece podatke
mozemo analizirati relativno jeftino

40



Sewall Wright, americki geneticar (1889-1988)
— otac kauzalnih dijagrama (path diagrams)

Ficure 2.6. Sewall Wright was the first person to develop a mathematical method for

answering causal questions from data, known as path diagrams. His love of
mathematics surrendered only to his passion for guinea pigs. (Source: Drawing by
Dakota Harr.)
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Berkson’s paradox

0 Godine 1946. Joseph Berkson, biostatistiCar na klinici Mayo,
ukazao je na neobicnost opservacijskih studija provedenih u
bolniCkom okruzenju: cak i ako dvije bolesti nemaju nikakve
veze jedna s drugom u opcoj populaciji, moze se Ciniti da su

povezane medu pacijentima u bolnici.

General Population

Hospitalized in
Last Six Months

Respiratory Bone disease? Bone disease¢

disease? | Yes No % Yes |  Yes No % Yes
Yes 17 207 7.6 5 15 25.0
No (control) 184 2,376 7.2 18 219 7.6
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Berkson’s paradox
— humoristicka verzija

O U filmskoj industriji, glumci/glumice koji su postali filmske
zvijezde moraju imati barem jednu od ove dvije osobine:
- jJako su zgodni
- jako su dobri glumci/glumice.

0 StatistiCki podaci pokazuju sljedece:
Ako je filmska zvijezda zgodna,
manja je vjerojatnost da je dobar glumac/glumica.
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Berkson’s paradox

0 RazrjeSenje Berksonovog paradoksa za sluCaj (ne)vezanih
bolesti dobije se gledajuci donji kauzalni graf. Obje bolesti
utjeCu na hospitalizaciju, kao sto pokazuje graf.

0 To je jedan od tri osnovna grafa s tri Cvora — srednji Cvor
zove se mjesto sudara ili sudarac ili kolider (collider).

0 Vidi se da su bolesti medusobno nezavisne. No
ako kontroliramo kolider (gledamo odredenu vrijednost),
odblokirali smo put izmedu dva nezavisna Cvora — oni su
tada postali korelirani! Kolider ne smijemo kontrolirati!

Disease 1 Disease 2

Hospitalization
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Statisticko testiranje u osnovnoj skoli

0 U osnovnoj skoli mjerili su uCenicima duljinu stopala
| testirali sposobnost Citanja. StatistiCki podaci pokazali su da
ucenici s duljim stopalima bolje Citaju. Dakle, nasli su znacajnu
korelaciju izmedu duljine stopala | sposobnosti Citanja.

0 Naravno, korelacija nije znaci uzrocnost (kako je govorio |
Fisher). Ali, uzroCnost ipak postoji, a to je u ovom slucaju dob.

0 Graf odnosa izmedu tri Cvora, Dob, DS (duljina stopala)
| SC (sposobnost Citanja) pokazuje da je Dob
zajednicki uzrok ili zbunjivac (confounder).

0 Da bismo vidjeli postoji li zaista veza
izmedu DS i SC (oznadéeno sa ?),
trebamo blokirati put Dob — DS
tj. kontrolirati confounder!

U ovom slucaju, trebamo podatke
gledati zasebno za svaku dob
(ili Skolski razred). 45




Simpson’s paradox
0 Paradoks je prvi otkrio statistiCar Edward Simpson 1951.

0 Donja tablica (s fiktivnim podacima) pokazuje da je lijek
loS za zene (3/40 srCanih udara kod zena koje su uzele lijek
u odnosu na 1/20 = 2/40 kod zena koje nisu uzele lijek)
| loS za muskarce (8/20 = 16/40 u odnosu na 12/40).

0 No ukupno je lijek dobar (11/60 < 13/60).

0 Znaci li to da postoji lijek BBG - los za zene i za muskarce,
dobar ako ne znamo spol ?!

Control Group

Treatment Group

(No Drug) (Took Drug)
Heart attack | No heart attack | Heart attack | No heart attack
Female 1 19 3 37
Male 12 28 3 12
Total 13 47 11 49
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Simpson’s paradox

0 Razrjesenje Simpsonovog paradoksa za slucaj cudnovatog
lijeka BBG dobije se tako da se kontrolira confounder,
a to je spol (Gender), jer su muskarci manje skloni da uzimaju
propisane lijekove i vise su skloni srcanim udarima.

O Nakon kotroliranja confoundera, ostaje samo direktna zavisnost
izmedu lijeka (Drug) i srcanog udara (Heart Attack).

O Dakle, lijek je los za zene | za muskarce, ali je los i ukupno.
(naravno, to je i intuitivno logicno). Lijek BBG ne postoji!

Gender

Drug Heart Attack
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Simpson’s paradox - drugi primjer

0 Pogledajmo sada drugu tablicu, koja pokazuje jednake
brojeve kao prethodna tablica, ali je primjer drugaciji.
Tablica pokazuje da je lijek los | kod pacijenata koji su imali
nizak krvni | kod pacijenata koji su imali visok krvni tlak, ali je
ukupno dobar.

0 Mozemo li zakljuciti kao u prvom primjeru
- da je, zapravo, lijek uvijek los?

Control Group Treatment Group
(No Drug) (Took Drug)

Heart No beart Heart No bheart

attack attack attack attack
Low blood 1 19 3 37
pressure
High blood 12 28 8 12
pressure
Total 13 47 11 49 "




Simpson’s paradox — drugi primjer

O Ovdje je odgovor suprotan: lijek je dobar i za one s niskim
tlakom i za one s visokim tlakom, pa onda i ukupno.

0 Za razliku od prvog primjera, gdje je spol bio confounder,
ovdje tlak nije confounder, nego posrednik ili medijator
(mediator). Lijek utjeCe i na tlak (snizava ga) i na srCane
udare (smanjuje ih), pa lijek djeluje na smanjenje srcanih
udara i direktno i indirektno (preko medijatora).

0 Ovdje bi bilo pogresno kontrolirati medijator, jer bi se

izgubila indirektna veza. Medijator kontroliramo kad hocemo
mjeriti direktnu vezu. Blood Pressure

Drug Heart Attack
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Kontrolirati ili ne kontrolirati, pitanje je sad

0 Kolider ne smijemo kontrolirati
X — K<Y XLy | @
(X je nezavisno od Y ako ne kontroliramo)

0 Confounder trebamo kontrolirati
X—C—oY XLdy|cC
(X je nezavisno od Y ako C kontroliramo)

0 Medijator uglavnom ne kontroliramo
X—>M-=>Y XLy |™m
(X je nezavisno od Y ako M kontroliramo)

osim kad zelimo mjeriti direktnu vezu (izmedu X iY),
tj. eliminirati indirektnu vezu (preko M).
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Sto (ne) mozemo saznati iz podataka

0 Ova tri osnovna usmjerena acikliCka grafa
(Directed Acyclic Graph, DAG), lanac u oba smjera
| racvanje, spadaju u istu klasu ekvivalencije
— nemoguce ih je razlikovati samo na temelju podataka:

X—->M->Y
XM<Y
X—C->Y

O Cetvrti graf spada u drugu klasu:
X—>K«Y

0 Na temelju podataka mozemo saznati
je li rije€ o prvoj ili drugoj klasi.
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0 Dva skupa Cvorova X i Y su d-separirani (d-separated)
skupom cvorova Z ako su svi putovi izmedu
(bilo kojeg Cvora u) X i (bilo kojeg Cvora u) Y blokirani s Z.

0 d-separirani cvorovi (G kao graf) su i statistiCki nezavisni (P):
Xdcy|Zz=>XLpY|Z (obrnuto ne vrijedi)

0 U donjem primjeru su cvorovi T 1Y d-separirani pomocu
skupa cvorova {W2, M1} (moguce su i druge kombinacije):

d-separation practice

O @%
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do-operator | do-calculus

do-operator oznacava intervenciju, a ne opservaciju:
P(Y | do(X)) # P(Y | X) - kauzalna formula # statistiCka

Npr. ako je X boja kose, a Y brzina trcanja,

intervencija do(X = crna), kojom ofarbamo sijedu kosu u crnu,
nece utjecati da se Y poboljsa, za razliku od opservacije

P(Y = brzo | X =crna) u odnosu na P(Y = brzo | X = sijeda).
Ponekad mozemo zamijeniti kauzalne formule sa
statistickim formulama, tj. ne moramo raditi intervencije.
do-calculus omogucava nalazenje tih statistickin formula,

ako je to moguce (ako nije, znamo da nije).

do-calculus temelji se na tri pravila (nisu aksiomi,

jer se mogu izvesti iz teorije vjerojatnosti) i ima ove osobine:

- pouzdan

- potpun: ako se do-operator moze pretvoriti u statisticki izraz,
do-calculus to moze

- postoji algoritam koji to radi u polinomijalnom vremenu. -
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Na CASE 2020 prikazali smo
"Mrav i med na prizmi i valjku” (verzija 1)

http://www.istratech.hr/mrav-i-med-na-pravilnim-prizmama-i-valjku-verzija-4/
(napomena: slika prikazuje realizaciju verzije 3)
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